xref: /openbmc/linux/fs/xfs/xfs_file.c (revision fff74a93)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
41 #include "xfs_icache.h"
42 
43 #include <linux/aio.h>
44 #include <linux/dcache.h>
45 #include <linux/falloc.h>
46 #include <linux/pagevec.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Locking primitives for read and write IO paths to ensure we consistently use
52  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53  */
54 static inline void
55 xfs_rw_ilock(
56 	struct xfs_inode	*ip,
57 	int			type)
58 {
59 	if (type & XFS_IOLOCK_EXCL)
60 		mutex_lock(&VFS_I(ip)->i_mutex);
61 	xfs_ilock(ip, type);
62 }
63 
64 static inline void
65 xfs_rw_iunlock(
66 	struct xfs_inode	*ip,
67 	int			type)
68 {
69 	xfs_iunlock(ip, type);
70 	if (type & XFS_IOLOCK_EXCL)
71 		mutex_unlock(&VFS_I(ip)->i_mutex);
72 }
73 
74 static inline void
75 xfs_rw_ilock_demote(
76 	struct xfs_inode	*ip,
77 	int			type)
78 {
79 	xfs_ilock_demote(ip, type);
80 	if (type & XFS_IOLOCK_EXCL)
81 		mutex_unlock(&VFS_I(ip)->i_mutex);
82 }
83 
84 /*
85  *	xfs_iozero
86  *
87  *	xfs_iozero clears the specified range of buffer supplied,
88  *	and marks all the affected blocks as valid and modified.  If
89  *	an affected block is not allocated, it will be allocated.  If
90  *	an affected block is not completely overwritten, and is not
91  *	valid before the operation, it will be read from disk before
92  *	being partially zeroed.
93  */
94 int
95 xfs_iozero(
96 	struct xfs_inode	*ip,	/* inode			*/
97 	loff_t			pos,	/* offset in file		*/
98 	size_t			count)	/* size of data to zero		*/
99 {
100 	struct page		*page;
101 	struct address_space	*mapping;
102 	int			status;
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 		bytes = PAGE_CACHE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
115 					AOP_FLAG_UNINTERRUPTIBLE,
116 					&page, &fsdata);
117 		if (status)
118 			break;
119 
120 		zero_user(page, offset, bytes);
121 
122 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
123 					page, fsdata);
124 		WARN_ON(status <= 0); /* can't return less than zero! */
125 		pos += bytes;
126 		count -= bytes;
127 		status = 0;
128 	} while (count);
129 
130 	return (-status);
131 }
132 
133 /*
134  * Fsync operations on directories are much simpler than on regular files,
135  * as there is no file data to flush, and thus also no need for explicit
136  * cache flush operations, and there are no non-transaction metadata updates
137  * on directories either.
138  */
139 STATIC int
140 xfs_dir_fsync(
141 	struct file		*file,
142 	loff_t			start,
143 	loff_t			end,
144 	int			datasync)
145 {
146 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
147 	struct xfs_mount	*mp = ip->i_mount;
148 	xfs_lsn_t		lsn = 0;
149 
150 	trace_xfs_dir_fsync(ip);
151 
152 	xfs_ilock(ip, XFS_ILOCK_SHARED);
153 	if (xfs_ipincount(ip))
154 		lsn = ip->i_itemp->ili_last_lsn;
155 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
156 
157 	if (!lsn)
158 		return 0;
159 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
160 }
161 
162 STATIC int
163 xfs_file_fsync(
164 	struct file		*file,
165 	loff_t			start,
166 	loff_t			end,
167 	int			datasync)
168 {
169 	struct inode		*inode = file->f_mapping->host;
170 	struct xfs_inode	*ip = XFS_I(inode);
171 	struct xfs_mount	*mp = ip->i_mount;
172 	int			error = 0;
173 	int			log_flushed = 0;
174 	xfs_lsn_t		lsn = 0;
175 
176 	trace_xfs_file_fsync(ip);
177 
178 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
179 	if (error)
180 		return error;
181 
182 	if (XFS_FORCED_SHUTDOWN(mp))
183 		return -EIO;
184 
185 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
186 
187 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
188 		/*
189 		 * If we have an RT and/or log subvolume we need to make sure
190 		 * to flush the write cache the device used for file data
191 		 * first.  This is to ensure newly written file data make
192 		 * it to disk before logging the new inode size in case of
193 		 * an extending write.
194 		 */
195 		if (XFS_IS_REALTIME_INODE(ip))
196 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
197 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
198 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 	}
200 
201 	/*
202 	 * All metadata updates are logged, which means that we just have
203 	 * to flush the log up to the latest LSN that touched the inode.
204 	 */
205 	xfs_ilock(ip, XFS_ILOCK_SHARED);
206 	if (xfs_ipincount(ip)) {
207 		if (!datasync ||
208 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
209 			lsn = ip->i_itemp->ili_last_lsn;
210 	}
211 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
212 
213 	if (lsn)
214 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
215 
216 	/*
217 	 * If we only have a single device, and the log force about was
218 	 * a no-op we might have to flush the data device cache here.
219 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
220 	 * an already allocated file and thus do not have any metadata to
221 	 * commit.
