xref: /openbmc/linux/fs/xfs/xfs_fsmap.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_rmap.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bit.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtalloc.h"
27 #include "xfs_ag.h"
28 
29 /* Convert an xfs_fsmap to an fsmap. */
30 static void
31 xfs_fsmap_from_internal(
32 	struct fsmap		*dest,
33 	struct xfs_fsmap	*src)
34 {
35 	dest->fmr_device = src->fmr_device;
36 	dest->fmr_flags = src->fmr_flags;
37 	dest->fmr_physical = BBTOB(src->fmr_physical);
38 	dest->fmr_owner = src->fmr_owner;
39 	dest->fmr_offset = BBTOB(src->fmr_offset);
40 	dest->fmr_length = BBTOB(src->fmr_length);
41 	dest->fmr_reserved[0] = 0;
42 	dest->fmr_reserved[1] = 0;
43 	dest->fmr_reserved[2] = 0;
44 }
45 
46 /* Convert an fsmap to an xfs_fsmap. */
47 void
48 xfs_fsmap_to_internal(
49 	struct xfs_fsmap	*dest,
50 	struct fsmap		*src)
51 {
52 	dest->fmr_device = src->fmr_device;
53 	dest->fmr_flags = src->fmr_flags;
54 	dest->fmr_physical = BTOBBT(src->fmr_physical);
55 	dest->fmr_owner = src->fmr_owner;
56 	dest->fmr_offset = BTOBBT(src->fmr_offset);
57 	dest->fmr_length = BTOBBT(src->fmr_length);
58 }
59 
60 /* Convert an fsmap owner into an rmapbt owner. */
61 static int
62 xfs_fsmap_owner_to_rmap(
63 	struct xfs_rmap_irec	*dest,
64 	const struct xfs_fsmap	*src)
65 {
66 	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67 		dest->rm_owner = src->fmr_owner;
68 		return 0;
69 	}
70 
71 	switch (src->fmr_owner) {
72 	case 0:			/* "lowest owner id possible" */
73 	case -1ULL:		/* "highest owner id possible" */
74 		dest->rm_owner = 0;
75 		break;
76 	case XFS_FMR_OWN_FREE:
77 		dest->rm_owner = XFS_RMAP_OWN_NULL;
78 		break;
79 	case XFS_FMR_OWN_UNKNOWN:
80 		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
81 		break;
82 	case XFS_FMR_OWN_FS:
83 		dest->rm_owner = XFS_RMAP_OWN_FS;
84 		break;
85 	case XFS_FMR_OWN_LOG:
86 		dest->rm_owner = XFS_RMAP_OWN_LOG;
87 		break;
88 	case XFS_FMR_OWN_AG:
89 		dest->rm_owner = XFS_RMAP_OWN_AG;
90 		break;
91 	case XFS_FMR_OWN_INOBT:
92 		dest->rm_owner = XFS_RMAP_OWN_INOBT;
93 		break;
94 	case XFS_FMR_OWN_INODES:
95 		dest->rm_owner = XFS_RMAP_OWN_INODES;
96 		break;
97 	case XFS_FMR_OWN_REFC:
98 		dest->rm_owner = XFS_RMAP_OWN_REFC;
99 		break;
100 	case XFS_FMR_OWN_COW:
101 		dest->rm_owner = XFS_RMAP_OWN_COW;
102 		break;
103 	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
104 		/* fall through */
105 	default:
106 		return -EINVAL;
107 	}
108 	return 0;
109 }
110 
111 /* Convert an rmapbt owner into an fsmap owner. */
112 static int
113 xfs_fsmap_owner_from_rmap(
114 	struct xfs_fsmap		*dest,
115 	const struct xfs_rmap_irec	*src)
116 {
117 	dest->fmr_flags = 0;
118 	if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119 		dest->fmr_owner = src->rm_owner;
120 		return 0;
121 	}
122 	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
123 
124 	switch (src->rm_owner) {
125 	case XFS_RMAP_OWN_FS:
126 		dest->fmr_owner = XFS_FMR_OWN_FS;
127 		break;
128 	case XFS_RMAP_OWN_LOG:
129 		dest->fmr_owner = XFS_FMR_OWN_LOG;
