1 /* 2 * Copyright (C) 2017 Oracle. All Rights Reserved. 3 * 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it would be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 19 */ 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_error.h" 32 #include "xfs_btree.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_trace.h" 35 #include "xfs_log.h" 36 #include "xfs_rmap.h" 37 #include "xfs_alloc.h" 38 #include "xfs_bit.h" 39 #include <linux/fsmap.h> 40 #include "xfs_fsmap.h" 41 #include "xfs_refcount.h" 42 #include "xfs_refcount_btree.h" 43 #include "xfs_alloc_btree.h" 44 #include "xfs_rtalloc.h" 45 46 /* Convert an xfs_fsmap to an fsmap. */ 47 void 48 xfs_fsmap_from_internal( 49 struct fsmap *dest, 50 struct xfs_fsmap *src) 51 { 52 dest->fmr_device = src->fmr_device; 53 dest->fmr_flags = src->fmr_flags; 54 dest->fmr_physical = BBTOB(src->fmr_physical); 55 dest->fmr_owner = src->fmr_owner; 56 dest->fmr_offset = BBTOB(src->fmr_offset); 57 dest->fmr_length = BBTOB(src->fmr_length); 58 dest->fmr_reserved[0] = 0; 59 dest->fmr_reserved[1] = 0; 60 dest->fmr_reserved[2] = 0; 61 } 62 63 /* Convert an fsmap to an xfs_fsmap. */ 64 void 65 xfs_fsmap_to_internal( 66 struct xfs_fsmap *dest, 67 struct fsmap *src) 68 { 69 dest->fmr_device = src->fmr_device; 70 dest->fmr_flags = src->fmr_flags; 71 dest->fmr_physical = BTOBBT(src->fmr_physical); 72 dest->fmr_owner = src->fmr_owner; 73 dest->fmr_offset = BTOBBT(src->fmr_offset); 74 dest->fmr_length = BTOBBT(src->fmr_length); 75 } 76 77 /* Convert an fsmap owner into an rmapbt owner. */ 78 static int 79 xfs_fsmap_owner_to_rmap( 80 struct xfs_rmap_irec *dest, 81 struct xfs_fsmap *src) 82 { 83 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { 84 dest->rm_owner = src->fmr_owner; 85 return 0; 86 } 87 88 switch (src->fmr_owner) { 89 case 0: /* "lowest owner id possible" */ 90 case -1ULL: /* "highest owner id possible" */ 91 dest->rm_owner = 0; 92 break; 93 case XFS_FMR_OWN_FREE: 94 dest->rm_owner = XFS_RMAP_OWN_NULL; 95 break; 96 case XFS_FMR_OWN_UNKNOWN: 97 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; 98 break; 99 case XFS_FMR_OWN_FS: 100 dest->rm_owner = XFS_RMAP_OWN_FS; 101 break; 102 case XFS_FMR_OWN_LOG: 103 dest->rm_owner = XFS_RMAP_OWN_LOG; 104 break; 105 case XFS_FMR_OWN_AG: 106 dest->rm_owner = XFS_RMAP_OWN_AG; 107 break; 108 case XFS_FMR_OWN_INOBT: 109 dest->rm_owner = XFS_RMAP_OWN_INOBT; 110 break; 111 case XFS_FMR_OWN_INODES: 112 dest->rm_owner = XFS_RMAP_OWN_INODES; 113 break; 114 case XFS_FMR_OWN_REFC: 115 dest->rm_owner = XFS_RMAP_OWN_REFC; 116 break; 117 case XFS_FMR_OWN_COW: 118 dest->rm_owner = XFS_RMAP_OWN_COW; 119 break; 120 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ 121 /* fall through */ 122 default: 123 return -EINVAL; 124 } 125 return 0; 126 } 127 128 /* Convert an rmapbt owner into an fsmap owner. */ 129 static int 130 xfs_fsmap_owner_from_rmap( 131 struct xfs_fsmap *dest, 132 struct xfs_rmap_irec *src) 133 { 134 dest->fmr_flags = 0; 135 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { 136 dest->fmr_owner = src->rm_owner; 137 return 0; 138 } 139 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; 140 141 switch (src->rm_owner) { 142 case XFS_RMAP_OWN_FS: 143 dest->fmr_owner = XFS_FMR_OWN_FS; 144 break; 145 case XFS_RMAP_OWN_LOG: 146 dest->fmr_owner = XFS_FMR_OWN_LOG; 147 break; 148 case XFS_RMAP_OWN_AG: 149 dest->fmr_owner = XFS_FMR_OWN_AG; 150 break; 151 case XFS_RMAP_OWN_INOBT: 152 dest->fmr_owner = XFS_FMR_OWN_INOBT; 153 break; 