1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_error.h" 35 #include "xfs_dir2.h" 36 #include "xfs_dir2_priv.h" 37 #include "xfs_ioctl.h" 38 #include "xfs_trace.h" 39 #include "xfs_log.h" 40 #include "xfs_dinode.h" 41 #include "xfs_icache.h" 42 43 #include <linux/aio.h> 44 #include <linux/dcache.h> 45 #include <linux/falloc.h> 46 #include <linux/pagevec.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Locking primitives for read and write IO paths to ensure we consistently use 52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 53 */ 54 static inline void 55 xfs_rw_ilock( 56 struct xfs_inode *ip, 57 int type) 58 { 59 if (type & XFS_IOLOCK_EXCL) 60 mutex_lock(&VFS_I(ip)->i_mutex); 61 xfs_ilock(ip, type); 62 } 63 64 static inline void 65 xfs_rw_iunlock( 66 struct xfs_inode *ip, 67 int type) 68 { 69 xfs_iunlock(ip, type); 70 if (type & XFS_IOLOCK_EXCL) 71 mutex_unlock(&VFS_I(ip)->i_mutex); 72 } 73 74 static inline void 75 xfs_rw_ilock_demote( 76 struct xfs_inode *ip, 77 int type) 78 { 79 xfs_ilock_demote(ip, type); 80 if (type & XFS_IOLOCK_EXCL) 81 mutex_unlock(&VFS_I(ip)->i_mutex); 82 } 83 84 /* 85 * xfs_iozero 86 * 87 * xfs_iozero clears the specified range of buffer supplied, 88 * and marks all the affected blocks as valid and modified. If 89 * an affected block is not allocated, it will be allocated. If 90 * an affected block is not completely overwritten, and is not 91 * valid before the operation, it will be read from disk before 92 * being partially zeroed. 93 */ 94 int 95 xfs_iozero( 96 struct xfs_inode *ip, /* inode */ 97 loff_t pos, /* offset in file */ 98 size_t count) /* size of data to zero */ 99 { 100 struct page *page; 101 struct address_space *mapping; 102 int status; 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 110 bytes = PAGE_CACHE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 status = pagecache_write_begin(NULL, mapping, pos, bytes, 115 AOP_FLAG_UNINTERRUPTIBLE, 116 &page, &fsdata); 117 if (status) 118 break; 119 120 zero_user(page, offset, bytes); 121 122 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 123 page, fsdata); 124 WARN_ON(status <= 0); /* can't return less than zero! */ 125 pos += bytes; 126 count -= bytes; 127 status = 0; 128 } while (count); 129 130 return (-status); 131 } 132 133 /* 134 * Fsync operations on directories are much simpler than on regular files, 135 * as there is no file data to flush, and thus also no need for explicit 136 * cache flush operations, and there are no non-transaction metadata updates 137 * on directories either. 138 */ 139 STATIC int 140 xfs_dir_fsync( 141 struct file *file, 142 loff_t start, 143 loff_t end, 144 int datasync) 145 { 146 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 147 struct xfs_mount *mp = ip->i_mount; 148 xfs_lsn_t lsn = 0; 149 150 trace_xfs_dir_fsync(ip); 151 152 xfs_ilock(ip, XFS_ILOCK_SHARED); 153 if (xfs_ipincount(ip)) 154 lsn = ip->i_itemp->ili_last_lsn; 155 xfs_iunlock(ip, XFS_ILOCK_SHARED); 156 157 if (!lsn) 158 return 0; 159 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 160 } 161 162 STATIC int 163 xfs_file_fsync( 164 struct file *file, 165 loff_t start, 166 loff_t end, 167 int datasync) 168 { 169 struct inode *inode = file->f_mapping->host; 170 struct xfs_inode *ip = XFS_I(inode); 171 struct xfs_mount *mp = ip->i_mount; 172 int error = 0; 173 int log_flushed = 0; 174 xfs_lsn_t lsn = 0; 175 176 trace_xfs_file_fsync(ip); 177 178 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 179 if (error) 180 return error; 181 182 if (XFS_FORCED_SHUTDOWN(mp)) 183 return -EIO; 184 185 xfs_iflags_clear(ip, XFS_ITRUNCATED); 186 187 if (mp->m_flags & XFS_MOUNT_BARRIER) { 188 /* 189 * If we have an RT and/or log subvolume we need to make sure 190 * to flush the write cache the device used for file data 191 * first. This is to ensure newly written file data make 192 * it to disk before logging the new inode size in case of 193 * an extending write. 194 */ 195 if (XFS_IS_REALTIME_INODE(ip)) 196 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 197 else if (mp->m_logdev_targp != mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 } 200 201 /* 202 * All metadata updates are logged, which means that we just have 203 * to flush the log up to the latest LSN that touched the inode. 204 */ 205 xfs_ilock(ip, XFS_ILOCK_SHARED); 206 if (xfs_ipincount(ip)) { 207 if (!datasync || 208 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 209 lsn = ip->i_itemp->ili_last_lsn; 210 } 211 xfs_iunlock(ip, XFS_ILOCK_SHARED); 212 213 if (lsn) 214 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 215 216 /* 217 * If we only have a single device, and the log force about was 218 * a no-op we might have to flush the data device cache here. 219 * This can only happen for fdatasync/O_DSYNC if we were overwriting 220 * an already allocated file and thus do not have any metadata to 221 * commit. 