222 	 */
223 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
224 	    mp->m_logdev_targp == mp->m_ddev_targp &&
225 	    !XFS_IS_REALTIME_INODE(ip) &&
226 	    !log_flushed)
227 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
228 
229 	return error;
230 }
231 
232 STATIC ssize_t
233 xfs_file_read_iter(
234 	struct kiocb		*iocb,
235 	struct iov_iter		*to)
236 {
237 	struct file		*file = iocb->ki_filp;
238 	struct inode		*inode = file->f_mapping->host;
239 	struct xfs_inode	*ip = XFS_I(inode);
240 	struct xfs_mount	*mp = ip->i_mount;
241 	size_t			size = iov_iter_count(to);
242 	ssize_t			ret = 0;
243 	int			ioflags = 0;
244 	xfs_fsize_t		n;
245 	loff_t			pos = iocb->ki_pos;
246 
247 	XFS_STATS_INC(xs_read_calls);
248 
249 	if (unlikely(file->f_flags & O_DIRECT))
250 		ioflags |= XFS_IO_ISDIRECT;
251 	if (file->f_mode & FMODE_NOCMTIME)
252 		ioflags |= XFS_IO_INVIS;
253 
254 	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
255 		xfs_buftarg_t	*target =
256 			XFS_IS_REALTIME_INODE(ip) ?
257 				mp->m_rtdev_targp : mp->m_ddev_targp;
258 		/* DIO must be aligned to device logical sector size */
259 		if ((pos | size) & target->bt_logical_sectormask) {
260 			if (pos == i_size_read(inode))
261 				return 0;
262 			return -EINVAL;
263 		}
264 	}
265 
266 	n = mp->m_super->s_maxbytes - pos;
267 	if (n <= 0 || size == 0)
268 		return 0;
269 
270 	if (n < size)
271 		size = n;
272 
273 	if (XFS_FORCED_SHUTDOWN(mp))
274 		return -EIO;
275 
276 	/*
277 	 * Locking is a bit tricky here. If we take an exclusive lock
278 	 * for direct IO, we effectively serialise all new concurrent
279 	 * read IO to this file and block it behind IO that is currently in
280 	 * progress because IO in progress holds the IO lock shared. We only
281 	 * need to hold the lock exclusive to blow away the page cache, so
282 	 * only take lock exclusively if the page cache needs invalidation.
283 	 * This allows the normal direct IO case of no page cache pages to
284 	 * proceeed concurrently without serialisation.
285 	 */
286 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
287 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
288 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
289 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290 
291 		if (inode->i_mapping->nrpages) {
292 			ret = filemap_write_and_wait_range(
293 							VFS_I(ip)->i_mapping,
294 							pos, -1);
295 			if (ret) {
296 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
297 				return ret;
298 			}
299 			truncate_pagecache_range(VFS_I(ip), pos, -1);
300 		}
301 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
302 	}
303 
304 	trace_xfs_file_read(ip, size, pos, ioflags);
305 
306 	ret = generic_file_read_iter(iocb, to);
307 	if (ret > 0)
308 		XFS_STATS_ADD(xs_read_bytes, ret);
309 
310 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
311 	return ret;
312 }
313 
314 STATIC ssize_t
315 xfs_file_splice_read(
316 	struct file		*infilp,
317 	loff_t			*ppos,
318 	struct pipe_inode_info	*pipe,
319 	size_t			count,
320 	unsigned int		flags)
321 {
322 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
323 	int			ioflags = 0;
324 	ssize_t			ret;
325 
326 	XFS_STATS_INC(xs_read_calls);
327 
328 	if (infilp->f_mode & FMODE_NOCMTIME)
329 		ioflags |= XFS_IO_INVIS;
330 
331 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
332 		return -EIO;
333 
334 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
335 
336 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
337 
338 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
339 	if (ret > 0)
340 		XFS_STATS_ADD(xs_read_bytes, ret);
341 
342 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 	return ret;
344 }
345 
346 /*
347  * This routine is called to handle zeroing any space in the last block of the
348  * file that is beyond the EOF.  We do this since the size is being increased
349  * without writing anything to that block and we don't want to read the
350  * garbage on the disk.
351  */
352 STATIC int				/* error (positive) */
353 xfs_zero_last_block(
354 	struct xfs_inode	*ip,
355 	xfs_fsize_t		offset,
356 	xfs_fsize_t		isize)
357 {
358 	struct xfs_mount	*mp = ip->i_mount;
359 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
360 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
361 	int			zero_len;
362 	int			nimaps = 1;
363 	int			error = 0;
364 	struct xfs_bmbt_irec	imap;
365 
366 	xfs_ilock(ip, XFS_ILOCK_EXCL);
367 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
368 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
369 	if (error)
370 		return error;
371 
372 	ASSERT(nimaps > 0);
373 
374 	/*
375 	 * If the block underlying isize is just a hole, then there
376 	 * is nothing to zero.
377 	 */
378 	if (imap.br_startblock == HOLESTARTBLOCK)
379 		return 0;
380 
381 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
382 	if (isize + zero_len > offset)
383 		zero_len = offset - isize;
384 	return xfs_iozero(ip, isize, zero_len);
385 }
386 
387 /*
388  * Zero any on disk space between the current EOF and the new, larger EOF.
389  *
390  * This handles the normal case of zeroing the remainder of the last block in
391  * the file and the unusual case of zeroing blocks out beyond the size of the
392  * file.  This second case only happens with fixed size extents and when the
393  * system crashes before the inode size was updated but after blocks were
394  * allocated.
395  *
396  * Expects the iolock to be held exclusive, and will take the ilock internally.