154 case XFS_RMAP_OWN_INODES: 155 dest->fmr_owner = XFS_FMR_OWN_INODES; 156 break; 157 case XFS_RMAP_OWN_REFC: 158 dest->fmr_owner = XFS_FMR_OWN_REFC; 159 break; 160 case XFS_RMAP_OWN_COW: 161 dest->fmr_owner = XFS_FMR_OWN_COW; 162 break; 163 case XFS_RMAP_OWN_NULL: /* "free" */ 164 dest->fmr_owner = XFS_FMR_OWN_FREE; 165 break; 166 default: 167 return -EFSCORRUPTED; 168 } 169 return 0; 170 } 171 172 /* getfsmap query state */ 173 struct xfs_getfsmap_info { 174 struct xfs_fsmap_head *head; 175 xfs_fsmap_format_t formatter; /* formatting fn */ 176 void *format_arg; /* format buffer */ 177 struct xfs_buf *agf_bp; /* AGF, for refcount queries */ 178 xfs_daddr_t next_daddr; /* next daddr we expect */ 179 u64 missing_owner; /* owner of holes */ 180 u32 dev; /* device id */ 181 xfs_agnumber_t agno; /* AG number, if applicable */ 182 struct xfs_rmap_irec low; /* low rmap key */ 183 struct xfs_rmap_irec high; /* high rmap key */ 184 bool last; /* last extent? */ 185 }; 186 187 /* Associate a device with a getfsmap handler. */ 188 struct xfs_getfsmap_dev { 189 u32 dev; 190 int (*fn)(struct xfs_trans *tp, 191 struct xfs_fsmap *keys, 192 struct xfs_getfsmap_info *info); 193 }; 194 195 /* Compare two getfsmap device handlers. */ 196 static int 197 xfs_getfsmap_dev_compare( 198 const void *p1, 199 const void *p2) 200 { 201 const struct xfs_getfsmap_dev *d1 = p1; 202 const struct xfs_getfsmap_dev *d2 = p2; 203 204 return d1->dev - d2->dev; 205 } 206 207 /* Decide if this mapping is shared. */ 208 STATIC int 209 xfs_getfsmap_is_shared( 210 struct xfs_trans *tp, 211 struct xfs_getfsmap_info *info, 212 struct xfs_rmap_irec *rec, 213 bool *stat) 214 { 215 struct xfs_mount *mp = tp->t_mountp; 216 struct xfs_btree_cur *cur; 217 xfs_agblock_t fbno; 218 xfs_extlen_t flen; 219 int error; 220 221 *stat = false; 222 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 223 return 0; 224 /* rt files will have agno set to NULLAGNUMBER */ 225 if (info->agno == NULLAGNUMBER) 226 return 0; 227 228 /* Are there any shared blocks here? */ 229 flen = 0; 230 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, 231 info->agno, NULL); 232 233 error = xfs_refcount_find_shared(cur, rec->rm_startblock, 234 rec->rm_blockcount, &fbno, &flen, false); 235 236 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 237 if (error) 238 return error; 239 240 *stat = flen > 0; 241 return 0; 242 } 243 244 /* 245 * Format a reverse mapping for getfsmap, having translated rm_startblock 246 * into the appropriate daddr units. 247 */ 248 STATIC int 249 xfs_getfsmap_helper( 250 struct xfs_trans *tp, 251 struct xfs_getfsmap_info *info, 252 struct xfs_rmap_irec *rec, 253 xfs_daddr_t rec_daddr) 254 { 255 struct xfs_fsmap fmr; 256 struct xfs_mount *mp = tp->t_mountp; 257 bool shared; 258 int error; 259 260 if (fatal_signal_pending(current)) 261 return -EINTR; 262 263 /* 264 * Filter out records that start before our startpoint, if the 265 * caller requested that. 266 */ 267 if (xfs_rmap_compare(rec, &info->low) < 0) { 268 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 269 if (info->next_daddr < rec_daddr) 270 info->next_daddr = rec_daddr; 271 return XFS_BTREE_QUERY_RANGE_CONTINUE; 272 } 273 274 /* Are we just counting mappings? */ 275 if (info->head->fmh_count == 0) { 276 if (rec_daddr > info->next_daddr) 277 info->head->fmh_entries++; 278 279 if (info->last) 280 return XFS_BTREE_QUERY_RANGE_CONTINUE; 281 282 info->head->fmh_entries++; 283 284 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 285 if (info->next_daddr < rec_daddr) 286 info->next_daddr = rec_daddr; 287 return XFS_BTREE_QUERY_RANGE_CONTINUE; 288 } 289 290 /* 291 * If the record starts past the last physical block we saw, 292 * then we've found a gap. Report the gap as being owned by 293 * whatever the caller specified is the missing owner. 