130 		break;
131 	case XFS_RMAP_OWN_AG:
132 		dest->fmr_owner = XFS_FMR_OWN_AG;
133 		break;
134 	case XFS_RMAP_OWN_INOBT:
135 		dest->fmr_owner = XFS_FMR_OWN_INOBT;
136 		break;
137 	case XFS_RMAP_OWN_INODES:
138 		dest->fmr_owner = XFS_FMR_OWN_INODES;
139 		break;
140 	case XFS_RMAP_OWN_REFC:
141 		dest->fmr_owner = XFS_FMR_OWN_REFC;
142 		break;
143 	case XFS_RMAP_OWN_COW:
144 		dest->fmr_owner = XFS_FMR_OWN_COW;
145 		break;
146 	case XFS_RMAP_OWN_NULL:	/* "free" */
147 		dest->fmr_owner = XFS_FMR_OWN_FREE;
148 		break;
149 	default:
150 		ASSERT(0);
151 		return -EFSCORRUPTED;
152 	}
153 	return 0;
154 }
155 
156 /* getfsmap query state */
157 struct xfs_getfsmap_info {
158 	struct xfs_fsmap_head	*head;
159 	struct fsmap		*fsmap_recs;	/* mapping records */
160 	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
161 	struct xfs_perag	*pag;		/* AG info, if applicable */
162 	xfs_daddr_t		next_daddr;	/* next daddr we expect */
163 	u64			missing_owner;	/* owner of holes */
164 	u32			dev;		/* device id */
165 	struct xfs_rmap_irec	low;		/* low rmap key */
166 	struct xfs_rmap_irec	high;		/* high rmap key */
167 	bool			last;		/* last extent? */
168 };
169 
170 /* Associate a device with a getfsmap handler. */
171 struct xfs_getfsmap_dev {
172 	u32			dev;
173 	int			(*fn)(struct xfs_trans *tp,
174 				      const struct xfs_fsmap *keys,
175 				      struct xfs_getfsmap_info *info);
176 };
177 
178 /* Compare two getfsmap device handlers. */
179 static int
180 xfs_getfsmap_dev_compare(
181 	const void			*p1,
182 	const void			*p2)
183 {
184 	const struct xfs_getfsmap_dev	*d1 = p1;
185 	const struct xfs_getfsmap_dev	*d2 = p2;
186 
187 	return d1->dev - d2->dev;
188 }
189 
190 /* Decide if this mapping is shared. */
191 STATIC int
192 xfs_getfsmap_is_shared(
193 	struct xfs_trans		*tp,
194 	struct xfs_getfsmap_info	*info,
195 	const struct xfs_rmap_irec	*rec,
196 	bool				*stat)
197 {
198 	struct xfs_mount		*mp = tp->t_mountp;
199 	struct xfs_btree_cur		*cur;
200 	xfs_agblock_t			fbno;
201 	xfs_extlen_t			flen;
202 	int				error;
203 
204 	*stat = false;
205 	if (!xfs_has_reflink(mp))
206 		return 0;
207 	/* rt files will have no perag structure */
208 	if (!info->pag)
209 		return 0;
210 
211 	/* Are there any shared blocks here? */
212 	flen = 0;
213 	cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
214 
215 	error = xfs_refcount_find_shared(cur, rec->rm_startblock,
216 			rec->rm_blockcount, &fbno, &flen, false);
217 
218 	xfs_btree_del_cursor(cur, error);
219 	if (error)
220 		return error;
221 
222 	*stat = flen > 0;
223 	return 0;
224 }
225 
226 static inline void
227 xfs_getfsmap_format(
228 	struct xfs_mount		*mp,
229 	struct xfs_fsmap		*xfm,
230 	struct xfs_getfsmap_info	*info)
231 {
232 	struct fsmap			*rec;
233 
234 	trace_xfs_getfsmap_mapping(mp, xfm);
235 
236 	rec = &info->fsmap_recs[info->head->fmh_entries++];
237 	xfs_fsmap_from_internal(rec, xfm);
238 }
239 
240 /*
241  * Format a reverse mapping for getfsmap, having translated rm_startblock
242  * into the appropriate daddr units.
