1 /* 2 * Copyright (C) 2017 Oracle. All Rights Reserved. 3 * 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it would be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 19 */ 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_error.h" 32 #include "xfs_btree.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_trace.h" 35 #include "xfs_log.h" 36 #include "xfs_rmap.h" 37 #include "xfs_alloc.h" 38 #include "xfs_bit.h" 39 #include <linux/fsmap.h> 40 #include "xfs_fsmap.h" 41 #include "xfs_refcount.h" 42 #include "xfs_refcount_btree.h" 43 #include "xfs_alloc_btree.h" 44 #include "xfs_rtalloc.h" 45 46 /* Convert an xfs_fsmap to an fsmap. */ 47 void 48 xfs_fsmap_from_internal( 49 struct fsmap *dest, 50 struct xfs_fsmap *src) 51 { 52 dest->fmr_device = src->fmr_device; 53 dest->fmr_flags = src->fmr_flags; 54 dest->fmr_physical = BBTOB(src->fmr_physical); 55 dest->fmr_owner = src->fmr_owner; 56 dest->fmr_offset = BBTOB(src->fmr_offset); 57 dest->fmr_length = BBTOB(src->fmr_length); 58 dest->fmr_reserved[0] = 0; 59 dest->fmr_reserved[1] = 0; 60 dest->fmr_reserved[2] = 0; 61 } 62 63 /* Convert an fsmap to an xfs_fsmap. */ 64 void 65 xfs_fsmap_to_internal( 66 struct xfs_fsmap *dest, 67 struct fsmap *src) 68 { 69 dest->fmr_device = src->fmr_device; 70 dest->fmr_flags = src->fmr_flags; 71 dest->fmr_physical = BTOBBT(src->fmr_physical); 72 dest->fmr_owner = src->fmr_owner; 73 dest->fmr_offset = BTOBBT(src->fmr_offset); 74 dest->fmr_length = BTOBBT(src->fmr_length); 75 } 76 77 /* Convert an fsmap owner into an rmapbt owner. */ 78 static int 79 xfs_fsmap_owner_to_rmap( 80 struct xfs_rmap_irec *dest, 81 struct xfs_fsmap *src) 82 { 83 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { 84 dest->rm_owner = src->fmr_owner; 85 return 0; 86 } 87 88 switch (src->fmr_owner) { 89 case 0: /* "lowest owner id possible" */ 90 case -1ULL: /* "highest owner id possible" */ 91 dest->rm_owner = 0; 92 break; 93 case XFS_FMR_OWN_FREE: 94 dest->rm_owner = XFS_RMAP_OWN_NULL; 95 break; 96 case XFS_FMR_OWN_UNKNOWN: 97 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; 98 break; 99 case XFS_FMR_OWN_FS: 100 dest->rm_owner = XFS_RMAP_OWN_FS; 101 break; 102 case XFS_FMR_OWN_LOG: 103 dest->rm_owner = XFS_RMAP_OWN_LOG; 104 break; 105 case XFS_FMR_OWN_AG: 106 dest->rm_owner = XFS_RMAP_OWN_AG; 107 break; 108 case XFS_FMR_OWN_INOBT: 109 dest->rm_owner = XFS_RMAP_OWN_INOBT; 110 break; 111 case XFS_FMR_OWN_INODES: 112 dest->rm_owner = XFS_RMAP_OWN_INODES; 113 break; 114 case XFS_FMR_OWN_REFC: 115 dest->rm_owner = XFS_RMAP_OWN_REFC; 116 break; 117 case XFS_FMR_OWN_COW: 118 dest->rm_owner = XFS_RMAP_OWN_COW; 119 break; 120 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ 121 /* fall through */ 122 default: 123 return -EINVAL; 124 } 125 return 0; 126 } 127 128 /* Convert an rmapbt owner into an fsmap owner. */ 129 static int 130 xfs_fsmap_owner_from_rmap( 131 struct xfs_fsmap *dest, 132 struct xfs_rmap_irec *src) 133 { 134 dest->fmr_flags = 0; 135 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { 136 dest->fmr_owner = src->rm_owner; 137 return 0; 138 } 139 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; 140 141 switch (src->rm_owner) { 142 case XFS_RMAP_OWN_FS: 143 dest->fmr_owner = XFS_FMR_OWN_FS; 144 break; 145 case XFS_RMAP_OWN_LOG: 146 dest->fmr_owner = XFS_FMR_OWN_LOG; 147 break; 148 case XFS_RMAP_OWN_AG: 149 dest->fmr_owner = XFS_FMR_OWN_AG; 150 break; 151 case XFS_RMAP_OWN_INOBT: 152 dest->fmr_owner = XFS_FMR_OWN_INOBT; 153 break; 154 case XFS_RMAP_OWN_INODES: 155 dest->fmr_owner = XFS_FMR_OWN_INODES; 156 break; 157 case XFS_RMAP_OWN_REFC: 158 dest->fmr_owner = XFS_FMR_OWN_REFC; 159 break; 160 case XFS_RMAP_OWN_COW: 161 dest->fmr_owner = XFS_FMR_OWN_COW; 162 break; 163 case XFS_RMAP_OWN_NULL: /* "free" */ 164 dest->fmr_owner = XFS_FMR_OWN_FREE; 165 break; 166 default: 167 return -EFSCORRUPTED; 168 } 169 return 0; 170 } 171 172 /* getfsmap query state */ 173 struct xfs_getfsmap_info { 174 struct xfs_fsmap_head *head; 175 xfs_fsmap_format_t formatter; /* formatting fn */ 176 void *format_arg; /* format buffer */ 177 struct xfs_buf *agf_bp; /* AGF, for refcount queries */ 178 xfs_daddr_t next_daddr; /* next daddr we expect */ 179 u64 missing_owner; /* owner of holes */ 180 u32 dev; /* device id */ 181 xfs_agnumber_t agno; /* AG number, if applicable */ 182 struct xfs_rmap_irec low; /* low rmap key */ 183 struct xfs_rmap_irec high; /* high rmap key */ 184 bool last; /* last extent? */ 185 }; 186 187 /* Associate a device with a getfsmap handler. */ 188 struct xfs_getfsmap_dev { 189 u32 dev; 190 int (*fn)(struct xfs_trans *tp, 191 struct xfs_fsmap *keys, 192 struct xfs_getfsmap_info *info); 193 }; 194 195 /* Compare two getfsmap device handlers. */ 196 static int 197 xfs_getfsmap_dev_compare( 198 const void *p1, 199 const void *p2) 200 { 201 const struct xfs_getfsmap_dev *d1 = p1; 202 const struct xfs_getfsmap_dev *d2 = p2; 203 204 return d1->dev - d2->dev; 205 } 206 207 /* Decide if this mapping is shared. */ 208 STATIC int 209 xfs_getfsmap_is_shared( 210 struct xfs_trans *tp, 211 struct xfs_getfsmap_info *info, 212 struct xfs_rmap_irec *rec, 213 bool *stat) 214 { 215 struct xfs_mount *mp = tp->t_mountp; 216 struct xfs_btree_cur *cur; 217 xfs_agblock_t fbno; 218 xfs_extlen_t flen; 219 int error; 220 221 *stat = false; 222 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 223 return 0; 224 /* rt files will have agno set to NULLAGNUMBER */ 225 if (info->agno == NULLAGNUMBER) 226 return 0; 227 228 /* Are there any shared blocks here? */ 229 flen = 0; 230 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, 231 info->agno, NULL); 232 233 error = xfs_refcount_find_shared(cur, rec->rm_startblock, 234 rec->rm_blockcount, &fbno, &flen, false); 235 236 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); 237 if (error) 238 return error; 239 240 *stat = flen > 0; 241 return 0; 242 } 243 244 /* 245 * Format a reverse mapping for getfsmap, having translated rm_startblock 246 * into the appropriate daddr units. 247 */ 248 STATIC int 249 xfs_getfsmap_helper( 250 struct xfs_trans *tp, 251 struct xfs_getfsmap_info *info, 252 struct xfs_rmap_irec *rec, 253 xfs_daddr_t rec_daddr) 254 { 255 struct xfs_fsmap fmr; 256 struct xfs_mount *mp = tp->t_mountp; 257 bool shared; 258 int error; 259 260 if (fatal_signal_pending(current)) 261 return -EINTR; 262 263 /* 264 * Filter out records that start before our startpoint, if the 265 * caller requested that. 266 */ 267 if (xfs_rmap_compare(rec, &info->low) < 0) { 268 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 269 if (info->next_daddr < rec_daddr) 270 info->next_daddr = rec_daddr; 271 return XFS_BTREE_QUERY_RANGE_CONTINUE; 272 } 273 274 /* Are we just counting mappings? */ 275 if (info->head->fmh_count == 0) { 276 if (rec_daddr > info->next_daddr) 277 info->head->fmh_entries++; 278 279 if (info->last) 280 return XFS_BTREE_QUERY_RANGE_CONTINUE; 281 282 info->head->fmh_entries++; 283 284 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 285 if (info->next_daddr < rec_daddr) 286 info->next_daddr = rec_daddr; 287 return XFS_BTREE_QUERY_RANGE_CONTINUE; 288 } 289 290 /* 291 * If the record starts past the last physical block we saw, 292 * then we've found a gap. Report the gap as being owned by 293 * whatever the caller specified is the missing owner. 