xref: /openbmc/linux/fs/xfs/xfs_file.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 
84 	trace_xfs_dir_fsync(ip);
85 	return xfs_log_force_inode(ip);
86 }
87 
88 STATIC int
89 xfs_file_fsync(
90 	struct file		*file,
91 	loff_t			start,
92 	loff_t			end,
93 	int			datasync)
94 {
95 	struct inode		*inode = file->f_mapping->host;
96 	struct xfs_inode	*ip = XFS_I(inode);
97 	struct xfs_inode_log_item *iip = ip->i_itemp;
98 	struct xfs_mount	*mp = ip->i_mount;
99 	int			error = 0;
100 	int			log_flushed = 0;
101 	xfs_lsn_t		lsn = 0;
102 
103 	trace_xfs_file_fsync(ip);
104 
105 	error = file_write_and_wait_range(file, start, end);
106 	if (error)
107 		return error;
108 
109 	if (XFS_FORCED_SHUTDOWN(mp))
110 		return -EIO;
111 
112 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
113 
114 	/*
115 	 * If we have an RT and/or log subvolume we need to make sure to flush
116 	 * the write cache the device used for file data first.  This is to
117 	 * ensure newly written file data make it to disk before logging the new
118 	 * inode size in case of an extending write.
119 	 */
120 	if (XFS_IS_REALTIME_INODE(ip))
121 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
122 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
123 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
124 
125 	/*
126 	 * All metadata updates are logged, which means that we just have to
127 	 * flush the log up to the latest LSN that touched the inode. If we have
128 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
129 	 * log force before we clear the ili_fsync_fields field. This ensures
130 	 * that we don't get a racing sync operation that does not wait for the
131 	 * metadata to hit the journal before returning. If we race with
132 	 * clearing the ili_fsync_fields, then all that will happen is the log
133 	 * force will do nothing as the lsn will already be on disk. We can't
134 	 * race with setting ili_fsync_fields because that is done under
135 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
136 	 * until after the ili_fsync_fields is cleared.
137 	 */
138 	xfs_ilock(ip, XFS_ILOCK_SHARED);
139 	if (xfs_ipincount(ip)) {
140 		if (!datasync ||
141 		    (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
142 			lsn = iip->ili_last_lsn;
143 	}
144 
145 	if (lsn) {
146 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
147 		spin_lock(&iip->ili_lock);
148 		iip->ili_fsync_fields = 0;
149 		spin_unlock(&iip->ili_lock);
150 	}
151 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
152 
153 	/*
154 	 * If we only have a single device, and the log force about was
155 	 * a no-op we might have to flush the data device cache here.
156 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
157 	 * an already allocated file and thus do not have any metadata to
158 	 * commit.
159 	 */
160 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
161 	    mp->m_logdev_targp == mp->m_ddev_targp)
162 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
163 
164 	return error;
165 }
166 
167 STATIC ssize_t
168 xfs_file_dio_aio_read(
169 	struct kiocb		*iocb,
170 	struct iov_iter		*to)
171 {
172 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
173 	size_t			count = iov_iter_count(to);
174 	ssize_t			ret;
175 
176 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
177 
178 	if (!count)
179 		return 0; /* skip atime */
180 
181 	file_accessed(iocb->ki_filp);
182 
183 	if (iocb->ki_flags & IOCB_NOWAIT) {
184 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
185 			return -EAGAIN;
186 	} else {
187 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
188 	}
189 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
190 			is_sync_kiocb(iocb));
191 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
192 
193 	return ret;
194 }
195 
196 static noinline ssize_t
197 xfs_file_dax_read(
198 	struct kiocb		*iocb,
199 	struct iov_iter		*to)