397  */
398 int					/* error (positive) */
399 xfs_zero_eof(
400 	struct xfs_inode	*ip,
401 	xfs_off_t		offset,		/* starting I/O offset */
402 	xfs_fsize_t		isize)		/* current inode size */
403 {
404 	struct xfs_mount	*mp = ip->i_mount;
405 	xfs_fileoff_t		start_zero_fsb;
406 	xfs_fileoff_t		end_zero_fsb;
407 	xfs_fileoff_t		zero_count_fsb;
408 	xfs_fileoff_t		last_fsb;
409 	xfs_fileoff_t		zero_off;
410 	xfs_fsize_t		zero_len;
411 	int			nimaps;
412 	int			error = 0;
413 	struct xfs_bmbt_irec	imap;
414 
415 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
416 	ASSERT(offset > isize);
417 
418 	/*
419 	 * First handle zeroing the block on which isize resides.
420 	 *
421 	 * We only zero a part of that block so it is handled specially.
422 	 */
423 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
424 		error = xfs_zero_last_block(ip, offset, isize);
425 		if (error)
426 			return error;
427 	}
428 
429 	/*
430 	 * Calculate the range between the new size and the old where blocks
431 	 * needing to be zeroed may exist.
432 	 *
433 	 * To get the block where the last byte in the file currently resides,
434 	 * we need to subtract one from the size and truncate back to a block
435 	 * boundary.  We subtract 1 in case the size is exactly on a block
436 	 * boundary.
437 	 */
438 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
439 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
440 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
441 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
442 	if (last_fsb == end_zero_fsb) {
443 		/*
444 		 * The size was only incremented on its last block.
445 		 * We took care of that above, so just return.
446 		 */
447 		return 0;
448 	}
449 
450 	ASSERT(start_zero_fsb <= end_zero_fsb);
451 	while (start_zero_fsb <= end_zero_fsb) {
452 		nimaps = 1;
453 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
454 
455 		xfs_ilock(ip, XFS_ILOCK_EXCL);
456 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
457 					  &imap, &nimaps, 0);
458 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
459 		if (error)
460 			return error;
461 
462 		ASSERT(nimaps > 0);
463 
464 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
465 		    imap.br_startblock == HOLESTARTBLOCK) {
466 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
467 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
468 			continue;
469 		}
470 
471 		/*
472 		 * There are blocks we need to zero.
473 		 */
474 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
475 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
476 
477 		if ((zero_off + zero_len) > offset)
478 			zero_len = offset - zero_off;
479 
480 		error = xfs_iozero(ip, zero_off, zero_len);
481 		if (error)
482 			return error;
483 
484 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
485 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  * Common pre-write limit and setup checks.
493  *
494  * Called with the iolocked held either shared and exclusive according to
495  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
496  * if called for a direct write beyond i_size.
497  */
498 STATIC ssize_t
499 xfs_file_aio_write_checks(
500 	struct file		*file,
501 	loff_t			*pos,
502 	size_t			*count,
503 	int			*iolock)
504 {
505 	struct inode		*inode = file->f_mapping->host;
506 	struct xfs_inode	*ip = XFS_I(inode);
507 	int			error = 0;
508 
509 restart:
510 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
511 	if (error)
512 		return error;
513 
514 	/*
515 	 * If the offset is beyond the size of the file, we need to zero any
516 	 * blocks that fall between the existing EOF and the start of this
517 	 * write.  If zeroing is needed and we are currently holding the
518 	 * iolock shared, we need to update it to exclusive which implies
519 	 * having to redo all checks before.
520 	 */
521 	if (*pos > i_size_read(inode)) {
522 		if (*iolock == XFS_IOLOCK_SHARED) {
523 			xfs_rw_iunlock(ip, *iolock);
524 			*iolock = XFS_IOLOCK_EXCL;
525 			xfs_rw_ilock(ip, *iolock);
526 			goto restart;
527 		}
528 		error = xfs_zero_eof(ip, *pos, i_size_read(inode));
529 		if (error)
530 			return error;
531 	}
532 
533 	/*
534 	 * Updating the timestamps will grab the ilock again from
535 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
536 	 * lock above.  Eventually we should look into a way to avoid
537 	 * the pointless lock roundtrip.
538 	 */
539 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
540 		error = file_update_time(file);
541 		if (error)
542 			return error;
543 	}
544 
545 	/*
546 	 * If we're writing the file then make sure to clear the setuid and
547 	 * setgid bits if the process is not being run by root.  This keeps
548 	 * people from modifying setuid and setgid binaries.
549 	 */
550 	return file_remove_suid(file);
551 }
552 
553 /*
554  * xfs_file_dio_aio_write - handle direct IO writes
555  *
556  * Lock the inode appropriately to prepare for and issue a direct IO write.
557  * By separating it from the buffered write path we remove all the tricky to
558  * follow locking changes and looping.
559  *
560  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
561  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
562  * pages are flushed out.
563  *
564  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
565  * allowing them to be done in parallel with reads and other direct IO writes.
566  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
567  * needs to do sub-block zeroing and that requires serialisation against other
568  * direct IOs to the same block. In this case we need to serialise the
569  * submission of the unaligned IOs so that we don't get racing block zeroing in
570  * the dio layer.  To avoid the problem with aio, we also need to wait for
571  * outstanding IOs to complete so that unwritten extent conversion is completed
572  * before we try to map the overlapping block. This is currently implemented by
573  * hitting it with a big hammer (i.e. inode_dio_wait()).
574  *
575  * Returns with locks held indicated by @iolock and errors indicated by
576  * negative return values.