243  */
244 STATIC int
245 xfs_getfsmap_helper(
246 	struct xfs_trans		*tp,
247 	struct xfs_getfsmap_info	*info,
248 	const struct xfs_rmap_irec	*rec,
249 	xfs_daddr_t			rec_daddr)
250 {
251 	struct xfs_fsmap		fmr;
252 	struct xfs_mount		*mp = tp->t_mountp;
253 	bool				shared;
254 	int				error;
255 
256 	if (fatal_signal_pending(current))
257 		return -EINTR;
258 
259 	/*
260 	 * Filter out records that start before our startpoint, if the
261 	 * caller requested that.
262 	 */
263 	if (xfs_rmap_compare(rec, &info->low) < 0) {
264 		rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
265 		if (info->next_daddr < rec_daddr)
266 			info->next_daddr = rec_daddr;
267 		return 0;
268 	}
269 
270 	/* Are we just counting mappings? */
271 	if (info->head->fmh_count == 0) {
272 		if (info->head->fmh_entries == UINT_MAX)
273 			return -ECANCELED;
274 
275 		if (rec_daddr > info->next_daddr)
276 			info->head->fmh_entries++;
277 
278 		if (info->last)
279 			return 0;
280 
281 		info->head->fmh_entries++;
282 
283 		rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
284 		if (info->next_daddr < rec_daddr)
285 			info->next_daddr = rec_daddr;
286 		return 0;
287 	}
288 
289 	/*
290 	 * If the record starts past the last physical block we saw,
291 	 * then we've found a gap.  Report the gap as being owned by
292 	 * whatever the caller specified is the missing owner.
293 	 */
294 	if (rec_daddr > info->next_daddr) {
295 		if (info->head->fmh_entries >= info->head->fmh_count)
296 			return -ECANCELED;
297 
298 		fmr.fmr_device = info->dev;
299 		fmr.fmr_physical = info->next_daddr;
300 		fmr.fmr_owner = info->missing_owner;
301 		fmr.fmr_offset = 0;
302 		fmr.fmr_length = rec_daddr - info->next_daddr;
303 		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
304 		xfs_getfsmap_format(mp, &fmr, info);
305 	}
306 
307 	if (info->last)
308 		goto out;
309 
310 	/* Fill out the extent we found */
311 	if (info->head->fmh_entries >= info->head->fmh_count)
312 		return -ECANCELED;
313 
314 	trace_xfs_fsmap_mapping(mp, info->dev,
315 			info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
316 
317 	fmr.fmr_device = info->dev;
318 	fmr.fmr_physical = rec_daddr;
319 	error = xfs_fsmap_owner_from_rmap(&fmr, rec);
320 	if (error)
321 		return error;
322 	fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
323 	fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
324 	if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
325 		fmr.fmr_flags |= FMR_OF_PREALLOC;
326 	if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
327 		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
328 	if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
329 		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
330 	if (fmr.fmr_flags == 0) {
331 		error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
332 		if (error)
333 			return error;
334 		if (shared)
335 			fmr.fmr_flags |= FMR_OF_SHARED;
336 	}
337 
338 	xfs_getfsmap_format(mp, &fmr, info);
339 out:
340 	rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
341 	if (info->next_daddr < rec_daddr)
342 		info->next_daddr = rec_daddr;
343 	return 0;
344 }
345 
346 /* Transform a rmapbt irec into a fsmap */
347 STATIC int
348 xfs_getfsmap_datadev_helper(
349 	struct xfs_btree_cur		*cur,
350 	const struct xfs_rmap_irec	*rec,
351 	void				*priv)
352 {
353 	struct xfs_mount		*mp = cur->bc_mp;
354 	struct xfs_getfsmap_info	*info = priv;
355 	xfs_fsblock_t			fsb;
356 	xfs_daddr_t			rec_daddr;
357 
358 	fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
359 	rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
360 
361 	return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr);
362 }
363 
364 /* Transform a bnobt irec into a fsmap */
365 STATIC int
366 xfs_getfsmap_datadev_bnobt_helper(
367 	struct xfs_btree_cur		*cur,
368 	const struct xfs_alloc_rec_incore *rec,