294 */ 295 if (rec_daddr > info->next_daddr) { 296 if (info->head->fmh_entries >= info->head->fmh_count) 297 return XFS_BTREE_QUERY_RANGE_ABORT; 298 299 fmr.fmr_device = info->dev; 300 fmr.fmr_physical = info->next_daddr; 301 fmr.fmr_owner = info->missing_owner; 302 fmr.fmr_offset = 0; 303 fmr.fmr_length = rec_daddr - info->next_daddr; 304 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; 305 error = info->formatter(&fmr, info->format_arg); 306 if (error) 307 return error; 308 info->head->fmh_entries++; 309 } 310 311 if (info->last) 312 goto out; 313 314 /* Fill out the extent we found */ 315 if (info->head->fmh_entries >= info->head->fmh_count) 316 return XFS_BTREE_QUERY_RANGE_ABORT; 317 318 trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec); 319 320 fmr.fmr_device = info->dev; 321 fmr.fmr_physical = rec_daddr; 322 error = xfs_fsmap_owner_from_rmap(&fmr, rec); 323 if (error) 324 return error; 325 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); 326 fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount); 327 if (rec->rm_flags & XFS_RMAP_UNWRITTEN) 328 fmr.fmr_flags |= FMR_OF_PREALLOC; 329 if (rec->rm_flags & XFS_RMAP_ATTR_FORK) 330 fmr.fmr_flags |= FMR_OF_ATTR_FORK; 331 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) 332 fmr.fmr_flags |= FMR_OF_EXTENT_MAP; 333 if (fmr.fmr_flags == 0) { 334 error = xfs_getfsmap_is_shared(tp, info, rec, &shared); 335 if (error) 336 return error; 337 if (shared) 338 fmr.fmr_flags |= FMR_OF_SHARED; 339 } 340 error = info->formatter(&fmr, info->format_arg); 341 if (error) 342 return error; 343 info->head->fmh_entries++; 344 345 out: 346 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 347 if (info->next_daddr < rec_daddr) 348 info->next_daddr = rec_daddr; 349 return XFS_BTREE_QUERY_RANGE_CONTINUE; 350 } 351 352 /* Transform a rmapbt irec into a fsmap */ 353 STATIC int 354 xfs_getfsmap_datadev_helper( 355 struct xfs_btree_cur *cur, 356 struct xfs_rmap_irec *rec, 357 void *priv) 358 { 359 struct xfs_mount *mp = cur->bc_mp; 360 struct xfs_getfsmap_info *info = priv; 361 xfs_fsblock_t fsb; 362 xfs_daddr_t rec_daddr; 363 364 fsb = XFS_AGB_TO_FSB(mp, cur->bc_private.a.agno, rec->rm_startblock); 365 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); 366 367 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr); 368 } 369 370 /* Transform a bnobt irec into a fsmap */ 371 STATIC int 372 xfs_getfsmap_datadev_bnobt_helper( 373 struct xfs_btree_cur *cur, 374 struct xfs_alloc_rec_incore *rec, 375 void *priv) 376 { 377 struct xfs_mount *mp = cur->bc_mp; 378 struct xfs_getfsmap_info *info = priv; 379 struct xfs_rmap_irec irec; 380 xfs_daddr_t rec_daddr; 381 382 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_private.a.agno, 383 rec->ar_startblock); 384 385 irec.rm_startblock = rec->ar_startblock; 386 irec.rm_blockcount = rec->ar_blockcount; 387 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 388 irec.rm_offset = 0; 389 irec.rm_flags = 0; 390 391 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr); 392 } 393 394 /* Set rmap flags based on the getfsmap flags */ 395 static void 396 xfs_getfsmap_set_irec_flags( 397 struct