577  */
578 STATIC ssize_t
579 xfs_file_dio_aio_write(
580 	struct kiocb		*iocb,
581 	struct iov_iter		*from)
582 {
583 	struct file		*file = iocb->ki_filp;
584 	struct address_space	*mapping = file->f_mapping;
585 	struct inode		*inode = mapping->host;
586 	struct xfs_inode	*ip = XFS_I(inode);
587 	struct xfs_mount	*mp = ip->i_mount;
588 	ssize_t			ret = 0;
589 	int			unaligned_io = 0;
590 	int			iolock;
591 	size_t			count = iov_iter_count(from);
592 	loff_t			pos = iocb->ki_pos;
593 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
594 					mp->m_rtdev_targp : mp->m_ddev_targp;
595 
596 	/* DIO must be aligned to device logical sector size */
597 	if ((pos | count) & target->bt_logical_sectormask)
598 		return -EINVAL;
599 
600 	/* "unaligned" here means not aligned to a filesystem block */
601 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
602 		unaligned_io = 1;
603 
604 	/*
605 	 * We don't need to take an exclusive lock unless there page cache needs
606 	 * to be invalidated or unaligned IO is being executed. We don't need to
607 	 * consider the EOF extension case here because
608 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
609 	 * EOF zeroing cases and fill out the new inode size as appropriate.
610 	 */
611 	if (unaligned_io || mapping->nrpages)
612 		iolock = XFS_IOLOCK_EXCL;
613 	else
614 		iolock = XFS_IOLOCK_SHARED;
615 	xfs_rw_ilock(ip, iolock);
616 
617 	/*
618 	 * Recheck if there are cached pages that need invalidate after we got
619 	 * the iolock to protect against other threads adding new pages while
620 	 * we were waiting for the iolock.
621 	 */
622 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
623 		xfs_rw_iunlock(ip, iolock);
624 		iolock = XFS_IOLOCK_EXCL;
625 		xfs_rw_ilock(ip, iolock);
626 	}
627 
628 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
629 	if (ret)
630 		goto out;
631 	iov_iter_truncate(from, count);
632 
633 	if (mapping->nrpages) {
634 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
635 						    pos, -1);
636 		if (ret)
637 			goto out;
638 		truncate_pagecache_range(VFS_I(ip), pos, -1);
639 	}
640 
641 	/*
642 	 * If we are doing unaligned IO, wait for all other IO to drain,
643 	 * otherwise demote the lock if we had to flush cached pages
644 	 */
645 	if (unaligned_io)
646 		inode_dio_wait(inode);
647 	else if (iolock == XFS_IOLOCK_EXCL) {
648 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
649 		iolock = XFS_IOLOCK_SHARED;
650 	}
651 
652 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
653 	ret = generic_file_direct_write(iocb, from, pos);
654 
655 out:
656 	xfs_rw_iunlock(ip, iolock);
657 
658 	/* No fallback to buffered IO on errors for XFS. */
659 	ASSERT(ret < 0 || ret == count);
660 	return ret;
661 }
662 
663 STATIC ssize_t
664 xfs_file_buffered_aio_write(
665 	struct kiocb		*iocb,
666 	struct iov_iter		*from)
667 {
668 	struct file		*file = iocb->ki_filp;
669 	struct address_space	*mapping = file->f_mapping;
670 	struct inode		*inode = mapping->host;
671 	struct xfs_inode	*ip = XFS_I(inode);
672 	ssize_t			ret;
673 	int			enospc = 0;
674 	int			iolock = XFS_IOLOCK_EXCL;
675 	loff_t			pos = iocb->ki_pos;
676 	size_t			count = iov_iter_count(from);
677 
678 	xfs_rw_ilock(ip, iolock);
679 
680 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
681 	if (ret)
682 		goto out;
683 
684 	iov_iter_truncate(from, count);
685 	/* We can write back this queue in page reclaim */
686 	current->backing_dev_info = mapping->backing_dev_info;
687 
688 write_retry:
689 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
690 	ret = generic_perform_write(file, from, pos);
691 	if (likely(ret >= 0))
692 		iocb->ki_pos = pos + ret;
693 
694 	/*
695 	 * If we hit a space limit, try to free up some lingering preallocated
696 	 * space before returning an error. In the case of ENOSPC, first try to
697 	 * write back all dirty inodes to free up some of the excess reserved
698 	 * metadata space. This reduces the chances that the eofblocks scan
699 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
700 	 * also behaves as a filter to prevent too many eofblocks scans from
701 	 * running at the same time.