222 */ 223 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 224 mp->m_logdev_targp == mp->m_ddev_targp && 225 !XFS_IS_REALTIME_INODE(ip) && 226 !log_flushed) 227 xfs_blkdev_issue_flush(mp->m_ddev_targp); 228 229 return error; 230 } 231 232 STATIC ssize_t 233 xfs_file_read_iter( 234 struct kiocb *iocb, 235 struct iov_iter *to) 236 { 237 struct file *file = iocb->ki_filp; 238 struct inode *inode = file->f_mapping->host; 239 struct xfs_inode *ip = XFS_I(inode); 240 struct xfs_mount *mp = ip->i_mount; 241 size_t size = iov_iter_count(to); 242 ssize_t ret = 0; 243 int ioflags = 0; 244 xfs_fsize_t n; 245 loff_t pos = iocb->ki_pos; 246 247 XFS_STATS_INC(xs_read_calls); 248 249 if (unlikely(file->f_flags & O_DIRECT)) 250 ioflags |= XFS_IO_ISDIRECT; 251 if (file->f_mode & FMODE_NOCMTIME) 252 ioflags |= XFS_IO_INVIS; 253 254 if (unlikely(ioflags & XFS_IO_ISDIRECT)) { 255 xfs_buftarg_t *target = 256 XFS_IS_REALTIME_INODE(ip) ? 257 mp->m_rtdev_targp : mp->m_ddev_targp; 258 /* DIO must be aligned to device logical sector size */ 259 if ((pos | size) & target->bt_logical_sectormask) { 260 if (pos == i_size_read(inode)) 261 return 0; 262 return -EINVAL; 263 } 264 } 265 266 n = mp->m_super->s_maxbytes - pos; 267 if (n <= 0 || size == 0) 268 return 0; 269 270 if (n < size) 271 size = n; 272 273 if (XFS_FORCED_SHUTDOWN(mp)) 274 return -EIO; 275 276 /* 277 * Locking is a bit tricky here. If we take an exclusive lock 278 * for direct IO, we effectively serialise all new concurrent 279 * read IO to this file and block it behind IO that is currently in 280 * progress because IO in progress holds the IO lock shared. We only 281 * need to hold the lock exclusive to blow away the page cache, so 282 * only take lock exclusively if the page cache needs invalidation. 283 * This allows the normal direct IO case of no page cache pages to 284 * proceeed concurrently without serialisation. 285 */ 286 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 287 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 288 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 289 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 290 291 if (inode->i_mapping->nrpages) { 292 ret = filemap_write_and_wait_range( 293 VFS_I(ip)->i_mapping, 294 pos, -1); 295 if (ret) { 296 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 297 return ret; 298 } 299 truncate_pagecache_range(VFS_I(ip), pos, -1); 300 } 301 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 302 } 303 304 trace_xfs_file_read(ip, size, pos, ioflags); 305 306 ret = generic_file_read_iter(iocb, to); 307 if (ret > 0) 308 XFS_STATS_ADD(xs_read_bytes, ret); 309 310 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 311 return ret; 312 } 313 314 STATIC ssize_t 315 xfs_file_splice_read( 316 struct file *infilp, 317 loff_t *ppos, 318 struct pipe_inode_info *pipe, 319 size_t count, 320 unsigned int flags) 321 { 322 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 323 int ioflags = 0; 324 ssize_t ret; 325 326 XFS_STATS_INC(xs_read_calls); 327 328 if (infilp->f_mode & FMODE_NOCMTIME) 329 ioflags |= XFS_IO_INVIS; 330 331 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 332 return -EIO; 333 334 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 335 336 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 337 338 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 339 if (ret > 0) 340 XFS_STATS_ADD(xs_read_bytes, ret); 341 342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 343 return ret; 344 } 345 346 /* 347 * This routine is called to handle zeroing any space in the last block of the 348 * file that is beyond the EOF. We do this since the size is being increased 349 * without writing anything to that block and we don't want to read the 350 * garbage on the disk. 351 */ 352 STATIC int /* error (positive) */ 353 xfs_zero_last_block( 354 struct xfs_inode *ip, 355 xfs_fsize_t offset, 356 xfs_fsize_t isize) 357 { 358 struct xfs_mount *mp = ip->i_mount; 359 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 360 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 361 int zero_len; 362 int nimaps = 1; 363 int error = 0; 364 struct xfs_bmbt_irec imap; 365 366 xfs_ilock(ip, XFS_ILOCK_EXCL); 367 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 368 xfs_iunlock(ip, XFS_ILOCK_EXCL); 369 if (error) 370 return error; 371 372 ASSERT(nimaps > 0); 373 374 /* 375 * If the block underlying isize is just a hole, then there 376 * is nothing to zero. 377 */ 378 if (imap.br_startblock == HOLESTARTBLOCK) 379 return 0; 380 381 zero_len = mp->m_sb.sb_blocksize - zero_offset; 382 if (isize + zero_len > offset) 383 zero_len = offset - isize; 384 return xfs_iozero(ip, isize, zero_len); 385 } 386 387 /* 388 * Zero any on disk space between the current EOF and the new, larger EOF. 389 * 390 * This handles the normal case of zeroing the remainder of the last block in 391 * the file and the unusual case of zeroing blocks out beyond the size of the 392 * file. This second case only happens with fixed size extents and when the 393 * system crashes before the inode size was updated but after blocks were 394 * allocated. 