200 {
201 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
202 	size_t			count = iov_iter_count(to);
203 	ssize_t			ret = 0;
204 
205 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
206 
207 	if (!count)
208 		return 0; /* skip atime */
209 
210 	if (iocb->ki_flags & IOCB_NOWAIT) {
211 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
212 			return -EAGAIN;
213 	} else {
214 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
215 	}
216 
217 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
218 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
219 
220 	file_accessed(iocb->ki_filp);
221 	return ret;
222 }
223 
224 STATIC ssize_t
225 xfs_file_buffered_aio_read(
226 	struct kiocb		*iocb,
227 	struct iov_iter		*to)
228 {
229 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
230 	ssize_t			ret;
231 
232 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
233 
234 	if (iocb->ki_flags & IOCB_NOWAIT) {
235 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
236 			return -EAGAIN;
237 	} else {
238 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
239 	}
240 	ret = generic_file_read_iter(iocb, to);
241 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
242 
243 	return ret;
244 }
245 
246 STATIC ssize_t
247 xfs_file_read_iter(
248 	struct kiocb		*iocb,
249 	struct iov_iter		*to)
250 {
251 	struct inode		*inode = file_inode(iocb->ki_filp);
252 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
253 	ssize_t			ret = 0;
254 
255 	XFS_STATS_INC(mp, xs_read_calls);
256 
257 	if (XFS_FORCED_SHUTDOWN(mp))
258 		return -EIO;
259 
260 	if (IS_DAX(inode))
261 		ret = xfs_file_dax_read(iocb, to);
262 	else if (iocb->ki_flags & IOCB_DIRECT)
263 		ret = xfs_file_dio_aio_read(iocb, to);
264 	else
265 		ret = xfs_file_buffered_aio_read(iocb, to);
266 
267 	if (ret > 0)
268 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
269 	return ret;
270 }
271 
272 /*
273  * Common pre-write limit and setup checks.
274  *
275  * Called with the iolocked held either shared and exclusive according to
276  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
277  * if called for a direct write beyond i_size.
278  */
279 STATIC ssize_t
280 xfs_file_aio_write_checks(
281 	struct kiocb		*iocb,
282 	struct iov_iter		*from,
283 	int			*iolock)
284 {
285 	struct file		*file = iocb->ki_filp;
286 	struct inode		*inode = file->f_mapping->host;
287 	struct xfs_inode	*ip = XFS_I(inode);
288 	ssize_t			error = 0;
289 	size_t			count = iov_iter_count(from);
290 	bool			drained_dio = false;
291 	loff_t			isize;
292 
293 restart:
294 	error = generic_write_checks(iocb, from);
295 	if (error <= 0)
296 		return error;
297 
298 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
299 	if (error)
300 		return error;
301 
302 	/*
303 	 * For changing security info in file_remove_privs() we need i_rwsem
304 	 * exclusively.
305 	 */
306 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
307 		xfs_iunlock(ip, *iolock);
308 		*iolock = XFS_IOLOCK_EXCL;
309 		xfs_ilock(ip, *iolock);
310 		goto restart;
311 	}
312 	/*
313 	 * If the offset is beyond the size of the file, we need to zero any
314 	 * blocks that fall between the existing EOF and the start of this
315 	 * write.  If zeroing is needed and we are currently holding the
316 	 * iolock shared, we need to update it to exclusive which implies
317 	 * having to redo all checks before.
318 	 *
319 	 * We need to serialise against EOF updates that occur in IO
320 	 * completions here. We want to make sure that nobody is changing the
321 	 * size while we do this check until we have placed an IO barrier (i.e.
322 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
323 	 * The spinlock effectively forms a memory barrier once we have the
324 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
325 	 * and hence be able to correctly determine if we need to run zeroing.