702 	 */
703 	if (ret == -EDQUOT && !enospc) {
704 		enospc = xfs_inode_free_quota_eofblocks(ip);
705 		if (enospc)
706 			goto write_retry;
707 	} else if (ret == -ENOSPC && !enospc) {
708 		struct xfs_eofblocks eofb = {0};
709 
710 		enospc = 1;
711 		xfs_flush_inodes(ip->i_mount);
712 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
713 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
714 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
715 		goto write_retry;
716 	}
717 
718 	current->backing_dev_info = NULL;
719 out:
720 	xfs_rw_iunlock(ip, iolock);
721 	return ret;
722 }
723 
724 STATIC ssize_t
725 xfs_file_write_iter(
726 	struct kiocb		*iocb,
727 	struct iov_iter		*from)
728 {
729 	struct file		*file = iocb->ki_filp;
730 	struct address_space	*mapping = file->f_mapping;
731 	struct inode		*inode = mapping->host;
732 	struct xfs_inode	*ip = XFS_I(inode);
733 	ssize_t			ret;
734 	size_t			ocount = iov_iter_count(from);
735 
736 	XFS_STATS_INC(xs_write_calls);
737 
738 	if (ocount == 0)
739 		return 0;
740 
741 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
742 		return -EIO;
743 
744 	if (unlikely(file->f_flags & O_DIRECT))
745 		ret = xfs_file_dio_aio_write(iocb, from);
746 	else
747 		ret = xfs_file_buffered_aio_write(iocb, from);
748 
749 	if (ret > 0) {
750 		ssize_t err;
751 
752 		XFS_STATS_ADD(xs_write_bytes, ret);
753 
754 		/* Handle various SYNC-type writes */
755 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
756 		if (err < 0)
757 			ret = err;
758 	}
759 	return ret;
760 }
761 
762 STATIC long
763 xfs_file_fallocate(
764 	struct file		*file,
765 	int			mode,
766 	loff_t			offset,
767 	loff_t			len)
768 {
769 	struct inode		*inode = file_inode(file);
770 	struct xfs_inode	*ip = XFS_I(inode);
771 	struct xfs_trans	*tp;
772 	long			error;
773 	loff_t			new_size = 0;
774 
775 	if (!S_ISREG(inode->i_mode))
776 		return -EINVAL;
777 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
778 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
779 		return -EOPNOTSUPP;
780 
781 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
782 	if (mode & FALLOC_FL_PUNCH_HOLE) {
783 		error = xfs_free_file_space(ip, offset, len);
784 		if (error)
785 			goto out_unlock;
786 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
787 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
788 
789 		if (offset & blksize_mask || len & blksize_mask) {
790 			error = -EINVAL;
791 			goto out_unlock;
792 		}
793 
794 		/*
795 		 * There is no need to overlap collapse range with EOF,
796 		 * in which case it is effectively a truncate operation
797 		 */
798 		if (offset + len >= i_size_read(inode)) {
799 			error = -EINVAL;
800 			goto out_unlock;
801 		}
802 
803 		new_size = i_size_read(inode) - len;
804 
805 		error = xfs_collapse_file_space(ip, offset, len);
806 		if (error)
807 			goto out_unlock;
808 	} else {
809 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
810 		    offset + len > i_size_read(inode)) {
811 			new_size = offset + len;
812 			error = inode_newsize_ok(inode, new_size);
813 			if (error)
814 				goto out_unlock;
815 		}
816 
817 		if (mode & FALLOC_FL_ZERO_RANGE)
818 			error = xfs_zero_file_space(ip, offset, len);
819 		else
820 			error = xfs_alloc_file_space(ip, offset, len,
821 						     XFS_BMAPI_PREALLOC);
822 		if (error)
823 			goto out_unlock;
824 	}
825 
826 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
827 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
828 	if (error) {
829 		xfs_trans_cancel(tp, 0);
830 		goto out_unlock;
831 	}
832 
833 	xfs_ilock(ip, XFS_ILOCK_EXCL);
834 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
835 	ip->i_d.di_mode &= ~S_ISUID;
836 	if (ip->i_d.di_mode & S_IXGRP)
837 		ip->i_d.di_mode &= ~S_ISGID;
838 
839 	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
840 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
841 
842 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
843 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
844 
845 	if (file->f_flags & O_DSYNC)
846 		xfs_trans_set_sync(tp);
847 	error = xfs_trans_commit(tp, 0);
848 	if (error)
849 		goto out_unlock;
850 
851 	/* Change file size if needed */
852 	if (new_size) {
853 		struct iattr iattr;
854 
855 		iattr.ia_valid = ATTR_SIZE;
856 		iattr.ia_size = new_size;
857 		error = xfs_setattr_size(ip, &iattr);
858 	}
859 
860 out_unlock:
861 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
862 	return error;
863 }
864 
865 
866 STATIC int
867 xfs_file_open(
868 	struct inode	*inode,
869 	struct file	*file)
870 {
871 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
872 		return -EFBIG;
873 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
874 		return -EIO;
875 	return 0;
876 }
877 
878 STATIC int
879 xfs_dir_open(
880 	struct inode	*inode,
881 	struct file	*file)
882 {
883 	struct xfs_inode *ip = XFS_I(inode);
884 	int		mode;
885 	int		error;
886 
887 	error = xfs_file_open(inode, file);
888 	if (error)
889 		return error;
890 
891 	/*
892 	 * If there are any blocks, read-ahead block 0 as we're almost
893 	 * certain to have the next operation be a read there.
894 	 */
895 	mode = xfs_ilock_data_map_shared(ip);
896 	if (ip->i_d.di_nextents > 0)
897 		xfs_dir3_data_readahead(ip, 0, -1);
898 	xfs_iunlock(ip, mode);
899 	return 0;
900 }
901 
902 STATIC int
903 xfs_file_release(
904 	struct inode	*inode,
905 	struct file	*filp)
906 {
907 	return xfs_release(XFS_I(inode));
908 }
909 
910 STATIC int
911 xfs_file_readdir(
912 	struct file	*file,
913 	struct dir_context *ctx)
914 {
915 	struct inode	*inode = file_inode(file);
916 	xfs_inode_t	*ip = XFS_I(inode);
917 	int		error;
918 	size_t		bufsize;
919 
920 	/*
921 	 * The Linux API doesn't pass down the total size of the buffer
922 	 * we read into down to the filesystem.  With the filldir concept
923 	 * it's not needed for correct information, but the XFS dir2 leaf
924 	 * code wants an estimate of the buffer size to calculate it's
925 	 * readahead window and size the buffers used for mapping to
926 	 * physical blocks.
927 	 *
928 	 * Try to give it an estimate that's good enough, maybe at some
929 	 * point we can change the ->readdir prototype to include the
930 	 * buffer size.  For now we use the current glibc buffer size.