395 * 396 * Expects the iolock to be held exclusive, and will take the ilock internally. 397 */ 398 int /* error (positive) */ 399 xfs_zero_eof( 400 struct xfs_inode *ip, 401 xfs_off_t offset, /* starting I/O offset */ 402 xfs_fsize_t isize) /* current inode size */ 403 { 404 struct xfs_mount *mp = ip->i_mount; 405 xfs_fileoff_t start_zero_fsb; 406 xfs_fileoff_t end_zero_fsb; 407 xfs_fileoff_t zero_count_fsb; 408 xfs_fileoff_t last_fsb; 409 xfs_fileoff_t zero_off; 410 xfs_fsize_t zero_len; 411 int nimaps; 412 int error = 0; 413 struct xfs_bmbt_irec imap; 414 415 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 416 ASSERT(offset > isize); 417 418 /* 419 * First handle zeroing the block on which isize resides. 420 * 421 * We only zero a part of that block so it is handled specially. 422 */ 423 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 424 error = xfs_zero_last_block(ip, offset, isize); 425 if (error) 426 return error; 427 } 428 429 /* 430 * Calculate the range between the new size and the old where blocks 431 * needing to be zeroed may exist. 432 * 433 * To get the block where the last byte in the file currently resides, 434 * we need to subtract one from the size and truncate back to a block 435 * boundary. We subtract 1 in case the size is exactly on a block 436 * boundary. 437 */ 438 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 439 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 440 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 441 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 442 if (last_fsb == end_zero_fsb) { 443 /* 444 * The size was only incremented on its last block. 445 * We took care of that above, so just return. 446 */ 447 return 0; 448 } 449 450 ASSERT(start_zero_fsb <= end_zero_fsb); 451 while (start_zero_fsb <= end_zero_fsb) { 452 nimaps = 1; 453 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 454 455 xfs_ilock(ip, XFS_ILOCK_EXCL); 456 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 457 &imap, &nimaps, 0); 458 xfs_iunlock(ip, XFS_ILOCK_EXCL); 459 if (error) 460 return error; 461 462 ASSERT(nimaps > 0); 463 464 if (imap.br_state == XFS_EXT_UNWRITTEN || 465 imap.br_startblock == HOLESTARTBLOCK) { 466 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 467 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 468 continue; 469 } 470 471 /* 472 * There are blocks we need to zero. 473 */ 474 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 475 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 476 477 if ((zero_off + zero_len) > offset) 478 zero_len = offset - zero_off; 479 480 error = xfs_iozero(ip, zero_off, zero_len); 481 if (error) 482 return error; 483 484 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 485 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 486 } 487 488 return 0; 489 } 490 491 /* 492 * Common pre-write limit and setup checks. 493 * 494 * Called with the iolocked held either shared and exclusive according to 495 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 496 * if called for a direct write beyond i_size. 497 */ 498 STATIC ssize_t 499 xfs_file_aio_write_checks( 500 struct file *file, 501 loff_t *pos, 502 size_t *count, 503 int *iolock) 504 { 505 struct inode *inode = file->f_mapping->host; 506 struct xfs_inode *ip = XFS_I(inode); 507 int error = 0; 508 509 restart: 510 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 511 if (error) 512 return error; 513 514 /* 515 * If the offset is beyond the size of the file, we need to zero any 516 * blocks that fall between the existing EOF and the start of this 517 * write. If zeroing is needed and we are currently holding the 518 * iolock shared, we need to update it to exclusive which implies 519 * having to redo all checks before. 520 */ 521 if (*pos > i_size_read(inode)) { 522 if (*iolock == XFS_IOLOCK_SHARED) { 523 xfs_rw_iunlock(ip, *iolock); 524 *iolock = XFS_IOLOCK_EXCL; 525 xfs_rw_ilock(ip, *iolock); 526 goto restart; 527 } 528 error = xfs_zero_eof(ip, *pos, i_size_read(inode)); 529 if (error) 530 return error; 531 } 532 533 /* 534 * Updating the timestamps will grab the ilock again from 535 * xfs_fs_dirty_inode, so we have to call it after dropping the 536 * lock above. Eventually we should look into a way to avoid 537 * the pointless lock roundtrip. 538 */ 539 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 540 error = file_update_time(file); 541 if (error) 542 return error; 543 } 544 545 /* 546 * If we're writing the file then make sure to clear the setuid and 547 * setgid bits if the process is not being run by root. This keeps 548 * people from modifying setuid and setgid binaries. 549 */ 550 return file_remove_suid(file); 551 } 552 553 /* 554 * xfs_file_dio_aio_write - handle direct IO writes 555 * 556 * Lock the inode appropriately to prepare for and issue a direct IO write. 