xfs_rmap_irec *irec, 398 struct xfs_fsmap *fmr) 399 { 400 irec->rm_flags = 0; 401 if (fmr->fmr_flags & FMR_OF_ATTR_FORK) 402 irec->rm_flags |= XFS_RMAP_ATTR_FORK; 403 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) 404 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; 405 if (fmr->fmr_flags & FMR_OF_PREALLOC) 406 irec->rm_flags |= XFS_RMAP_UNWRITTEN; 407 } 408 409 /* Execute a getfsmap query against the log device. */ 410 STATIC int 411 xfs_getfsmap_logdev( 412 struct xfs_trans *tp, 413 struct xfs_fsmap *keys, 414 struct xfs_getfsmap_info *info) 415 { 416 struct xfs_mount *mp = tp->t_mountp; 417 struct xfs_rmap_irec rmap; 418 int error; 419 420 /* Set up search keys */ 421 info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 422 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 423 error = xfs_fsmap_owner_to_rmap(&info->low, keys); 424 if (error) 425 return error; 426 info->low.rm_blockcount = 0; 427 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 428 429 error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1); 430 if (error) 431 return error; 432 info->high.rm_startblock = -1U; 433 info->high.rm_owner = ULLONG_MAX; 434 info->high.rm_offset = ULLONG_MAX; 435 info->high.rm_blockcount = 0; 436 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 437 info->missing_owner = XFS_FMR_OWN_FREE; 438 439 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 440 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 441 442 if (keys[0].fmr_physical > 0) 443 return 0; 444 445 /* Fabricate an rmap entry for the external log device. */ 446 rmap.rm_startblock = 0; 447 rmap.rm_blockcount = mp->m_sb.sb_logblocks; 448 rmap.rm_owner = XFS_RMAP_OWN_LOG; 449 rmap.rm_offset = 0; 450 rmap.rm_flags = 0; 451 452 return xfs_getfsmap_helper(tp, info, &rmap, 0); 453 } 454 455 #ifdef CONFIG_XFS_RT 456 /* Transform a rtbitmap "record" into a fsmap */ 457 STATIC int 458 xfs_getfsmap_rtdev_rtbitmap_helper( 459 struct xfs_trans *tp, 460 struct xfs_rtalloc_rec *rec, 461 void *priv) 462 { 463 struct xfs_mount *mp = tp->t_mountp; 464 struct xfs_getfsmap_info *info = priv; 465 struct xfs_rmap_irec irec; 466 xfs_daddr_t rec_daddr; 467 468 rec_daddr = XFS_FSB_TO_BB(mp, rec->ar_startblock); 469 470 irec.rm_startblock = rec->ar_startblock; 471 irec.rm_blockcount = rec->ar_blockcount; 472 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 473 irec.rm_offset = 0; 474 irec.rm_flags = 0; 475 476 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr); 477 } 478 479 /* Execute a getfsmap query against the realtime device. */ 480 STATIC int 481 __xfs_getfsmap_rtdev( 482 struct xfs_trans *tp, 483 struct xfs_fsmap *keys, 484 int (*query_fn)(struct xfs_trans *, 485 struct xfs_getfsmap_info *), 486 struct xfs_getfsmap_info *info) 487 { 488 struct xfs_mount *mp = tp->t_mountp; 489 xfs_fsblock_t start_fsb; 490 xfs_fsblock_t end_fsb; 491 xfs_daddr_t eofs; 492 int error = 0; 493 494 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); 495 if (keys[0].fmr_physical >= eofs) 496 return 0; 497 if (keys[1].fmr_physical >= eofs) 498 keys[1].fmr_physical = eofs - 1; 499 start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 500 end_fsb = XFS_BB_TO_FSB(mp, keys[1].fmr_physical); 501 502 /* Set up search keys */ 503 info->low.rm_startblock = start_fsb; 504 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 505 if (error) 506 return error; 507 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 508 info->low.rm_blockcount = 0; 509 