294 */ 295 if (rec_daddr > info->next_daddr) { 296 if (info->head->fmh_entries >= info->head->fmh_count) 297 return XFS_BTREE_QUERY_RANGE_ABORT; 298 299 fmr.fmr_device = info->dev; 300 fmr.fmr_physical = info->next_daddr; 301 fmr.fmr_owner = info->missing_owner; 302 fmr.fmr_offset = 0; 303 fmr.fmr_length = rec_daddr - info->next_daddr; 304 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; 305 error = info->formatter(&fmr, info->format_arg); 306 if (error) 307 return error; 308 info->head->fmh_entries++; 309 } 310 311 if (info->last) 312 goto out; 313 314 /* Fill out the extent we found */ 315 if (info->head->fmh_entries >= info->head->fmh_count) 316 return XFS_BTREE_QUERY_RANGE_ABORT; 317 318 trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec); 319 320 fmr.fmr_device = info->dev; 321 fmr.fmr_physical = rec_daddr; 322 error = xfs_fsmap_owner_from_rmap(&fmr, rec); 323 if (error) 324 return error; 325 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); 326 fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount); 327 if (rec->rm_flags & XFS_RMAP_UNWRITTEN) 328 fmr.fmr_flags |= FMR_OF_PREALLOC; 329 if (rec->rm_flags & XFS_RMAP_ATTR_FORK) 330 fmr.fmr_flags |= FMR_OF_ATTR_FORK; 331 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) 332 fmr.fmr_flags |= FMR_OF_EXTENT_MAP; 333 if (fmr.fmr_flags == 0) { 334 error = xfs_getfsmap_is_shared(tp, info, rec, &shared); 335 if (error) 336 return error; 337 if (shared) 338 fmr.fmr_flags |= FMR_OF_SHARED; 339 } 340 error = info->formatter(&fmr, info->format_arg); 341 if (error) 342 return error; 343 info->head->fmh_entries++; 344 345 out: 346 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); 347 if (info->next_daddr < rec_daddr) 348 info->next_daddr = rec_daddr; 349 return XFS_BTREE_QUERY_RANGE_CONTINUE; 350 } 351 352 /* Transform a rmapbt irec into a fsmap */ 353 STATIC int 354 xfs_getfsmap_datadev_helper( 355 struct xfs_btree_cur *cur, 356 struct xfs_rmap_irec *rec, 357 void *priv) 358 { 359 struct xfs_mount *mp = cur->bc_mp; 360 struct xfs_getfsmap_info *info = priv; 361 xfs_fsblock_t fsb; 362 xfs_daddr_t rec_daddr; 363 364 fsb = XFS_AGB_TO_FSB(mp, cur->bc_private.a.agno, rec->rm_startblock); 365 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); 366 367 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr); 368 } 369 370 /* Transform a rtbitmap "record" into a fsmap */ 371 STATIC int 372 xfs_getfsmap_rtdev_rtbitmap_helper( 373 struct xfs_trans *tp, 374 struct xfs_rtalloc_rec *rec, 375 void *priv) 376 { 377 struct xfs_mount *mp = tp->t_mountp; 378 struct xfs_getfsmap_info *info = priv; 379 struct xfs_rmap_irec irec; 380 xfs_daddr_t rec_daddr; 381 382 rec_daddr = XFS_FSB_TO_BB(mp, rec->ar_startblock); 383 384 irec.rm_startblock = rec->ar_startblock; 385 irec.rm_blockcount = rec->ar_blockcount; 386 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 387 irec.rm_offset = 0; 388 irec.rm_flags = 0; 389 390 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr); 391 } 392 393 /* Transform a bnobt irec into a