557 * By separating it from the buffered write path we remove all the tricky to 558 * follow locking changes and looping. 559 * 560 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 561 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 562 * pages are flushed out. 563 * 564 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 565 * allowing them to be done in parallel with reads and other direct IO writes. 566 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 567 * needs to do sub-block zeroing and that requires serialisation against other 568 * direct IOs to the same block. In this case we need to serialise the 569 * submission of the unaligned IOs so that we don't get racing block zeroing in 570 * the dio layer. To avoid the problem with aio, we also need to wait for 571 * outstanding IOs to complete so that unwritten extent conversion is completed 572 * before we try to map the overlapping block. This is currently implemented by 573 * hitting it with a big hammer (i.e. inode_dio_wait()). 574 * 575 * Returns with locks held indicated by @iolock and errors indicated by 576 * negative return values. 577 */ 578 STATIC ssize_t 579 xfs_file_dio_aio_write( 580 struct kiocb *iocb, 581 struct iov_iter *from) 582 { 583 struct file *file = iocb->ki_filp; 584 struct address_space *mapping = file->f_mapping; 585 struct inode *inode = mapping->host; 586 struct xfs_inode *ip = XFS_I(inode); 587 struct xfs_mount *mp = ip->i_mount; 588 ssize_t ret = 0; 589 int unaligned_io = 0; 590 int iolock; 591 size_t count = iov_iter_count(from); 592 loff_t pos = iocb->ki_pos; 593 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 594 mp->m_rtdev_targp : mp->m_ddev_targp; 595 596 /* DIO must be aligned to device logical sector size */ 597 if ((pos | count) & target->bt_logical_sectormask) 598 return -EINVAL; 599 600 /* "unaligned" here means not aligned to a filesystem block */ 601 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 602 unaligned_io = 1; 603 604 /* 605 * We don't need to take an exclusive lock unless there page cache needs 606 * to be invalidated or unaligned IO is being executed. We don't need to 607 * consider the EOF extension case here because 608 * xfs_file_aio_write_checks() will relock the inode as necessary for 609 * EOF zeroing cases and fill out the new inode size as appropriate. 610 */ 611 if (unaligned_io || mapping->nrpages) 612 iolock = XFS_IOLOCK_EXCL; 613 else 614 iolock = XFS_IOLOCK_SHARED; 615 xfs_rw_ilock(ip, iolock); 616 617 /* 618 * Recheck if there are cached pages that need invalidate after we got 619 * the iolock to protect against other threads adding new pages while 620 * we were waiting for the iolock. 621 */ 622 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 623 xfs_rw_iunlock(ip, iolock); 624 iolock = XFS_IOLOCK_EXCL; 625 xfs_rw_ilock(ip, iolock); 626 } 627 628 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 629 if (ret) 630 goto out; 631 iov_iter_truncate(from, count); 632 633 if (mapping->nrpages) { 634 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 635 pos, -1); 636 if (ret) 637 goto out; 638 truncate_pagecache_range(VFS_I(ip), pos, -1); 639 } 640 641 /* 642 * If we are doing unaligned IO, wait for all other IO to drain, 643 * otherwise demote the lock if we had to flush cached pages 644 */ 645 if (unaligned_io) 646 inode_dio_wait(inode); 647 else if (iolock == XFS_IOLOCK_EXCL) { 648 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 649 iolock = XFS_IOLOCK_SHARED; 650 } 651 652 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 653 ret = generic_file_direct_write(iocb, from, pos); 654 655 out: 656 xfs_rw_iunlock(ip, iolock); 657 658 /* No fallback to buffered IO on errors for XFS. */ 659 ASSERT(ret < 0 || ret == count); 660 return ret; 661 } 662 663 STATIC ssize_t 664 xfs_file_buffered_aio_write( 665 struct kiocb *iocb, 666 struct iov_iter *from) 667 { 668 struct file *file = iocb->ki_filp; 669 struct address_space *mapping = file->f_mapping; 670 struct inode *inode = mapping->host; 671 struct xfs_inode *ip = XFS_I(inode); 672 ssize_t ret; 673 int enospc = 0; 674 int iolock = XFS_IOLOCK_EXCL; 675 loff_t pos = iocb->ki_pos; 676 size_t count = iov_iter_count(from); 677 678 xfs_rw_ilock(ip, iolock); 679 680 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 681 if (ret) 682 goto out; 683 684 iov_iter_truncate(from, count); 685 /* We can write back this queue in page reclaim */ 686 current->backing_dev_info = mapping->backing_dev_info; 687 688 write_retry: 689 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 690 ret = generic_perform_write(file, from, pos); 691 if (likely(ret >= 0)) 692 iocb->ki_pos = pos + ret; 693 694 /* 695 * If we hit a space limit, try to free up some lingering preallocated 696 * space before returning an error. In the case of ENOSPC, first try to 697 * write back all dirty inodes to free up some of the excess reserved 698 * metadata space. This reduces the chances that the eofblocks scan 699 