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 510 511 info->high.rm_startblock = end_fsb; 512 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 513 if (error) 514 return error; 515 info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset); 516 info->high.rm_blockcount = 0; 517 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 518 519 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 520 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 521 522 return query_fn(tp, info); 523 } 524 525 /* Actually query the realtime bitmap. */ 526 STATIC int 527 xfs_getfsmap_rtdev_rtbitmap_query( 528 struct xfs_trans *tp, 529 struct xfs_getfsmap_info *info) 530 { 531 struct xfs_rtalloc_rec alow; 532 struct xfs_rtalloc_rec ahigh; 533 int error; 534 535 xfs_ilock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 536 537 alow.ar_startblock = info->low.rm_startblock; 538 ahigh.ar_startblock = info->high.rm_startblock; 539 error = xfs_rtalloc_query_range(tp, &alow, &ahigh, 540 xfs_getfsmap_rtdev_rtbitmap_helper, info); 541 if (error) 542 goto err; 543 544 /* Report any gaps at the end of the rtbitmap */ 545 info->last = true; 546 error = xfs_getfsmap_rtdev_rtbitmap_helper(tp, &ahigh, info); 547 if (error) 548 goto err; 549 err: 550 xfs_iunlock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 551 return error; 552 } 553 554 /* Execute a getfsmap query against the realtime device rtbitmap. */ 555 STATIC int 556 xfs_getfsmap_rtdev_rtbitmap( 557 struct xfs_trans *tp, 558 struct xfs_fsmap *keys, 559 struct xfs_getfsmap_info *info) 560 { 561 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 562 return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query, 563 info); 564 } 565 #endif /* CONFIG_XFS_RT */ 566 567 /* Execute a getfsmap query against the regular data device. */ 568 STATIC int 569 __xfs_getfsmap_datadev( 570 struct xfs_trans *tp, 571 struct xfs_fsmap *keys, 572 struct xfs_getfsmap_info *info, 573 int (*query_fn)(struct xfs_trans *, 574 struct xfs_getfsmap_info *, 575 struct xfs_btree_cur **, 576 void *), 577 void *priv) 578 { 579 struct xfs_mount *mp = tp->t_mountp; 580 struct xfs_btree_cur *bt_cur = NULL; 581 xfs_fsblock_t start_fsb; 582 xfs_fsblock_t end_fsb; 583 xfs_agnumber_t start_ag; 584 xfs_agnumber_t end_ag; 585 xfs_daddr_t eofs; 586 int error = 0; 587 588 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 589 if (keys[0].fmr_physical >= eofs) 590 return 0; 591 if (keys[1].fmr_physical >= eofs) 592 keys[1].fmr_physical = eofs - 1; 593 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); 594 end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical); 595 596 /* 597 * Convert the fsmap low/high keys to AG based keys. Initialize 598 * low to the fsmap low key and max out the high key to the end 599 * of the AG. 600 */ 601 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); 602 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 603 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 604 if (error) 605 return error; 606 info->low.rm_blockcount = 0; 607 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 608 609 info->high.rm_startblock = -1U; 610 info->high.rm_owner = ULLONG_MAX; 611 info->high.rm_offset = ULLONG_MAX; 612 info->high.rm_blockcount = 0; 613 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 614 615 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); 616 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); 617 618 /* Query each AG */ 619 for (info->agno = start_ag; info->agno <= end_ag; info->agno++) { 620 /* 621 * Set the AG high key from the fsmap high key if this 622 * is the last AG that we're querying. 