369 	void				*priv)
370 {
371 	struct xfs_mount		*mp = cur->bc_mp;
372 	struct xfs_getfsmap_info	*info = priv;
373 	struct xfs_rmap_irec		irec;
374 	xfs_daddr_t			rec_daddr;
375 
376 	rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
377 			rec->ar_startblock);
378 
379 	irec.rm_startblock = rec->ar_startblock;
380 	irec.rm_blockcount = rec->ar_blockcount;
381 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
382 	irec.rm_offset = 0;
383 	irec.rm_flags = 0;
384 
385 	return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr);
386 }
387 
388 /* Set rmap flags based on the getfsmap flags */
389 static void
390 xfs_getfsmap_set_irec_flags(
391 	struct xfs_rmap_irec	*irec,
392 	const struct xfs_fsmap	*fmr)
393 {
394 	irec->rm_flags = 0;
395 	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
396 		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
397 	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
398 		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
399 	if (fmr->fmr_flags & FMR_OF_PREALLOC)
400 		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
401 }
402 
403 /* Execute a getfsmap query against the log device. */
404 STATIC int
405 xfs_getfsmap_logdev(
406 	struct xfs_trans		*tp,
407 	const struct xfs_fsmap		*keys,
408 	struct xfs_getfsmap_info	*info)
409 {
410 	struct xfs_mount		*mp = tp->t_mountp;
411 	struct xfs_rmap_irec		rmap;
412 	int				error;
413 
414 	/* Set up search keys */
415 	info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical);
416 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
417 	error = xfs_fsmap_owner_to_rmap(&info->low, keys);
418 	if (error)
419 		return error;
420 	info->low.rm_blockcount = 0;
421 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
422 
423 	error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1);
424 	if (error)
425 		return error;
426 	info->high.rm_startblock = -1U;
427 	info->high.rm_owner = ULLONG_MAX;
428 	info->high.rm_offset = ULLONG_MAX;
429 	info->high.rm_blockcount = 0;
430 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
431 	info->missing_owner = XFS_FMR_OWN_FREE;
432 
433 	trace_xfs_fsmap_low_key(mp, info->dev, NULLAGNUMBER, &info->low);
434 	trace_xfs_fsmap_high_key(mp, info->dev, NULLAGNUMBER, &info->high);
435 
436 	if (keys[0].fmr_physical > 0)
437 		return 0;
438 
439 	/* Fabricate an rmap entry for the external log device. */
440 	rmap.rm_startblock = 0;
441 	rmap.rm_blockcount = mp->m_sb.sb_logblocks;
442 	rmap.rm_owner = XFS_RMAP_OWN_LOG;
443 	rmap.rm_offset = 0;
444 	rmap.rm_flags = 0;
445 
446 	return xfs_getfsmap_helper(tp, info, &rmap, 0);
447 }
448 
449 #ifdef CONFIG_XFS_RT
450 /* Transform a rtbitmap "record" into a fsmap */
451 STATIC int
452 xfs_getfsmap_rtdev_rtbitmap_helper(
453 	struct xfs_mount		*mp,
454 	struct xfs_trans		*tp,
455 	const struct xfs_rtalloc_rec	*rec,
456 	void				*priv)
457 {
458 	struct xfs_getfsmap_info	*info = priv;
459 	struct xfs_rmap_irec		irec;
460 	xfs_daddr_t			rec_daddr;
461 
462 	irec.rm_startblock = rec->ar_startext * mp->m_sb.sb_rextsize;
463 	rec_daddr = XFS_FSB_TO_BB(mp, irec.rm_startblock);
464 	irec.rm_blockcount = rec->ar_extcount * mp->m_sb.sb_rextsize;
465 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
466 	irec.rm_offset = 0;
467 	irec.rm_flags = 0;
468 
469 	return xfs_getfsmap_helper(tp, info, &irec, rec_daddr);
470 }
471 
472 /* Execute a getfsmap query against the realtime device. */
473 STATIC int
474 __xfs_getfsmap_rtdev(
475 	struct xfs_trans		*tp,
476 	const struct xfs_fsmap		*keys,
477 	int				(*query_fn)(struct xfs_trans *,
478 						    struct xfs_getfsmap_info *),
479 	struct xfs_getfsmap_info	*info)
480 {
481 	struct xfs_mount		*mp = tp->t_mountp;
482 	xfs_fsblock_t			start_fsb;
483 	xfs_fsblock_t			end_fsb;
484 	uint64_t			eofs;
485 	int				error = 0;
486 
487 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