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 700 * also behaves as a filter to prevent too many eofblocks scans from 701 * running at the same time. 702 */ 703 if (ret == -EDQUOT && !enospc) { 704 enospc = xfs_inode_free_quota_eofblocks(ip); 705 if (enospc) 706 goto write_retry; 707 } else if (ret == -ENOSPC && !enospc) { 708 struct xfs_eofblocks eofb = {0}; 709 710 enospc = 1; 711 xfs_flush_inodes(ip->i_mount); 712 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 713 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 714 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 715 goto write_retry; 716 } 717 718 current->backing_dev_info = NULL; 719 out: 720 xfs_rw_iunlock(ip, iolock); 721 return ret; 722 } 723 724 STATIC ssize_t 725 xfs_file_write_iter( 726 struct kiocb *iocb, 727 struct iov_iter *from) 728 { 729 struct file *file = iocb->ki_filp; 730 struct address_space *mapping = file->f_mapping; 731 struct inode *inode = mapping->host; 732 struct xfs_inode *ip = XFS_I(inode); 733 ssize_t ret; 734 size_t ocount = iov_iter_count(from); 735 736 XFS_STATS_INC(xs_write_calls); 737 738 if (ocount == 0) 739 return 0; 740 741 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 742 return -EIO; 743 744 if (unlikely(file->f_flags & O_DIRECT)) 745 ret = xfs_file_dio_aio_write(iocb, from); 746 else 747 ret = xfs_file_buffered_aio_write(iocb, from); 748 749 if (ret > 0) { 750 ssize_t err; 751 752 XFS_STATS_ADD(xs_write_bytes, ret); 753 754 /* Handle various SYNC-type writes */ 755 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 756 if (err < 0) 757 ret = err; 758 } 759 return ret; 760 } 761 762 STATIC long 763 xfs_file_fallocate( 764 struct file *file, 765 int mode, 766 loff_t offset, 767 loff_t len) 768 { 769 struct inode *inode = file_inode(file); 770 struct xfs_inode *ip = XFS_I(inode); 771 struct xfs_trans *tp; 772 long error; 773 loff_t new_size = 0; 774 775 if (!S_ISREG(inode->i_mode)) 776 return -EINVAL; 777 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 778 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 779 return -EOPNOTSUPP; 780 781 xfs_ilock(ip, XFS_IOLOCK_EXCL); 782 if (mode & FALLOC_FL_PUNCH_HOLE) { 783 error = xfs_free_file_space(ip, offset, len); 784 if (error) 785 goto out_unlock; 786 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 787 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 788 789 if (offset & blksize_mask || len & blksize_mask) { 790 error = -EINVAL; 791 goto out_unlock; 792 } 793 794 /* 795 * There is no need to overlap collapse range with EOF, 796 * in which case it is effectively a truncate operation 797 */ 798 if (offset + len >= i_size_read(inode)) { 799 error = -EINVAL; 800 goto out_unlock; 801 } 802 803 new_size = i_size_read(inode) - len; 804 805 error = xfs_collapse_file_space(ip, offset, len); 806 if (error) 807 goto out_unlock; 808 } else { 809 if (!(mode & FALLOC_FL_KEEP_SIZE) && 810 offset + len > i_size_read(inode)) { 811 new_size = offset + len; 812 error = inode_newsize_ok(inode, new_size); 813 if (error) 814 goto out_unlock; 815 } 816 817 if (mode & FALLOC_FL_ZERO_RANGE) 818 error = xfs_zero_file_space(ip, offset, len); 819 else 820 error = xfs_alloc_file_space(ip, offset, len, 821 XFS_BMAPI_PREALLOC); 822 if (error) 823 goto out_unlock; 824 } 825 826 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 827 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 828 if (error) { 829 xfs_trans_cancel(tp, 0); 830 goto out_unlock; 831 } 832 833 xfs_ilock(ip, XFS_ILOCK_EXCL); 834 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 835 ip->i_d.di_mode &= ~S_ISUID; 836 if (ip->i_d.di_mode & S_IXGRP) 837 ip->i_d.di_mode &= ~S_ISGID; 838 839 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE))) 840 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 841 842 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 843 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 844 845 if (file->f_flags & O_DSYNC) 846 xfs_trans_set_sync(tp); 847 error = xfs_trans_commit(tp, 0); 848 if (error) 849 goto out_unlock; 850 851 /* Change file size if needed */ 852 if (new_size) { 853 struct iattr iattr; 854 855 iattr.ia_valid = ATTR_SIZE; 856 iattr.ia_size = new_size; 857 error = xfs_setattr_size(ip, &iattr); 858 } 859 860 out_unlock: 861 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 862 return error; 863 } 864 865 866 STATIC int 867 xfs_file_open( 868 struct inode *inode, 869 struct file *file) 870 { 871 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 872 return -EFBIG; 873 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 874 return -EIO; 875 return 0; 876 } 877 878 STATIC int 879 xfs_dir_open( 880 struct inode *inode, 881 struct file *file) 882 { 883 struct xfs_inode *ip = XFS_I(inode); 884 int mode; 885 int error; 886 887 error = xfs_file_open(inode, file); 888 if (error) 889 return error; 890 891 /* 892 * If there are any blocks, read-ahead block 0 as we're almost 893 * certain to have the next operation be a read there. 