326 	 */
327 	spin_lock(&ip->i_flags_lock);
328 	isize = i_size_read(inode);
329 	if (iocb->ki_pos > isize) {
330 		spin_unlock(&ip->i_flags_lock);
331 		if (!drained_dio) {
332 			if (*iolock == XFS_IOLOCK_SHARED) {
333 				xfs_iunlock(ip, *iolock);
334 				*iolock = XFS_IOLOCK_EXCL;
335 				xfs_ilock(ip, *iolock);
336 				iov_iter_reexpand(from, count);
337 			}
338 			/*
339 			 * We now have an IO submission barrier in place, but
340 			 * AIO can do EOF updates during IO completion and hence
341 			 * we now need to wait for all of them to drain. Non-AIO
342 			 * DIO will have drained before we are given the
343 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
344 			 * no-op.
345 			 */
346 			inode_dio_wait(inode);
347 			drained_dio = true;
348 			goto restart;
349 		}
350 
351 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
352 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
353 				NULL, &xfs_buffered_write_iomap_ops);
354 		if (error)
355 			return error;
356 	} else
357 		spin_unlock(&ip->i_flags_lock);
358 
359 	/*
360 	 * Updating the timestamps will grab the ilock again from
361 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
362 	 * lock above.  Eventually we should look into a way to avoid
363 	 * the pointless lock roundtrip.
364 	 */
365 	return file_modified(file);
366 }
367 
368 static int
369 xfs_dio_write_end_io(
370 	struct kiocb		*iocb,
371 	ssize_t			size,
372 	int			error,
373 	unsigned		flags)
374 {
375 	struct inode		*inode = file_inode(iocb->ki_filp);
376 	struct xfs_inode	*ip = XFS_I(inode);
377 	loff_t			offset = iocb->ki_pos;
378 	unsigned int		nofs_flag;
379 
380 	trace_xfs_end_io_direct_write(ip, offset, size);
381 
382 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
383 		return -EIO;
384 
385 	if (error)
386 		return error;
387 	if (!size)
388 		return 0;
389 
390 	/*
391 	 * Capture amount written on completion as we can't reliably account
392 	 * for it on submission.
393 	 */
394 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
395 
396 	/*
397 	 * We can allocate memory here while doing writeback on behalf of
398 	 * memory reclaim.  To avoid memory allocation deadlocks set the
399 	 * task-wide nofs context for the following operations.
400 	 */
401 	nofs_flag = memalloc_nofs_save();
402 
403 	if (flags & IOMAP_DIO_COW) {
404 		error = xfs_reflink_end_cow(ip, offset, size);
405 		if (error)
406 			goto out;
407 	}
408 
409 	/*
410 	 * Unwritten conversion updates the in-core isize after extent
411 	 * conversion but before updating the on-disk size. Updating isize any
412 	 * earlier allows a racing dio read to find unwritten extents before
413 	 * they are converted.
414 	 */
415 	if (flags & IOMAP_DIO_UNWRITTEN) {
416 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
417 		goto out;
418 	}
419 
420 	/*
421 	 * We need to update the in-core inode size here so that we don't end up
422 	 * with the on-disk inode size being outside the in-core inode size. We
423 	 * have no other method of updating EOF for AIO, so always do it here
424 	 * if necessary.
425 	 *
426 	 * We need to lock the test/set EOF update as we can be racing with
427 	 * other IO completions here to update the EOF. Failing to serialise
428 	 * here can result in EOF moving backwards and Bad Things Happen when
429 	 * that occurs.
430 	 */
431 	spin_lock(&ip->i_flags_lock);
432 	if (offset + size > i_size_read(inode)) {
433 		i_size_write(inode, offset + size);
434 		spin_unlock(&ip->i_flags_lock);
435 		error = xfs_setfilesize(ip, offset, size);
436 	} else {
437 		spin_unlock(&ip->i_flags_lock);
438 	}
439 
440 out:
441 	memalloc_nofs_restore(nofs_flag);
442 	return error;
443 }
444 
445 static const struct iomap_dio_ops xfs_dio_write_ops = {
446 	.end_io		= xfs_dio_write_end_io,
447 };
448 
449 /*
450  * xfs_file_dio_aio_write - handle direct IO writes
451  *
452  * Lock the inode appropriately to prepare for and issue a direct IO write.