488 	if (keys[0].fmr_physical >= eofs)
489 		return 0;
490 	start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical);
491 	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
492 
493 	/* Set up search keys */
494 	info->low.rm_startblock = start_fsb;
495 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
496 	if (error)
497 		return error;
498 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
499 	info->low.rm_blockcount = 0;
500 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
501 
502 	info->high.rm_startblock = end_fsb;
503 	error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
504 	if (error)
505 		return error;
506 	info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset);
507 	info->high.rm_blockcount = 0;
508 	xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
509 
510 	trace_xfs_fsmap_low_key(mp, info->dev, NULLAGNUMBER, &info->low);
511 	trace_xfs_fsmap_high_key(mp, info->dev, NULLAGNUMBER, &info->high);
512 
513 	return query_fn(tp, info);
514 }
515 
516 /* Actually query the realtime bitmap. */
517 STATIC int
518 xfs_getfsmap_rtdev_rtbitmap_query(
519 	struct xfs_trans		*tp,
520 	struct xfs_getfsmap_info	*info)
521 {
522 	struct xfs_rtalloc_rec		alow = { 0 };
523 	struct xfs_rtalloc_rec		ahigh = { 0 };
524 	struct xfs_mount		*mp = tp->t_mountp;
525 	int				error;
526 
527 	xfs_ilock(mp->m_rbmip, XFS_ILOCK_SHARED | XFS_ILOCK_RTBITMAP);
528 
529 	/*
530 	 * Set up query parameters to return free rtextents covering the range
531 	 * we want.
532 	 */
533 	alow.ar_startext = info->low.rm_startblock;
534 	ahigh.ar_startext = info->high.rm_startblock;
535 	do_div(alow.ar_startext, mp->m_sb.sb_rextsize);
536 	if (do_div(ahigh.ar_startext, mp->m_sb.sb_rextsize))
537 		ahigh.ar_startext++;
538 	error = xfs_rtalloc_query_range(mp, tp, &alow, &ahigh,
539 			xfs_getfsmap_rtdev_rtbitmap_helper, info);
540 	if (error)
541 		goto err;
542 
543 	/*
544 	 * Report any gaps at the end of the rtbitmap by simulating a null
545 	 * rmap starting at the block after the end of the query range.
546 	 */
547 	info->last = true;
548 	ahigh.ar_startext = min(mp->m_sb.sb_rextents, ahigh.ar_startext);
549 
550 	error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
551 	if (error)
552 		goto err;
553 err:
554 	xfs_iunlock(mp->m_rbmip, XFS_ILOCK_SHARED | XFS_ILOCK_RTBITMAP);
555 	return error;
556 }
557 
558 /* Execute a getfsmap query against the realtime device rtbitmap. */
559 STATIC int
560 xfs_getfsmap_rtdev_rtbitmap(
561 	struct xfs_trans		*tp,
562 	const struct xfs_fsmap		*keys,
563 	struct xfs_getfsmap_info	*info)
564 {
565 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
566 	return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query,
567 			info);
568 }
569 #endif /* CONFIG_XFS_RT */
570 
571 /* Execute a getfsmap query against the regular data device. */
572 STATIC int
573 __xfs_getfsmap_datadev(
574 	struct xfs_trans		*tp,
575 	const struct xfs_fsmap		*keys,
576 	struct xfs_getfsmap_info	*info,
577 	int				(*query_fn)(struct xfs_trans *,
578 						    struct xfs_getfsmap_info *,
579 						    struct xfs_btree_cur **,
580 						    void *),
581 	void				*priv)
582 {
583 	struct xfs_mount		*mp = tp->t_mountp;
584 	struct xfs_perag		*pag;
585 	struct xfs_btree_cur		*bt_cur = NULL;
586 	xfs_fsblock_t			start_fsb;
587 	xfs_fsblock_t			end_fsb;
588 	xfs_agnumber_t			start_ag;
589 	xfs_agnumber_t			end_ag;
590 	uint64_t			eofs;
591 	int				error = 0;
592 
593 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
594 	if (keys[0].fmr_physical >= eofs)
595 		return 0;
596 	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
597 	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
598 
599 	/*
600 	 * Convert the fsmap low/high keys to AG based keys.  Initialize
601 	 * low to the fsmap low key and max out the high key to the end
602 	 * of the AG.