623 */ 624 if (info->agno == end_ag) { 625 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, 626 end_fsb); 627 info->high.rm_offset = XFS_BB_TO_FSBT(mp, 628 keys[1].fmr_offset); 629 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 630 if (error) 631 goto err; 632 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 633 } 634 635 if (bt_cur) { 636 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); 637 bt_cur = NULL; 638 xfs_trans_brelse(tp, info->agf_bp); 639 info->agf_bp = NULL; 640 } 641 642 error = xfs_alloc_read_agf(mp, tp, info->agno, 0, 643 &info->agf_bp); 644 if (error) 645 goto err; 646 647 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 648 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, 649 &info->high); 650 651 error = query_fn(tp, info, &bt_cur, priv); 652 if (error) 653 goto err; 654 655 /* 656 * Set the AG low key to the start of the AG prior to 657 * moving on to the next AG. 658 */ 659 if (info->agno == start_ag) { 660 info->low.rm_startblock = 0; 661 info->low.rm_owner = 0; 662 info->low.rm_offset = 0; 663 info->low.rm_flags = 0; 664 } 665 } 666 667 /* Report any gap at the end of the AG */ 668 info->last = true; 669 error = query_fn(tp, info, &bt_cur, priv); 670 if (error) 671 goto err; 672 673 err: 674 if (bt_cur) 675 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : 676 XFS_BTREE_NOERROR); 677 if (info->agf_bp) { 678 xfs_trans_brelse(tp, info->agf_bp); 679 info->agf_bp = NULL; 680 } 681 682 return error; 683 } 684 685 /* Actually query the rmap btree. */ 686 STATIC int 687 xfs_getfsmap_datadev_rmapbt_query( 688 struct xfs_trans *tp, 689 struct xfs_getfsmap_info *info, 690 struct xfs_btree_cur **curpp, 691 void *priv) 692 { 693 /* Report any gap at the end of the last AG. */ 694 if (info->last) 695 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); 696 697 /* Allocate cursor for this AG and query_range it. */ 698 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 699 info->agno); 700 return xfs_rmap_query_range(*curpp, &info->low, &info->high, 701 xfs_getfsmap_datadev_helper, info); 702 } 703 704 /* Execute a getfsmap query against the regular data device rmapbt. */ 705 STATIC int 706 xfs_getfsmap_datadev_rmapbt( 707 struct xfs_trans *tp, 708 struct xfs_fsmap *keys, 709 struct xfs_getfsmap_info *info) 710 { 711 info->missing_owner = XFS_FMR_OWN_FREE; 712 return __xfs_getfsmap_datadev(tp, keys, info, 713 xfs_getfsmap_datadev_rmapbt_query, NULL); 714 } 715 716 /* Actually query the bno btree. */ 717 STATIC int 718 xfs_getfsmap_datadev_bnobt_query( 719 struct xfs_trans *tp, 720 struct xfs_getfsmap_info *info, 721 struct xfs_btree_cur **curpp, 722 void *priv) 723 { 724 struct xfs_alloc_rec_incore *key = priv; 725 726 /* Report any gap at the end of the last AG. */ 727 if (info->last) 728 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); 729 730 /* Allocate cursor for this AG and query_range it. */ 731 *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 732 info->agno, XFS_BTNUM_BNO); 733 key->ar_startblock = info->low.rm_startblock; 734 key[1].ar_startblock = info->high.rm_startblock; 735 return xfs_alloc_query_range(*curpp, key, &key[1], 736 xfs_getfsmap_datadev_bnobt_helper, info); 737 } 738 739 /* Execute a getfsmap query against the regular data device's bnobt. */ 740 STATIC int 741 xfs_getfsmap_datadev_bnobt( 