894 */ 895 mode = xfs_ilock_data_map_shared(ip); 896 if (ip->i_d.di_nextents > 0) 897 xfs_dir3_data_readahead(ip, 0, -1); 898 xfs_iunlock(ip, mode); 899 return 0; 900 } 901 902 STATIC int 903 xfs_file_release( 904 struct inode *inode, 905 struct file *filp) 906 { 907 return xfs_release(XFS_I(inode)); 908 } 909 910 STATIC int 911 xfs_file_readdir( 912 struct file *file, 913 struct dir_context *ctx) 914 { 915 struct inode *inode = file_inode(file); 916 xfs_inode_t *ip = XFS_I(inode); 917 int error; 918 size_t bufsize; 919 920 /* 921 * The Linux API doesn't pass down the total size of the buffer 922 * we read into down to the filesystem. With the filldir concept 923 * it's not needed for correct information, but the XFS dir2 leaf 924 * code wants an estimate of the buffer size to calculate it's 925 * readahead window and size the buffers used for mapping to 926 * physical blocks. 927 * 928 * Try to give it an estimate that's good enough, maybe at some 929 * point we can change the ->readdir prototype to include the 930 * buffer size. For now we use the current glibc buffer size. 931 */ 932 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 933 934 error = xfs_readdir(ip, ctx, bufsize); 935 if (error) 936 return error; 937 return 0; 938 } 939 940 STATIC int 941 xfs_file_mmap( 942 struct file *filp, 943 struct vm_area_struct *vma) 944 { 945 vma->vm_ops = &xfs_file_vm_ops; 946 947 file_accessed(filp); 948 return 0; 949 } 950 951 /* 952 * mmap()d file has taken write protection fault and is being made 953 * writable. We can set the page state up correctly for a writable 954 * page, which means we can do correct delalloc accounting (ENOSPC 955 * checking!) and unwritten extent mapping. 956 */ 957 STATIC int 958 xfs_vm_page_mkwrite( 959 struct vm_area_struct *vma, 960 struct vm_fault *vmf) 961 { 962 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 963 } 964 965 /* 966 * This type is designed to indicate the type of offset we would like 967 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 968 */ 969 enum { 970 HOLE_OFF = 0, 971 DATA_OFF, 972 }; 973 974 /* 975 * Lookup the desired type of offset from the given page. 976 * 977 * On success, return true and the offset argument will point to the 978 * start of the region that was found. Otherwise this function will 979 * return false and keep the offset argument unchanged. 980 */ 981 STATIC bool 982 xfs_lookup_buffer_offset( 983 struct page *page, 984 loff_t *offset, 985 unsigned int type) 986 { 987 loff_t lastoff = page_offset(page); 988 bool found = false; 989 struct buffer_head *bh, *head; 990 991 bh = head = page_buffers(page); 992 do { 993 /* 994 * Unwritten extents that have data in the page 995 * cache covering them can be identified by the 996 * BH_Unwritten state flag. Pages with multiple 997 * buffers might have a mix of holes, data and 998 * unwritten extents - any buffer with valid 999 * data in it should have BH_Uptodate flag set 1000 * on it. 1001 */ 1002 if (buffer_unwritten(bh) || 1003 buffer_uptodate(bh)) { 1004 if (type == DATA_OFF) 1005 found = true; 1006 } else { 1007 if (type == HOLE_OFF) 1008 found = true; 1009 } 1010 1011 if (found) { 1012 *offset = lastoff; 1013 break; 1014 } 1015 lastoff += bh->b_size; 1016 } while ((bh = bh->b_this_page) != head); 1017 1018 return found; 1019 } 1020 1021 /* 1022 * This routine is called to find out and return a data or hole offset 1023 * from the page cache for unwritten extents according to the desired 1024 * type for xfs_seek_data() or xfs_seek_hole(). 1025 * 1026 * The argument offset is used to tell where we start to search from the 1027 * page cache. Map is used to figure out the end points of the range to 1028 * lookup pages. 1029 * 1030 * Return true if the desired type of offset was found, and the argument 1031 * offset is filled with that address. Otherwise, return false and keep 1032 * offset unchanged. 1033 */ 1034 STATIC bool 1035 xfs_find_get_desired_pgoff( 1036 struct inode *inode, 1037 struct xfs_bmbt_irec *map, 1038 unsigned int type, 1039 loff_t *offset) 1040 { 1041 struct xfs_inode *ip = XFS_I(inode); 1042 struct xfs_mount *mp = ip->i_mount; 1043 struct pagevec pvec; 1044 pgoff_t index; 1045 pgoff_t end; 1046 loff_t endoff; 1047 loff_t startoff = *offset; 1048 loff_t lastoff = startoff; 1049 bool found = false; 1050 1051 pagevec_init(&pvec, 0); 1052 1053 index = startoff >> PAGE_CACHE_SHIFT; 1054 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1055 end = endoff >> PAGE_CACHE_SHIFT; 1056 do { 1057 int want; 1058 unsigned nr_pages; 1059 unsigned int i; 1060 1061 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1062 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1063 want); 1064 /* 1065 * No page mapped into given range. If we are searching holes 1066 * and if this is the first time we got into the loop, it means 1067 * that the given offset is landed in a hole, return it. 1068 * 1069 * If we have already stepped