453  * By separating it from the buffered write path we remove all the tricky to
454  * follow locking changes and looping.
455  *
456  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458  * pages are flushed out.
459  *
460  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461  * allowing them to be done in parallel with reads and other direct IO writes.
462  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463  * needs to do sub-block zeroing and that requires serialisation against other
464  * direct IOs to the same block. In this case we need to serialise the
465  * submission of the unaligned IOs so that we don't get racing block zeroing in
466  * the dio layer.  To avoid the problem with aio, we also need to wait for
467  * outstanding IOs to complete so that unwritten extent conversion is completed
468  * before we try to map the overlapping block. This is currently implemented by
469  * hitting it with a big hammer (i.e. inode_dio_wait()).
470  *
471  * Returns with locks held indicated by @iolock and errors indicated by
472  * negative return values.
473  */
474 STATIC ssize_t
475 xfs_file_dio_aio_write(
476 	struct kiocb		*iocb,
477 	struct iov_iter		*from)
478 {
479 	struct file		*file = iocb->ki_filp;
480 	struct address_space	*mapping = file->f_mapping;
481 	struct inode		*inode = mapping->host;
482 	struct xfs_inode	*ip = XFS_I(inode);
483 	struct xfs_mount	*mp = ip->i_mount;
484 	ssize_t			ret = 0;
485 	int			unaligned_io = 0;
486 	int			iolock;
487 	size_t			count = iov_iter_count(from);
488 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
489 
490 	/* DIO must be aligned to device logical sector size */
491 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
492 		return -EINVAL;
493 
494 	/*
495 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
496 	 * the file system block size.  We don't need to consider the EOF
497 	 * extension case here because xfs_file_aio_write_checks() will relock
498 	 * the inode as necessary for EOF zeroing cases and fill out the new
499 	 * inode size as appropriate.
500 	 */
501 	if ((iocb->ki_pos & mp->m_blockmask) ||
502 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
503 		unaligned_io = 1;
504 
505 		/*
506 		 * We can't properly handle unaligned direct I/O to reflink
507 		 * files yet, as we can't unshare a partial block.
508 		 */
509 		if (xfs_is_cow_inode(ip)) {
510 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
511 			return -ENOTBLK;
512 		}
513 		iolock = XFS_IOLOCK_EXCL;
514 	} else {
515 		iolock = XFS_IOLOCK_SHARED;
516 	}
517 
518 	if (iocb->ki_flags & IOCB_NOWAIT) {
519 		/* unaligned dio always waits, bail */
520 		if (unaligned_io)
521 			return -EAGAIN;
522 		if (!xfs_ilock_nowait(ip, iolock))
523 			return -EAGAIN;
524 	} else {
525 		xfs_ilock(ip, iolock);
526 	}
527 
528 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
529 	if (ret)
530 		goto out;
531 	count = iov_iter_count(from);
532 
533 	/*
534 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
535 	 * in-flight at the same time or we risk data corruption. Wait for all
536 	 * other IO to drain before we submit. If the IO is aligned, demote the
537 	 * iolock if we had to take the exclusive lock in
538 	 * xfs_file_aio_write_checks() for other reasons.
539 	 */
540 	if (unaligned_io) {
541 		inode_dio_wait(inode);
542 	} else if (iolock == XFS_IOLOCK_EXCL) {
543 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
544 		iolock = XFS_IOLOCK_SHARED;
545 	}
546 
547 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
548 	/*
549 	 * If unaligned, this is the only IO in-flight. Wait on it before we
550 	 * release the iolock to prevent subsequent overlapping IO.
551 	 */
552 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
553 			   &xfs_dio_write_ops,
554 			   is_sync_kiocb(iocb) || unaligned_io);
555 out:
556 	xfs_iunlock(ip, iolock);
557 
558 	/*
559 	 * No fallback to buffered IO after short writes for XFS, direct I/O
560 	 * will either complete fully or return an error.