742 struct xfs_trans *tp, 743 struct xfs_fsmap *keys, 744 struct xfs_getfsmap_info *info) 745 { 746 struct xfs_alloc_rec_incore akeys[2]; 747 748 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 749 return __xfs_getfsmap_datadev(tp, keys, info, 750 xfs_getfsmap_datadev_bnobt_query, &akeys[0]); 751 } 752 753 /* Do we recognize the device? */ 754 STATIC bool 755 xfs_getfsmap_is_valid_device( 756 struct xfs_mount *mp, 757 struct xfs_fsmap *fm) 758 { 759 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || 760 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) 761 return true; 762 if (mp->m_logdev_targp && 763 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) 764 return true; 765 if (mp->m_rtdev_targp && 766 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) 767 return true; 768 return false; 769 } 770 771 /* Ensure that the low key is less than the high key. */ 772 STATIC bool 773 xfs_getfsmap_check_keys( 774 struct xfs_fsmap *low_key, 775 struct xfs_fsmap *high_key) 776 { 777 if (low_key->fmr_device > high_key->fmr_device) 778 return false; 779 if (low_key->fmr_device < high_key->fmr_device) 780 return true; 781 782 if (low_key->fmr_physical > high_key->fmr_physical) 783 return false; 784 if (low_key->fmr_physical < high_key->fmr_physical) 785 return true; 786 787 if (low_key->fmr_owner > high_key->fmr_owner) 788 return false; 789 if (low_key->fmr_owner < high_key->fmr_owner) 790 return true; 791 792 if (low_key->fmr_offset > high_key->fmr_offset) 793 return false; 794 if (low_key->fmr_offset < high_key->fmr_offset) 795 return true; 796 797 return false; 798 } 799 800 /* 801 * There are only two devices if we didn't configure RT devices at build time. 802 */ 803 #ifdef CONFIG_XFS_RT 804 #define XFS_GETFSMAP_DEVS 3 805 #else 806 #define XFS_GETFSMAP_DEVS 2 807 #endif /* CONFIG_XFS_RT */ 808 809 /* 810 * Get filesystem's extents as described in head, and format for 811 * output. Calls formatter to fill the user's buffer until all 812 * extents are mapped, until the passed-in head->fmh_count slots have 813 * been filled, or until the formatter short-circuits the loop, if it 814 * is tracking filled-in extents on its own. 815 * 816 * Key to Confusion 817 * ---------------- 818 * There are multiple levels of keys and counters at work here: 819 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; 820 * these reflect fs-wide sector addrs. 821 * dkeys -- fmh_keys used to query each device; 822 * these are fmh_keys but w/ the low key 823 * bumped up by fmr_length. 824 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this 825 * is how we detect gaps in the fsmap 826 records and report them. 827 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from 828 * dkeys; used to query the metadata. 829 */ 830 int 831 xfs_getfsmap( 832 struct xfs_mount *mp, 833 struct xfs_fsmap_head *head, 834 xfs_fsmap_format_t formatter, 835 void *arg) 836 { 837 struct xfs_trans *tp = NULL; 838 struct xfs_fsmap dkeys[2]; /* per-dev keys */ 839 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; 840 struct xfs_getfsmap_info info = { NULL }; 841 bool use_rmap; 842 int i; 843 int error = 0; 844 845 if (head->fmh_iflags & ~FMH_IF_VALID) 846 return -EINVAL; 847 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || 848 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) 849 return -EINVAL; 850 851 use_rmap = capable(CAP_SYS_ADMIN) && 852 xfs_sb_version_hasrmapbt(&mp->m_sb); 853 head->fmh_entries = 0; 854 855 /* Set up our device