through some block buffers to find 1070 * holes but they all contains data. In this case, the last 1071 * offset is already updated and pointed to the end of the last 1072 * mapped page, if it does not reach the endpoint to search, 1073 * that means there should be a hole between them. 1074 */ 1075 if (nr_pages == 0) { 1076 /* Data search found nothing */ 1077 if (type == DATA_OFF) 1078 break; 1079 1080 ASSERT(type == HOLE_OFF); 1081 if (lastoff == startoff || lastoff < endoff) { 1082 found = true; 1083 *offset = lastoff; 1084 } 1085 break; 1086 } 1087 1088 /* 1089 * At lease we found one page. If this is the first time we 1090 * step into the loop, and if the first page index offset is 1091 * greater than the given search offset, a hole was found. 1092 */ 1093 if (type == HOLE_OFF && lastoff == startoff && 1094 lastoff < page_offset(pvec.pages[0])) { 1095 found = true; 1096 break; 1097 } 1098 1099 for (i = 0; i < nr_pages; i++) { 1100 struct page *page = pvec.pages[i]; 1101 loff_t b_offset; 1102 1103 /* 1104 * At this point, the page may be truncated or 1105 * invalidated (changing page->mapping to NULL), 1106 * or even swizzled back from swapper_space to tmpfs 1107 * file mapping. However, page->index will not change 1108 * because we have a reference on the page. 1109 * 1110 * Searching done if the page index is out of range. 1111 * If the current offset is not reaches the end of 1112 * the specified search range, there should be a hole 1113 * between them. 1114 */ 1115 if (page->index > end) { 1116 if (type == HOLE_OFF && lastoff < endoff) { 1117 *offset = lastoff; 1118 found = true; 1119 } 1120 goto out; 1121 } 1122 1123 lock_page(page); 1124 /* 1125 * Page truncated or invalidated(page->mapping == NULL). 1126 * We can freely skip it and proceed to check the next 1127 * page. 1128 */ 1129 if (unlikely(page->mapping != inode->i_mapping)) { 1130 unlock_page(page); 1131 continue; 1132 } 1133 1134 if (!page_has_buffers(page)) { 1135 unlock_page(page); 1136 continue; 1137 } 1138 1139 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1140 if (found) { 1141 /* 1142 * The found offset may be less than the start 1143 * point to search if this is the first time to 1144 * come here. 1145 */ 1146 *offset = max_t(loff_t, startoff, b_offset); 1147 unlock_page(page); 1148 goto out; 1149 } 1150 1151 /* 1152 * We either searching data but nothing was found, or 1153 * searching hole but found a data buffer. In either 1154 * case, probably the next page contains the desired 1155 * things, update the last offset to it so. 1156 */ 1157 lastoff = page_offset(page) + PAGE_SIZE; 1158 unlock_page(page); 1159 } 1160 1161 /* 1162 * The number of returned pages less than our desired, search 1163 * done. In this case, nothing was found for searching data, 1164 * but we found a hole behind the last offset. 1165 */ 1166 if (nr_pages < want) { 1167 if (type == HOLE_OFF) { 1168 *offset = lastoff; 1169 found = true; 1170 } 1171 break; 1172 } 1173 1174 index = pvec.pages[i - 1]->index + 1; 1175 pagevec_release(&pvec); 1176 } while (index <= end); 1177 1178 out: 1179 pagevec_release(&pvec); 1180 return found; 1181 } 1182 1183 STATIC loff_t 1184 xfs_seek_data( 1185 struct file *file, 1186 loff_t start) 1187 { 1188 struct inode *inode = file->f_mapping->host; 1189 struct xfs_inode *ip = XFS_I(inode); 1190 struct xfs_mount *mp = ip->i_mount; 1191 loff_t uninitialized_var(offset); 1192 xfs_fsize_t isize; 1193 xfs_fileoff_t fsbno; 1194 xfs_filblks_t end; 1195 uint lock; 1196 int error; 1197 1198 lock = xfs_ilock_data_map_shared(ip); 1199 1200 isize = i_size_read(inode); 1201 if (start >= isize) { 1202 error = -ENXIO; 1203 goto out_unlock; 1204 } 1205 1206 /* 1207 * Try to read extents from the first block indicated 1208 * by fsbno to the end block of the file. 1209 */ 1210 fsbno = XFS_B_TO_FSBT(mp, start); 1211 end = XFS_B_TO_FSB(mp, isize); 1212 for (;;) { 1213 struct xfs_bmbt_irec map[2]; 1214 int nmap = 2; 1215 unsigned int i; 1216 1217 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1218 XFS_BMAPI_ENTIRE); 1219 if (error) 1220 goto out_unlock; 1221 1222 /* No extents at given offset, must be beyond EOF */ 1223 if (nmap == 0) { 1224 error = -ENXIO; 1225 goto out_unlock; 1226 } 1227 1228 for (i = 0; i < nmap; i++) { 1229 offset = max_t(loff_t, start, 1230 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1231 1232 /* Landed in a data extent */ 1233 if (map[i].br_startblock == DELAYSTARTBLOCK || 1234 (map[i].br_state == XFS_EXT_NORM && 1235 !isnullstartblock(map[i].br_startblock))) 1236 goto out; 1237 1238 /* 1239 * Landed in an unwritten extent, try to search data 1240 * from page cache. 1241 */ 1242 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1243 if (xfs_find_get_desired_pgoff(inode, &map[i], 1244 DATA_OFF, &offset)) 1245 goto out; 1246 } 1247 } 1248 1249 /* 1250 * map[0] is hole or its an unwritten extent but 1251 * without data in page cache. Probably means that 1252 * we are reading after EOF if nothing in map[1]. 