fsmap */ 394 STATIC int 395 xfs_getfsmap_datadev_bnobt_helper( 396 struct xfs_btree_cur *cur, 397 struct xfs_alloc_rec_incore *rec, 398 void *priv) 399 { 400 struct xfs_mount *mp = cur->bc_mp; 401 struct xfs_getfsmap_info *info = priv; 402 struct xfs_rmap_irec irec; 403 xfs_daddr_t rec_daddr; 404 405 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_private.a.agno, 406 rec->ar_startblock); 407 408 irec.rm_startblock = rec->ar_startblock; 409 irec.rm_blockcount = rec->ar_blockcount; 410 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 411 irec.rm_offset = 0; 412 irec.rm_flags = 0; 413 414 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr); 415 } 416 417 /* Set rmap flags based on the getfsmap flags */ 418 static void 419 xfs_getfsmap_set_irec_flags( 420 struct xfs_rmap_irec *irec, 421 struct xfs_fsmap *fmr) 422 { 423 irec->rm_flags = 0; 424 if (fmr->fmr_flags & FMR_OF_ATTR_FORK) 425 irec->rm_flags |= XFS_RMAP_ATTR_FORK; 426 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) 427 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; 428 if (fmr->fmr_flags & FMR_OF_PREALLOC) 429 irec->rm_flags |= XFS_RMAP_UNWRITTEN; 430 } 431 432 /* Execute a getfsmap query against the log device. */ 433 STATIC int 434 xfs_getfsmap_logdev( 435 struct xfs_trans *tp, 436 struct xfs_fsmap *keys, 437 struct xfs_getfsmap_info *info) 438 { 439 struct xfs_mount *mp = tp->t_mountp; 440 struct xfs_rmap_irec rmap; 441 int error; 442 443 /* Set up search keys */ 444 info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 445 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 446 error = xfs_fsmap_owner_to_rmap(&info->low, keys); 447 if (error) 448 return error; 449 info->low.rm_blockcount = 0; 450 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 451 452 error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1); 453 if (error) 454 return error; 455 info->high.rm_startblock = -1U; 456 info->high.rm_owner = ULLONG_MAX; 457 info->high.rm_offset = ULLONG_MAX; 458 info->high.rm_blockcount = 0; 459 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 460 info->missing_owner = XFS_FMR_OWN_FREE; 461 462 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 463 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 464 465 if (keys[0].fmr_physical > 0) 466 return 0; 467 468 /* Fabricate an rmap entry for the external log device. */ 469 rmap.rm_startblock = 0; 470 rmap.rm_blockcount = mp->m_sb.sb_logblocks; 471 rmap.rm_owner = XFS_RMAP_OWN_LOG; 472 rmap.rm_offset = 0; 473 rmap.rm_flags = 0; 474 475 return xfs_getfsmap_helper(tp, info, &rmap, 0); 476 } 477 478 /* Execute a getfsmap query against the realtime device. */ 479 STATIC int 480 __xfs_getfsmap_rtdev( 481 struct xfs_trans *tp, 482 struct xfs_fsmap *keys, 483 int (*query_fn)(struct xfs_trans *, 484 struct xfs_getfsmap_info *), 485 struct xfs_getfsmap_info *info) 486 { 487 struct xfs_mount *mp = tp->t_mountp; 488 xfs_fsblock_t start_fsb; 489 xfs_fsblock_t end_fsb; 490 xfs_daddr_t eofs; 491 int error = 0; 492 493 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); 494 if (keys[0].fmr_physical >= eofs) 495 return 0; 496 if (keys[1].fmr_physical >= eofs) 497 keys[1].fmr_physical = eofs - 1; 498 start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); 499 end_fsb = XFS_BB_TO_FSB(mp, keys[1].fmr_physical); 500 501 /* Set up search keys */ 502 info->low.rm_startblock = start_fsb; 503 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 504 