603 	 */
604 	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
605 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
606 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
607 	if (error)
608 		return error;
609 	info->low.rm_blockcount = 0;
610 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
611 
612 	info->high.rm_startblock = -1U;
613 	info->high.rm_owner = ULLONG_MAX;
614 	info->high.rm_offset = ULLONG_MAX;
615 	info->high.rm_blockcount = 0;
616 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
617 
618 	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
619 	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
620 
621 	for_each_perag_range(mp, start_ag, end_ag, pag) {
622 		/*
623 		 * Set the AG high key from the fsmap high key if this
624 		 * is the last AG that we're querying.
625 		 */
626 		info->pag = pag;
627 		if (pag->pag_agno == end_ag) {
628 			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
629 					end_fsb);
630 			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
631 					keys[1].fmr_offset);
632 			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
633 			if (error)
634 				break;
635 			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
636 		}
637 
638 		if (bt_cur) {
639 			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
640 			bt_cur = NULL;
641 			xfs_trans_brelse(tp, info->agf_bp);
642 			info->agf_bp = NULL;
643 		}
644 
645 		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
646 		if (error)
647 			break;
648 
649 		trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
650 				&info->low);
651 		trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
652 				&info->high);
653 
654 		error = query_fn(tp, info, &bt_cur, priv);
655 		if (error)
656 			break;
657 
658 		/*
659 		 * Set the AG low key to the start of the AG prior to
660 		 * moving on to the next AG.
661 		 */
662 		if (pag->pag_agno == start_ag) {
663 			info->low.rm_startblock = 0;
664 			info->low.rm_owner = 0;
665 			info->low.rm_offset = 0;
666 			info->low.rm_flags = 0;
667 		}
668 
669 		/*
670 		 * If this is the last AG, report any gap at the end of it
671 		 * before we drop the reference to the perag when the loop
672 		 * terminates.
673 		 */
674 		if (pag->pag_agno == end_ag) {
675 			info->last = true;
676 			error = query_fn(tp, info, &bt_cur, priv);
677 			if (error)
678 				break;
679 		}
680 		info->pag = NULL;
681 	}
682 
683 	if (bt_cur)
684 		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
685 							 XFS_BTREE_NOERROR);
686 	if (info->agf_bp) {
687 		xfs_trans_brelse(tp, info->agf_bp);
688 		info->agf_bp = NULL;
689 	}
690 	if (info->pag) {
691 		xfs_perag_rele(info->pag);
692 		info->pag = NULL;
693 	} else if (pag) {
694 		/* loop termination case */
695 		xfs_perag_rele(pag);
696 	}
697 
698 	return error;
699 }
700 
701 /* Actually query the rmap btree. */
702 STATIC int
703 xfs_getfsmap_datadev_rmapbt_query(
704 	struct xfs_trans		*tp,
705 	struct xfs_getfsmap_info	*info,
706 	struct xfs_btree_cur		**curpp,
707 	void				*priv)
708 {
709 	/* Report any gap at the end of the last AG. */
710 	if (info->last)
711 		return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
712 
713 	/* Allocate cursor for this AG and query_range it. */
714 	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
715 			info->pag);
716 	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
717 			xfs_getfsmap_datadev_helper, info);
718 }
719 
720 /* Execute a getfsmap query against the regular data device rmapbt. */
721 STATIC int
722 xfs_getfsmap_datadev_rmapbt(
723 	struct xfs_trans		*tp,
724 	const struct xfs_fsmap		*keys,
725 	struct xfs_getfsmap_info	*info)
726 {
727 	info->missing_owner = XFS_FMR_OWN_FREE;
728 	return __xfs_getfsmap_datadev(tp, keys, info,
729 			xfs_getfsmap_datadev_rmapbt_query, NULL);
730 }