1253 */ 1254 if (nmap == 1) { 1255 error = -ENXIO; 1256 goto out_unlock; 1257 } 1258 1259 ASSERT(i > 1); 1260 1261 /* 1262 * Nothing was found, proceed to the next round of search 1263 * if reading offset not beyond or hit EOF. 1264 */ 1265 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1266 start = XFS_FSB_TO_B(mp, fsbno); 1267 if (start >= isize) { 1268 error = -ENXIO; 1269 goto out_unlock; 1270 } 1271 } 1272 1273 out: 1274 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1275 1276 out_unlock: 1277 xfs_iunlock(ip, lock); 1278 1279 if (error) 1280 return error; 1281 return offset; 1282 } 1283 1284 STATIC loff_t 1285 xfs_seek_hole( 1286 struct file *file, 1287 loff_t start) 1288 { 1289 struct inode *inode = file->f_mapping->host; 1290 struct xfs_inode *ip = XFS_I(inode); 1291 struct xfs_mount *mp = ip->i_mount; 1292 loff_t uninitialized_var(offset); 1293 xfs_fsize_t isize; 1294 xfs_fileoff_t fsbno; 1295 xfs_filblks_t end; 1296 uint lock; 1297 int error; 1298 1299 if (XFS_FORCED_SHUTDOWN(mp)) 1300 return -EIO; 1301 1302 lock = xfs_ilock_data_map_shared(ip); 1303 1304 isize = i_size_read(inode); 1305 if (start >= isize) { 1306 error = -ENXIO; 1307 goto out_unlock; 1308 } 1309 1310 fsbno = XFS_B_TO_FSBT(mp, start); 1311 end = XFS_B_TO_FSB(mp, isize); 1312 1313 for (;;) { 1314 struct xfs_bmbt_irec map[2]; 1315 int nmap = 2; 1316 unsigned int i; 1317 1318 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1319 XFS_BMAPI_ENTIRE); 1320 if (error) 1321 goto out_unlock; 1322 1323 /* No extents at given offset, must be beyond EOF */ 1324 if (nmap == 0) { 1325 error = -ENXIO; 1326 goto out_unlock; 1327 } 1328 1329 for (i = 0; i < nmap; i++) { 1330 offset = max_t(loff_t, start, 1331 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1332 1333 /* Landed in a hole */ 1334 if (map[i].br_startblock == HOLESTARTBLOCK) 1335 goto out; 1336 1337 /* 1338 * Landed in an unwritten extent, try to search hole 1339 * from page cache. 1340 */ 1341 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1342 if (xfs_find_get_desired_pgoff(inode, &map[i], 1343 HOLE_OFF, &offset)) 1344 goto out; 1345 } 1346 } 1347 1348 /* 1349 * map[0] contains data or its unwritten but contains 1350 * data in page cache, probably means that we are 1351 * reading after EOF. We should fix offset to point 1352 * to the end of the file(i.e., there is an implicit 1353 * hole at the end of any file). 1354 */ 1355 if (nmap == 1) { 1356 offset = isize; 1357 break; 1358 } 1359 1360 ASSERT(i > 1); 1361 1362 /* 1363 * Both mappings contains data, proceed to the next round of 1364 * search if the current reading offset not beyond or hit EOF. 1365 */ 1366 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1367 start = XFS_FSB_TO_B(mp, fsbno); 1368 if (start >= isize) { 1369 offset = isize; 1370 break; 1371 } 1372 } 1373 1374 out: 1375 /* 1376 * At this point, we must have found a hole. However, the returned 1377 * offset may be bigger than the file size as it may be aligned to 1378 * page boundary for unwritten extents, we need to deal with this 1379 * situation in particular. 1380 */ 1381 offset = min_t(loff_t, offset, isize); 1382 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1383 1384 out_unlock: 1385 xfs_iunlock(ip, lock); 1386 1387 if (error) 1388 return error; 1389 return offset; 1390 } 1391 1392 STATIC loff_t 1393 xfs_file_llseek( 1394 struct file *file, 1395 loff_t offset, 1396 int origin) 1397 { 1398 switch (origin) { 1399 case SEEK_END: 1400 case SEEK_CUR: 1401 case SEEK_SET: 1402 return generic_file_llseek(file, offset, origin); 1403 case SEEK_DATA: 1404 return xfs_seek_data(file, offset); 1405 case SEEK_HOLE: 1406 return xfs_seek_hole(file, offset); 1407 default: 1408 return -EINVAL; 1409 } 1410 } 1411 1412 const struct file_operations xfs_file_operations = { 1413 .llseek = xfs_file_llseek, 1414 .read = new_sync_read, 1415 .write = new_sync_write, 1416 .read_iter = xfs_file_read_iter, 1417 .write_iter = xfs_file_write_iter, 1418 .splice_read = xfs_file_splice_read, 1419 .splice_write = iter_file_splice_write, 1420 .unlocked_ioctl = xfs_file_ioctl, 1421 #ifdef CONFIG_COMPAT 1422 .compat_ioctl = xfs_file_compat_ioctl, 1423 #endif 1424 .mmap = xfs_file_mmap, 1425 .open = xfs_file_open, 1426 .release = xfs_file_release, 1427 .fsync = xfs_file_fsync, 1428 .fallocate = xfs_file_fallocate, 1429 }; 1430 1431 const struct file_operations xfs_dir_file_operations = { 1432 .open = xfs_dir_open, 1433 .read = generic_read_dir, 1434 .iterate = xfs_file_readdir, 1435 .llseek = generic_file_llseek, 1436 .unlocked_ioctl = xfs_file_ioctl, 1437 #ifdef CONFIG_COMPAT 1438 .compat_ioctl = xfs_file_compat_ioctl, 1439 #endif 1440 .fsync = xfs_dir_fsync, 1441 }; 1442 1443 static const struct vm_operations_struct xfs_file_vm_ops = { 1444 .fault = filemap_fault, 1445 .map_pages = filemap_map_pages, 1446 .page_mkwrite = xfs_vm_page_mkwrite, 1447 .remap_pages = generic_file_remap_pages, 1448 }; 1449