931 	 */
932 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
933 
934 	error = xfs_readdir(ip, ctx, bufsize);
935 	if (error)
936 		return error;
937 	return 0;
938 }
939 
940 STATIC int
941 xfs_file_mmap(
942 	struct file	*filp,
943 	struct vm_area_struct *vma)
944 {
945 	vma->vm_ops = &xfs_file_vm_ops;
946 
947 	file_accessed(filp);
948 	return 0;
949 }
950 
951 /*
952  * mmap()d file has taken write protection fault and is being made
953  * writable. We can set the page state up correctly for a writable
954  * page, which means we can do correct delalloc accounting (ENOSPC
955  * checking!) and unwritten extent mapping.
956  */
957 STATIC int
958 xfs_vm_page_mkwrite(
959 	struct vm_area_struct	*vma,
960 	struct vm_fault		*vmf)
961 {
962 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
963 }
964 
965 /*
966  * This type is designed to indicate the type of offset we would like
967  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
968  */
969 enum {
970 	HOLE_OFF = 0,
971 	DATA_OFF,
972 };
973 
974 /*
975  * Lookup the desired type of offset from the given page.
976  *
977  * On success, return true and the offset argument will point to the
978  * start of the region that was found.  Otherwise this function will
979  * return false and keep the offset argument unchanged.
980  */
981 STATIC bool
982 xfs_lookup_buffer_offset(
983 	struct page		*page,
984 	loff_t			*offset,
985 	unsigned int		type)
986 {
987 	loff_t			lastoff = page_offset(page);
988 	bool			found = false;
989 	struct buffer_head	*bh, *head;
990 
991 	bh = head = page_buffers(page);
992 	do {
993 		/*
994 		 * Unwritten extents that have data in the page
995 		 * cache covering them can be identified by the
996 		 * BH_Unwritten state flag.  Pages with multiple
997 		 * buffers might have a mix of holes, data and
998 		 * unwritten extents - any buffer with valid
999 		 * data in it should have BH_Uptodate flag set
1000 		 * on it.
1001 		 */
1002 		if (buffer_unwritten(bh) ||
1003 		    buffer_uptodate(bh)) {
1004 			if (type == DATA_OFF)
1005 				found = true;
1006 		} else {
1007 			if (type == HOLE_OFF)
1008 				found = true;
1009 		}
1010 
1011 		if (found) {
1012 			*offset = lastoff;
1013 			break;
1014 		}
1015 		lastoff += bh->b_size;
1016 	} while ((bh = bh->b_this_page) != head);
1017 
1018 	return found;
1019 }
1020 
1021 /*
1022  * This routine is called to find out and return a data or hole offset
1023  * from the page cache for unwritten extents according to the desired
1024  * type for xfs_seek_data() or xfs_seek_hole().
1025  *
1026  * The argument offset is used to tell where we start to search from the
1027  * page cache.  Map is used to figure out the end points of the range to
1028  * lookup pages.
1029  *
1030  * Return true if the desired type of offset was found, and the argument
1031  * offset is filled with that address.  Otherwise, return false and keep
1032  * offset unchanged.
1033  */
1034 STATIC bool
1035 xfs_find_get_desired_pgoff(
1036 	struct inode		*inode,
1037 	struct xfs_bmbt_irec	*map,
1038 	unsigned int		type,
1039 	loff_t			*offset)
1040 {
1041 	struct xfs_inode	*ip = XFS_I(inode);
1042 	struct xfs_mount	*mp = ip->i_mount;
1043 	struct pagevec		pvec;
1044 	pgoff_t			index;
1045 	pgoff_t			end;
1046 	loff_t			endoff;
1047 	loff_t			startoff = *offset;
1048 	loff_t			lastoff = startoff;
1049 	bool			found = false;
1050 
1051 	pagevec_init(&pvec, 0);
1052 
1053 	index = startoff >> PAGE_CACHE_SHIFT;
1054 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1055 	end = endoff >> PAGE_CACHE_SHIFT;
1056 	do {
1057 		int		want;
1058 		unsigned	nr_pages;
1059 		unsigned int	i;
1060 
1061 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1062 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1063 					  want);
1064 		/*
1065 		 * No page mapped into given range.  If we are searching holes
1066 		 * and if this is the first time we got into the loop, it means
1067 		 * that the given offset is landed in a hole, return it.
1068 		 *
1069 		 * If we have already stepped through some block buffers to find
1070 		 * holes but they all contains data.  In this case, the last
1071 		 * offset is already updated and pointed to the end of the last
1072 		 * mapped page, if it does not reach the endpoint to search,
1073 		 * that means there should be a hole between them.
1074 		 */
1075 		if (nr_pages == 0) {
1076 			/* Data search found nothing */
1077 			if (type == DATA_OFF)
1078 				break;
1079 
1080 			ASSERT(type == HOLE_OFF);
1081 			if (lastoff == startoff || lastoff < endoff) {
1082 				found = true;
1083 				*offset = lastoff;
1084 			}
1085 			break;
1086 		}
1087 
1088 		/*
1089 		 * At lease we found one page.  If this is the first time we
1090 		 * step into the loop, and if the first page index offset is
1091 		 * greater than the given search offset, a hole was found.
1092 		 */
1093 		if (type == HOLE_OFF && lastoff == startoff &&
1094 		    lastoff < page_offset(pvec.pages[0])) {
1095 			found = true;
1096 			break;
1097 		}
1098 
1099 		for (i = 0; i < nr_pages; i++) {
1100 			struct page	*page = pvec.pages[i];
1101 			loff_t		b_offset;
1102 
1103 			/*
1104 			 * At this point, the page may be truncated or
1105 			 * invalidated (changing page->mapping to NULL),
1106 			 * or even swizzled back from swapper_space to tmpfs
1107 			 * file mapping. However, page->index will not change
1108 			 * because we have a reference on the page.