731 
732 /* Actually query the bno btree. */
733 STATIC int
734 xfs_getfsmap_datadev_bnobt_query(
735 	struct xfs_trans		*tp,
736 	struct xfs_getfsmap_info	*info,
737 	struct xfs_btree_cur		**curpp,
738 	void				*priv)
739 {
740 	struct xfs_alloc_rec_incore	*key = priv;
741 
742 	/* Report any gap at the end of the last AG. */
743 	if (info->last)
744 		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
745 
746 	/* Allocate cursor for this AG and query_range it. */
747 	*curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
748 			info->pag, XFS_BTNUM_BNO);
749 	key->ar_startblock = info->low.rm_startblock;
750 	key[1].ar_startblock = info->high.rm_startblock;
751 	return xfs_alloc_query_range(*curpp, key, &key[1],
752 			xfs_getfsmap_datadev_bnobt_helper, info);
753 }
754 
755 /* Execute a getfsmap query against the regular data device's bnobt. */
756 STATIC int
757 xfs_getfsmap_datadev_bnobt(
758 	struct xfs_trans		*tp,
759 	const struct xfs_fsmap		*keys,
760 	struct xfs_getfsmap_info	*info)
761 {
762 	struct xfs_alloc_rec_incore	akeys[2];
763 
764 	memset(akeys, 0, sizeof(akeys));
765 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
766 	return __xfs_getfsmap_datadev(tp, keys, info,
767 			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
768 }
769 
770 /* Do we recognize the device? */
771 STATIC bool
772 xfs_getfsmap_is_valid_device(
773 	struct xfs_mount	*mp,
774 	struct xfs_fsmap	*fm)
775 {
776 	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
777 	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
778 		return true;
779 	if (mp->m_logdev_targp &&
780 	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
781 		return true;
782 	if (mp->m_rtdev_targp &&
783 	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
784 		return true;
785 	return false;
786 }
787 
788 /* Ensure that the low key is less than the high key. */
789 STATIC bool
790 xfs_getfsmap_check_keys(
791 	struct xfs_fsmap		*low_key,
792 	struct xfs_fsmap		*high_key)
793 {
794 	if (low_key->fmr_device > high_key->fmr_device)
795 		return false;
796 	if (low_key->fmr_device < high_key->fmr_device)
797 		return true;
798 
799 	if (low_key->fmr_physical > high_key->fmr_physical)
800 		return false;
801 	if (low_key->fmr_physical < high_key->fmr_physical)
802 		return true;
803 
804 	if (low_key->fmr_owner > high_key->fmr_owner)
805 		return false;
806 	if (low_key->fmr_owner < high_key->fmr_owner)
807 		return true;
808 
809 	if (low_key->fmr_offset > high_key->fmr_offset)
810 		return false;
811 	if (low_key->fmr_offset < high_key->fmr_offset)
812 		return true;
813 
814 	return false;
815 }
816 
817 /*
818  * There are only two devices if we didn't configure RT devices at build time.
819  */
820 #ifdef CONFIG_XFS_RT
821 #define XFS_GETFSMAP_DEVS	3
822 #else
823 #define XFS_GETFSMAP_DEVS	2
824 #endif /* CONFIG_XFS_RT */
825 
826 /*
827  * Get filesystem's extents as described in head, and format for output. Fills
828  * in the supplied records array until there are no more reverse mappings to
829  * return or head.fmh_entries == head.fmh_count.  In the second case, this
830  * function returns -ECANCELED to indicate that more records would have been
831  * returned.
832  *
833  * Key to Confusion
834  * ----------------
835  * There are multiple levels of keys and counters at work here:
836  * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
837  * 				   these reflect fs-wide sector addrs.
838  * dkeys			-- fmh_keys used to query each device;
839  * 				   these are fmh_keys but w/ the low key
840  * 				   bumped up by fmr_length.
841  * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
842  *				   is how we detect gaps in the fsmap
843 				   records and report them.
844  * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
845  * 				   dkeys; used to query the metadata.