if (error) 505 return error; 506 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 507 info->low.rm_blockcount = 0; 508 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 509 510 info->high.rm_startblock = end_fsb; 511 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 512 if (error) 513 return error; 514 info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset); 515 info->high.rm_blockcount = 0; 516 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 517 518 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 519 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); 520 521 return query_fn(tp, info); 522 } 523 524 /* Actually query the realtime bitmap. */ 525 STATIC int 526 xfs_getfsmap_rtdev_rtbitmap_query( 527 struct xfs_trans *tp, 528 struct xfs_getfsmap_info *info) 529 { 530 struct xfs_rtalloc_rec alow; 531 struct xfs_rtalloc_rec ahigh; 532 int error; 533 534 xfs_ilock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 535 536 alow.ar_startblock = info->low.rm_startblock; 537 ahigh.ar_startblock = info->high.rm_startblock; 538 error = xfs_rtalloc_query_range(tp, &alow, &ahigh, 539 xfs_getfsmap_rtdev_rtbitmap_helper, info); 540 if (error) 541 goto err; 542 543 /* Report any gaps at the end of the rtbitmap */ 544 info->last = true; 545 error = xfs_getfsmap_rtdev_rtbitmap_helper(tp, &ahigh, info); 546 if (error) 547 goto err; 548 err: 549 xfs_iunlock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED); 550 return error; 551 } 552 553 /* Execute a getfsmap query against the realtime device rtbitmap. */ 554 STATIC int 555 xfs_getfsmap_rtdev_rtbitmap( 556 struct xfs_trans *tp, 557 struct xfs_fsmap *keys, 558 struct xfs_getfsmap_info *info) 559 { 560 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 561 return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query, 562 info); 563 } 564 565 /* Execute a getfsmap query against the regular data device. */ 566 STATIC int 567 __xfs_getfsmap_datadev( 568 struct xfs_trans *tp, 569 struct xfs_fsmap *keys, 570 struct xfs_getfsmap_info *info, 571 int (*query_fn)(struct xfs_trans *, 572 struct xfs_getfsmap_info *, 573 struct xfs_btree_cur **, 574 void *), 575 void *priv) 576 { 577 struct xfs_mount *mp = tp->t_mountp; 578 struct xfs_btree_cur *bt_cur = NULL; 579 xfs_fsblock_t start_fsb; 580 xfs_fsblock_t end_fsb; 581 xfs_agnumber_t start_ag; 582 xfs_agnumber_t end_ag; 583 xfs_daddr_t eofs; 584 int error = 0; 585 586 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 587 if (keys[0].fmr_physical >= eofs) 588 return 0; 589 if (keys[1].fmr_physical >= eofs) 590 keys[1].fmr_physical = eofs - 1; 591 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); 592 end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical); 593 594 /* 595 * Convert the fsmap low/high keys to AG based keys. Initialize 596 * low to the fsmap low key and max out the high key to the end 597 * of the AG. 598 */ 599 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); 600 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 601 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 602 if (error) 603 return error; 604 info->low.rm_blockcount = 0; 605 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 606 607 info->high.rm_startblock = -1U; 608 info->high.rm_owner = ULLONG_MAX; 609 info->high.rm_offset = ULLONG_MAX; 610 info->high.rm_blockcount = 0; 611 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 612 613 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); 614 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); 615 616 /* Query each AG */ 617 for (info->agno = start_ag; info->agno <= end_ag; info->agno++) { 618 /* 619 * Set the AG high key from the fsmap high key if this 620 * is the last AG that we're querying. 