handlers. */ 856 memset(handlers, 0, sizeof(handlers)); 857 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); 858 if (use_rmap) 859 handlers[0].fn = xfs_getfsmap_datadev_rmapbt; 860 else 861 handlers[0].fn = xfs_getfsmap_datadev_bnobt; 862 if (mp->m_logdev_targp != mp->m_ddev_targp) { 863 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); 864 handlers[1].fn = xfs_getfsmap_logdev; 865 } 866 #ifdef CONFIG_XFS_RT 867 if (mp->m_rtdev_targp) { 868 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); 869 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; 870 } 871 #endif /* CONFIG_XFS_RT */ 872 873 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), 874 xfs_getfsmap_dev_compare); 875 876 /* 877 * To continue where we left off, we allow userspace to use the 878 * last mapping from a previous call as the low key of the next. 879 * This is identified by a non-zero length in the low key. We 880 * have to increment the low key in this scenario to ensure we 881 * don't return the same mapping again, and instead return the 882 * very next mapping. 883 * 884 * If the low key mapping refers to file data, the same physical 885 * blocks could be mapped to several other files/offsets. 886 * According to rmapbt record ordering, the minimal next 887 * possible record for the block range is the next starting 888 * offset in the same inode. Therefore, bump the file offset to 889 * continue the search appropriately. For all other low key 890 * mapping types (attr blocks, metadata), bump the physical 891 * offset as there can be no other mapping for the same physical 892 * block range. 893 */ 894 dkeys[0] = head->fmh_keys[0]; 895 if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { 896 dkeys[0].fmr_physical += dkeys[0].fmr_length; 897 dkeys[0].fmr_owner = 0; 898 if (dkeys[0].fmr_offset) 899 return -EINVAL; 900 } else 901 dkeys[0].fmr_offset += dkeys[0].fmr_length; 902 dkeys[0].fmr_length = 0; 903 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); 904 905 if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1])) 906 return -EINVAL; 907 908 info.next_daddr = head->fmh_keys[0].fmr_physical + 909 head->fmh_keys[0].fmr_length; 910 info.formatter = formatter; 911 info.format_arg = arg; 912 info.head = head; 913 914 /* For each device we support... */ 915 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { 916 /* Is this device within the range the user asked for? */ 917 if (!handlers[i].fn) 918 continue; 919 if (head->fmh_keys[0].fmr_device > handlers[i].dev) 920 continue; 921 if (head->fmh_keys[1].fmr_device < handlers[i].dev) 922 break; 923 924 /* 925 * If this device number matches the high key, we have 926 * to pass the high key to the handler to limit the 927 * query results. If the device number exceeds the 928 * low key, zero out the low key so that we get 929 * everything from the beginning. 930 */ 931 if (handlers[i].dev == head->fmh_keys[1].fmr_device) 932 dkeys[1] = head->fmh_keys[1]; 933 if (handlers[i].dev > head->fmh_keys[0].fmr_device) 934 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); 935 936 error = xfs_trans_alloc_empty(mp, &tp); 937 if (error) 938 break; 939 940 info.dev = handlers[i].dev; 941 info.last = false; 942 info.agno = NULLAGNUMBER; 943 error = handlers[i].fn(tp, dkeys, &info); 944 if (error) 945 break; 946 xfs_trans_cancel(tp); 947 tp = NULL; 948 info.next_daddr = 0; 949 } 950 951 if (tp) 952 xfs_trans_cancel(tp); 953 head->fmh_oflags = FMH_OF_DEV_T; 954 return error; 955 } 956