846  */
847 int
848 xfs_getfsmap(
849 	struct xfs_mount		*mp,
850 	struct xfs_fsmap_head		*head,
851 	struct fsmap			*fsmap_recs)
852 {
853 	struct xfs_trans		*tp = NULL;
854 	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
855 	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
856 	struct xfs_getfsmap_info	info = { NULL };
857 	bool				use_rmap;
858 	int				i;
859 	int				error = 0;
860 
861 	if (head->fmh_iflags & ~FMH_IF_VALID)
862 		return -EINVAL;
863 	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
864 	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
865 		return -EINVAL;
866 
867 	use_rmap = xfs_has_rmapbt(mp) &&
868 		   has_capability_noaudit(current, CAP_SYS_ADMIN);
869 	head->fmh_entries = 0;
870 
871 	/* Set up our device handlers. */
872 	memset(handlers, 0, sizeof(handlers));
873 	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
874 	if (use_rmap)
875 		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
876 	else
877 		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
878 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
879 		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
880 		handlers[1].fn = xfs_getfsmap_logdev;
881 	}
882 #ifdef CONFIG_XFS_RT
883 	if (mp->m_rtdev_targp) {
884 		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
885 		handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
886 	}
887 #endif /* CONFIG_XFS_RT */
888 
889 	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
890 			xfs_getfsmap_dev_compare);
891 
892 	/*
893 	 * To continue where we left off, we allow userspace to use the
894 	 * last mapping from a previous call as the low key of the next.
895 	 * This is identified by a non-zero length in the low key. We
896 	 * have to increment the low key in this scenario to ensure we
897 	 * don't return the same mapping again, and instead return the
898 	 * very next mapping.
899 	 *
900 	 * If the low key mapping refers to file data, the same physical
901 	 * blocks could be mapped to several other files/offsets.
902 	 * According to rmapbt record ordering, the minimal next
903 	 * possible record for the block range is the next starting
904 	 * offset in the same inode. Therefore, bump the file offset to
905 	 * continue the search appropriately.  For all other low key
906 	 * mapping types (attr blocks, metadata), bump the physical
907 	 * offset as there can be no other mapping for the same physical
908 	 * block range.
909 	 */
910 	dkeys[0] = head->fmh_keys[0];
911 	if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
912 		dkeys[0].fmr_physical += dkeys[0].fmr_length;
913 		dkeys[0].fmr_owner = 0;
914 		if (dkeys[0].fmr_offset)
915 			return -EINVAL;
916 	} else
917 		dkeys[0].fmr_offset += dkeys[0].fmr_length;
918 	dkeys[0].fmr_length = 0;
919 	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
920 
921 	if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1]))
922 		return -EINVAL;
923 
924 	info.next_daddr = head->fmh_keys[0].fmr_physical +
925 			  head->fmh_keys[0].fmr_length;
926 	info.fsmap_recs = fsmap_recs;
927 	info.head = head;
928 
929 	/* For each device we support... */
930 	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
931 		/* Is this device within the range the user asked for? */
932 		if (!handlers[i].fn)
933 			continue;
934 		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
935 			continue;
936 		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
937 			break;
938 
939 		/*
940 		 * If this device number matches the high key, we have
941 		 * to pass the high key to the handler to limit the
942 		 * query results.  If the device number exceeds the
943 		 * low key, zero out the low key so that we get
944 		 * everything from the beginning.
945 		 */
946 		if (handlers[i].dev == head->fmh_keys[1].fmr_device)
947 			dkeys[1] = head->fmh_keys[1];
948 		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
949 			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
950 
951 		/*
952 		 * Grab an empty transaction so that we can use its recursive
953 		 * buffer locking abilities to detect cycles in the rmapbt
954 		 * without deadlocking.
955 		 */
956 		error = xfs_trans_alloc_empty(mp, &tp);
957 		if (error)
958 			break;
959 
960 		info.dev = handlers[i].dev;
961 		info.last = false;
962 		info.pag = NULL;
963 		error = handlers[i].fn(tp, dkeys, &info);
964 		if (error)
965 			break;
966 		xfs_trans_cancel(tp);
967 		tp = NULL;
968 		info.next_daddr = 0;
969 	}
970 
971 	if (tp)
972 		xfs_trans_cancel(tp);
973 	head->fmh_oflags = FMH_OF_DEV_T;
974 	return error;
975 }
976