621 */ 622 if (info->agno == end_ag) { 623 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, 624 end_fsb); 625 info->high.rm_offset = XFS_BB_TO_FSBT(mp, 626 keys[1].fmr_offset); 627 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 628 if (error) 629 goto err; 630 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 631 } 632 633 if (bt_cur) { 634 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); 635 bt_cur = NULL; 636 xfs_trans_brelse(tp, info->agf_bp); 637 info->agf_bp = NULL; 638 } 639 640 error = xfs_alloc_read_agf(mp, tp, info->agno, 0, 641 &info->agf_bp); 642 if (error) 643 goto err; 644 645 trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); 646 trace_xfs_fsmap_high_key(mp, info->dev, info->agno, 647 &info->high); 648 649 error = query_fn(tp, info, &bt_cur, priv); 650 if (error) 651 goto err; 652 653 /* 654 * Set the AG low key to the start of the AG prior to 655 * moving on to the next AG. 656 */ 657 if (info->agno == start_ag) { 658 info->low.rm_startblock = 0; 659 info->low.rm_owner = 0; 660 info->low.rm_offset = 0; 661 info->low.rm_flags = 0; 662 } 663 } 664 665 /* Report any gap at the end of the AG */ 666 info->last = true; 667 error = query_fn(tp, info, &bt_cur, priv); 668 if (error) 669 goto err; 670 671 err: 672 if (bt_cur) 673 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : 674 XFS_BTREE_NOERROR); 675 if (info->agf_bp) { 676 xfs_trans_brelse(tp, info->agf_bp); 677 info->agf_bp = NULL; 678 } 679 680 return error; 681 } 682 683 /* Actually query the rmap btree. */ 684 STATIC int 685 xfs_getfsmap_datadev_rmapbt_query( 686 struct xfs_trans *tp, 687 struct xfs_getfsmap_info *info, 688 struct xfs_btree_cur **curpp, 689 void *priv) 690 { 691 /* Report any gap at the end of the last AG. */ 692 if (info->last) 693 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); 694 695 /* Allocate cursor for this AG and query_range it. */ 696 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 697 info->agno); 698 return xfs_rmap_query_range(*curpp, &info->low, &info->high, 699 xfs_getfsmap_datadev_helper, info); 700 } 701 702 /* Execute a getfsmap query against the regular data device rmapbt. */ 703 STATIC int 704 xfs_getfsmap_datadev_rmapbt( 705 struct xfs_trans *tp, 706 struct xfs_fsmap *keys, 707 struct xfs_getfsmap_info *info) 708 { 709 info->missing_owner = XFS_FMR_OWN_FREE; 710 return __xfs_getfsmap_datadev(tp, keys, info, 711 xfs_getfsmap_datadev_rmapbt_query, NULL); 712 } 713 714 /* Actually query the bno btree. */ 715 STATIC int 716 xfs_getfsmap_datadev_bnobt_query( 717 struct xfs_trans *tp, 718 struct xfs_getfsmap_info *info, 719 struct xfs_btree_cur **curpp, 720 void *priv) 721 { 722 struct xfs_alloc_rec_incore *key = priv; 723 724 /* Report any gap at the end of the last AG. */ 725 if (info->last) 726 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); 727 728 /* Allocate cursor for this AG and query_range it. */ 729 *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 730 info->agno, XFS_BTNUM_BNO); 731 key->ar_startblock = info->low.rm_startblock; 732 key[1].ar_startblock = info->high.rm_startblock; 733 return xfs_alloc_query_range(*curpp, key, &key[1], 