1109 			 *
1110 			 * Searching done if the page index is out of range.
1111 			 * If the current offset is not reaches the end of
1112 			 * the specified search range, there should be a hole
1113 			 * between them.
1114 			 */
1115 			if (page->index > end) {
1116 				if (type == HOLE_OFF && lastoff < endoff) {
1117 					*offset = lastoff;
1118 					found = true;
1119 				}
1120 				goto out;
1121 			}
1122 
1123 			lock_page(page);
1124 			/*
1125 			 * Page truncated or invalidated(page->mapping == NULL).
1126 			 * We can freely skip it and proceed to check the next
1127 			 * page.
1128 			 */
1129 			if (unlikely(page->mapping != inode->i_mapping)) {
1130 				unlock_page(page);
1131 				continue;
1132 			}
1133 
1134 			if (!page_has_buffers(page)) {
1135 				unlock_page(page);
1136 				continue;
1137 			}
1138 
1139 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1140 			if (found) {
1141 				/*
1142 				 * The found offset may be less than the start
1143 				 * point to search if this is the first time to
1144 				 * come here.
1145 				 */
1146 				*offset = max_t(loff_t, startoff, b_offset);
1147 				unlock_page(page);
1148 				goto out;
1149 			}
1150 
1151 			/*
1152 			 * We either searching data but nothing was found, or
1153 			 * searching hole but found a data buffer.  In either
1154 			 * case, probably the next page contains the desired
1155 			 * things, update the last offset to it so.
1156 			 */
1157 			lastoff = page_offset(page) + PAGE_SIZE;
1158 			unlock_page(page);
1159 		}
1160 
1161 		/*
1162 		 * The number of returned pages less than our desired, search
1163 		 * done.  In this case, nothing was found for searching data,
1164 		 * but we found a hole behind the last offset.
1165 		 */
1166 		if (nr_pages < want) {
1167 			if (type == HOLE_OFF) {
1168 				*offset = lastoff;
1169 				found = true;
1170 			}
1171 			break;
1172 		}
1173 
1174 		index = pvec.pages[i - 1]->index + 1;
1175 		pagevec_release(&pvec);
1176 	} while (index <= end);
1177 
1178 out:
1179 	pagevec_release(&pvec);
1180 	return found;
1181 }
1182 
1183 STATIC loff_t
1184 xfs_seek_data(
1185 	struct file		*file,
1186 	loff_t			start)
1187 {
1188 	struct inode		*inode = file->f_mapping->host;
1189 	struct xfs_inode	*ip = XFS_I(inode);
1190 	struct xfs_mount	*mp = ip->i_mount;
1191 	loff_t			uninitialized_var(offset);
1192 	xfs_fsize_t		isize;
1193 	xfs_fileoff_t		fsbno;
1194 	xfs_filblks_t		end;
1195 	uint			lock;
1196 	int			error;
1197 
1198 	lock = xfs_ilock_data_map_shared(ip);
1199 
1200 	isize = i_size_read(inode);
1201 	if (start >= isize) {
1202 		error = -ENXIO;
1203 		goto out_unlock;
1204 	}
1205 
1206 	/*
1207 	 * Try to read extents from the first block indicated
1208 	 * by fsbno to the end block of the file.
1209 	 */
1210 	fsbno = XFS_B_TO_FSBT(mp, start);
1211 	end = XFS_B_TO_FSB(mp, isize);
1212 	for (;;) {
1213 		struct xfs_bmbt_irec	map[2];
1214 		int			nmap = 2;
1215 		unsigned int		i;
1216 
1217 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1218 				       XFS_BMAPI_ENTIRE);
1219 		if (error)
1220 			goto out_unlock;
1221 
1222 		/* No extents at given offset, must be beyond EOF */
1223 		if (nmap == 0) {
1224 			error = -ENXIO;
1225 			goto out_unlock;
1226 		}
1227 
1228 		for (i = 0; i < nmap; i++) {
1229 			offset = max_t(loff_t, start,
1230 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1231 
1232 			/* Landed in a data extent */
1233 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1234 			    (map[i].br_state == XFS_EXT_NORM &&
1235 			     !isnullstartblock(map[i].br_startblock)))
1236 				goto out;
1237 
1238 			/*
1239 			 * Landed in an unwritten extent, try to search data
1240 			 * from page cache.
1241 			 */
1242 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1243 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1244 							DATA_OFF, &offset))
1245 					goto out;
1246 			}
1247 		}
1248 
1249 		/*
1250 		 * map[0] is hole or its an unwritten extent but
1251 		 * without data in page cache.  Probably means that
1252 		 * we are reading after EOF if nothing in map[1].
1253 		 */
1254 		if (nmap == 1) {
1255 			error = -ENXIO;
1256 			goto out_unlock;
1257 		}
1258 
1259 		ASSERT(i > 1);
1260 
1261 		/*
1262 		 * Nothing was found, proceed to the next round of search
1263 		 * if reading offset not beyond or hit EOF.