734 xfs_getfsmap_datadev_bnobt_helper, info); 735 } 736 737 /* Execute a getfsmap query against the regular data device's bnobt. */ 738 STATIC int 739 xfs_getfsmap_datadev_bnobt( 740 struct xfs_trans *tp, 741 struct xfs_fsmap *keys, 742 struct xfs_getfsmap_info *info) 743 { 744 struct xfs_alloc_rec_incore akeys[2]; 745 746 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 747 return __xfs_getfsmap_datadev(tp, keys, info, 748 xfs_getfsmap_datadev_bnobt_query, &akeys[0]); 749 } 750 751 /* Do we recognize the device? */ 752 STATIC bool 753 xfs_getfsmap_is_valid_device( 754 struct xfs_mount *mp, 755 struct xfs_fsmap *fm) 756 { 757 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || 758 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) 759 return true; 760 if (mp->m_logdev_targp && 761 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) 762 return true; 763 if (mp->m_rtdev_targp && 764 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) 765 return true; 766 return false; 767 } 768 769 /* Ensure that the low key is less than the high key. */ 770 STATIC bool 771 xfs_getfsmap_check_keys( 772 struct xfs_fsmap *low_key, 773 struct xfs_fsmap *high_key) 774 { 775 if (low_key->fmr_device > high_key->fmr_device) 776 return false; 777 if (low_key->fmr_device < high_key->fmr_device) 778 return true; 779 780 if (low_key->fmr_physical > high_key->fmr_physical) 781 return false; 782 if (low_key->fmr_physical < high_key->fmr_physical) 783 return true; 784 785 if (low_key->fmr_owner > high_key->fmr_owner) 786 return false; 787 if (low_key->fmr_owner < high_key->fmr_owner) 788 return true; 789 790 if (low_key->fmr_offset > high_key->fmr_offset) 791 return false; 792 if (low_key->fmr_offset < high_key->fmr_offset) 793 return true; 794 795 return false; 796 } 797 798 #define XFS_GETFSMAP_DEVS 3 799 /* 800 * Get filesystem's extents as described in head, and format for 801 * output. Calls formatter to fill the user's buffer until all 802 * extents are mapped, until the passed-in head->fmh_count slots have 803 * been filled, or until the formatter short-circuits the loop, if it 804 * is tracking filled-in extents on its own. 805 * 806 * Key to Confusion 807 * ---------------- 808 * There are multiple levels of keys and counters at work here: 809 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; 810 * these reflect fs-wide sector addrs. 811 * dkeys -- fmh_keys used to query each device; 812 * these are fmh_keys but w/ the low key 813 * bumped up by fmr_length. 814 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this 815 * is how we detect gaps in the fsmap 816 records and report them. 817 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from 818 * dkeys; used to query the metadata. 819 */ 820 int 821 xfs_getfsmap( 822 struct xfs_mount *mp, 823 struct xfs_fsmap_head *head, 824 xfs_fsmap_format_t formatter, 825 void *arg) 826 { 827 struct xfs_trans *tp = NULL; 828 struct xfs_fsmap dkeys[2]; /* per-dev keys */ 829 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; 830 struct xfs_getfsmap_info info = { NULL }; 831 bool use_rmap; 832 int i; 833 int error = 0; 834 835 if (head->fmh_iflags & ~FMH_IF_VALID) 836 return -EINVAL; 837 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || 838 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) 839 return -EINVAL; 840 841 use_rmap = capable(CAP_SYS_ADMIN) && 842 xfs_sb_version_hasrmapbt(&mp->m_sb); 843 head->fmh_entries = 0; 844 845 /* Set up our device handlers. */ 846 memset(handlers, 0, sizeof(handlers)); 847 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); 848 if (use_rmap) 849 handlers[0].fn = xfs_getfsmap_datadev_rmapbt; 850 else 851 handlers[0].fn = xfs_getfsmap_datadev_bnobt; 852 if (mp->m_logdev_targp != mp->m_ddev_targp) { 853 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); 854 handlers[1].fn = xfs_getfsmap_logdev; 855 } 856 if (mp->m_rtdev_targp) { 857 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); 858 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; 859 } 860 861 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), 862 xfs_getfsmap_dev_compare); 863 864 /* 865 * To continue where we left off, we allow userspace to use the 866 * last mapping from a previous call as the low key of the next. 867 * This is identified by a non-zero length in the low key. We 868 * have to increment the low key in this scenario to ensure we 869 * don't return the same mapping again, and instead return the 870 * very next mapping. 871 * 872 * If the low key mapping refers to file data, the same physical 873 * blocks could be mapped to several other files/offsets. 874 * According to rmapbt record ordering, the minimal next 875 * possible record for the block range is the next starting 876 * offset in the same inode. Therefore, bump the file offset to 877 * continue the search appropriately. For all other low key 878 * mapping types (attr blocks, metadata), bump the physical 879 * offset as there can be no other mapping for the same physical 880 * block range. 881 */ 882 dkeys[0] = head->fmh_keys[0]; 883 if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { 884 dkeys[0].fmr_physical += dkeys[0].fmr_length; 885 dkeys[0].fmr_owner = 0; 886 if (dkeys[0].fmr_offset) 887 return -EINVAL; 888 } else 889 dkeys[0].fmr_offset += dkeys[0].fmr_length; 890 dkeys[0].fmr_length = 0; 891 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); 892 893 if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1])) 894 return -EINVAL; 895 896 info.next_daddr = head->fmh_keys[0].fmr_physical + 897 head->fmh_keys[0].fmr_length; 898 info.formatter = formatter; 899 info.format_arg = arg; 900 info.head = head; 901 902 /* For each device we support... */ 903 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { 904 /* Is this device within the range the user asked for? */ 905 if (!handlers[i].fn) 906 continue; 907 if (head->fmh_keys[0].fmr_device > handlers[i].dev) 908 continue; 909 if (head->fmh_keys[1].fmr_device < handlers[i].dev) 910 break; 911 912 /* 913 * If this device number matches the high key, we have 914 * to pass the high key to the handler to limit the 915 * query results. If the device number exceeds the 916 * low key, zero out the low key so that we get 917 * everything from the beginning. 918 */ 919 if (handlers[i].dev == head->fmh_keys[1].fmr_device) 920 dkeys[1] = head->fmh_keys[1]; 921 if (handlers[i].dev > head->fmh_keys[0].fmr_device) 922 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); 923 924 error = xfs_trans_alloc_empty(mp, &tp); 925 if (error) 926 break; 927 928 info.dev = handlers[i].dev; 929 info.last = false; 930 info.agno = NULLAGNUMBER; 931 error = handlers[i].fn(tp, dkeys, &info); 932 if (error) 933 break; 934 xfs_trans_cancel(tp); 935 tp = NULL; 936 info.next_daddr = 0; 937 } 938 939 if (tp) 940 xfs_trans_cancel(tp); 941 head->fmh_oflags = FMH_OF_DEV_T; 942 return error; 943 } 944