1264 		 */
1265 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1266 		start = XFS_FSB_TO_B(mp, fsbno);
1267 		if (start >= isize) {
1268 			error = -ENXIO;
1269 			goto out_unlock;
1270 		}
1271 	}
1272 
1273 out:
1274 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1275 
1276 out_unlock:
1277 	xfs_iunlock(ip, lock);
1278 
1279 	if (error)
1280 		return error;
1281 	return offset;
1282 }
1283 
1284 STATIC loff_t
1285 xfs_seek_hole(
1286 	struct file		*file,
1287 	loff_t			start)
1288 {
1289 	struct inode		*inode = file->f_mapping->host;
1290 	struct xfs_inode	*ip = XFS_I(inode);
1291 	struct xfs_mount	*mp = ip->i_mount;
1292 	loff_t			uninitialized_var(offset);
1293 	xfs_fsize_t		isize;
1294 	xfs_fileoff_t		fsbno;
1295 	xfs_filblks_t		end;
1296 	uint			lock;
1297 	int			error;
1298 
1299 	if (XFS_FORCED_SHUTDOWN(mp))
1300 		return -EIO;
1301 
1302 	lock = xfs_ilock_data_map_shared(ip);
1303 
1304 	isize = i_size_read(inode);
1305 	if (start >= isize) {
1306 		error = -ENXIO;
1307 		goto out_unlock;
1308 	}
1309 
1310 	fsbno = XFS_B_TO_FSBT(mp, start);
1311 	end = XFS_B_TO_FSB(mp, isize);
1312 
1313 	for (;;) {
1314 		struct xfs_bmbt_irec	map[2];
1315 		int			nmap = 2;
1316 		unsigned int		i;
1317 
1318 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1319 				       XFS_BMAPI_ENTIRE);
1320 		if (error)
1321 			goto out_unlock;
1322 
1323 		/* No extents at given offset, must be beyond EOF */
1324 		if (nmap == 0) {
1325 			error = -ENXIO;
1326 			goto out_unlock;
1327 		}
1328 
1329 		for (i = 0; i < nmap; i++) {
1330 			offset = max_t(loff_t, start,
1331 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1332 
1333 			/* Landed in a hole */
1334 			if (map[i].br_startblock == HOLESTARTBLOCK)
1335 				goto out;
1336 
1337 			/*
1338 			 * Landed in an unwritten extent, try to search hole
1339 			 * from page cache.
1340 			 */
1341 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1342 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1343 							HOLE_OFF, &offset))
1344 					goto out;
1345 			}
1346 		}
1347 
1348 		/*
1349 		 * map[0] contains data or its unwritten but contains
1350 		 * data in page cache, probably means that we are
1351 		 * reading after EOF.  We should fix offset to point
1352 		 * to the end of the file(i.e., there is an implicit
1353 		 * hole at the end of any file).
1354 		 */
1355 		if (nmap == 1) {
1356 			offset = isize;
1357 			break;
1358 		}
1359 
1360 		ASSERT(i > 1);
1361 
1362 		/*
1363 		 * Both mappings contains data, proceed to the next round of
1364 		 * search if the current reading offset not beyond or hit EOF.
1365 		 */
1366 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1367 		start = XFS_FSB_TO_B(mp, fsbno);
1368 		if (start >= isize) {
1369 			offset = isize;
1370 			break;
1371 		}
1372 	}
1373 
1374 out:
1375 	/*
1376 	 * At this point, we must have found a hole.  However, the returned
1377 	 * offset may be bigger than the file size as it may be aligned to
1378 	 * page boundary for unwritten extents, we need to deal with this
1379 	 * situation in particular.
1380 	 */
1381 	offset = min_t(loff_t, offset, isize);
1382 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1383 
1384 out_unlock:
1385 	xfs_iunlock(ip, lock);
1386 
1387 	if (error)
1388 		return error;
1389 	return offset;
1390 }
1391 
1392 STATIC loff_t
1393 xfs_file_llseek(
1394 	struct file	*file,
1395 	loff_t		offset,
1396 	int		origin)
1397 {
1398 	switch (origin) {
1399 	case SEEK_END:
1400 	case SEEK_CUR:
1401 	case SEEK_SET:
1402 		return generic_file_llseek(file, offset, origin);
1403 	case SEEK_DATA:
1404 		return xfs_seek_data(file, offset);
1405 	case SEEK_HOLE:
1406 		return xfs_seek_hole(file, offset);
1407 	default:
1408 		return -EINVAL;
1409 	}
1410 }
1411 
1412 const struct file_operations xfs_file_operations = {
1413 	.llseek		= xfs_file_llseek,
1414 	.read		= new_sync_read,
1415 	.write		= new_sync_write,
1416 	.read_iter	= xfs_file_read_iter,
1417 	.write_iter	= xfs_file_write_iter,
1418 	.splice_read	= xfs_file_splice_read,
1419 	.splice_write	= iter_file_splice_write,
1420 	.unlocked_ioctl	= xfs_file_ioctl,
1421 #ifdef CONFIG_COMPAT
1422 	.compat_ioctl	= xfs_file_compat_ioctl,
1423 #endif
1424 	.mmap		= xfs_file_mmap,
1425 	.open		= xfs_file_open,
1426 	.release	= xfs_file_release,
1427 	.fsync		= xfs_file_fsync,
1428 	.fallocate	= xfs_file_fallocate,
1429 };
1430 
1431 const struct file_operations xfs_dir_file_operations = {
1432 	.open		= xfs_dir_open,
1433 	.read		= generic_read_dir,
1434 	.iterate	= xfs_file_readdir,
1435 	.llseek		= generic_file_llseek,
1436 	.unlocked_ioctl	= xfs_file_ioctl,
1437 #ifdef CONFIG_COMPAT
1438 	.compat_ioctl	= xfs_file_compat_ioctl,
1439 #endif
1440 	.fsync		= xfs_dir_fsync,
1441 };
1442 
1443 static const struct vm_operations_struct xfs_file_vm_ops = {
1444 	.fault		= filemap_fault,
1445 	.map_pages	= filemap_map_pages,
1446 	.page_mkwrite	= xfs_vm_page_mkwrite,
1447 	.remap_pages	= generic_file_remap_pages,
1448 };
1449