561 	 */
562 	ASSERT(ret < 0 || ret == count);
563 	return ret;
564 }
565 
566 static noinline ssize_t
567 xfs_file_dax_write(
568 	struct kiocb		*iocb,
569 	struct iov_iter		*from)
570 {
571 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
572 	struct xfs_inode	*ip = XFS_I(inode);
573 	int			iolock = XFS_IOLOCK_EXCL;
574 	ssize_t			ret, error = 0;
575 	size_t			count;
576 	loff_t			pos;
577 
578 	if (iocb->ki_flags & IOCB_NOWAIT) {
579 		if (!xfs_ilock_nowait(ip, iolock))
580 			return -EAGAIN;
581 	} else {
582 		xfs_ilock(ip, iolock);
583 	}
584 
585 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
586 	if (ret)
587 		goto out;
588 
589 	pos = iocb->ki_pos;
590 	count = iov_iter_count(from);
591 
592 	trace_xfs_file_dax_write(ip, count, pos);
593 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
594 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
595 		i_size_write(inode, iocb->ki_pos);
596 		error = xfs_setfilesize(ip, pos, ret);
597 	}
598 out:
599 	xfs_iunlock(ip, iolock);
600 	if (error)
601 		return error;
602 
603 	if (ret > 0) {
604 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
605 
606 		/* Handle various SYNC-type writes */
607 		ret = generic_write_sync(iocb, ret);
608 	}
609 	return ret;
610 }
611 
612 STATIC ssize_t
613 xfs_file_buffered_aio_write(
614 	struct kiocb		*iocb,
615 	struct iov_iter		*from)
616 {
617 	struct file		*file = iocb->ki_filp;
618 	struct address_space	*mapping = file->f_mapping;
619 	struct inode		*inode = mapping->host;
620 	struct xfs_inode	*ip = XFS_I(inode);
621 	ssize_t			ret;
622 	int			enospc = 0;
623 	int			iolock;
624 
625 	if (iocb->ki_flags & IOCB_NOWAIT)
626 		return -EOPNOTSUPP;
627 
628 write_retry:
629 	iolock = XFS_IOLOCK_EXCL;
630 	xfs_ilock(ip, iolock);
631 
632 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
633 	if (ret)
634 		goto out;
635 
636 	/* We can write back this queue in page reclaim */
637 	current->backing_dev_info = inode_to_bdi(inode);
638 
639 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
640 	ret = iomap_file_buffered_write(iocb, from,
641 			&xfs_buffered_write_iomap_ops);
642 	if (likely(ret >= 0))
643 		iocb->ki_pos += ret;
644 
645 	/*
646 	 * If we hit a space limit, try to free up some lingering preallocated
647 	 * space before returning an error. In the case of ENOSPC, first try to
648 	 * write back all dirty inodes to free up some of the excess reserved
649 	 * metadata space. This reduces the chances that the eofblocks scan
650 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
651 	 * also behaves as a filter to prevent too many eofblocks scans from
652 	 * running at the same time.
653 	 */
654 	if (ret == -EDQUOT && !enospc) {
655 		xfs_iunlock(ip, iolock);
656 		enospc = xfs_inode_free_quota_eofblocks(ip);
657 		if (enospc)
658 			goto write_retry;
659 		enospc = xfs_inode_free_quota_cowblocks(ip);
660 		if (enospc)
661 			goto write_retry;
662 		iolock = 0;
663 	} else if (ret == -ENOSPC && !enospc) {
664 		struct xfs_eofblocks eofb = {0};
665 
666 		enospc = 1;
667 		xfs_flush_inodes(ip->i_mount);
668 
669 		xfs_iunlock(ip, iolock);
670 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
671 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
672 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
673 		goto write_retry;
674 	}
675 
676 	current->backing_dev_info = NULL;
677 out:
678 	if (iolock)
679 		xfs_iunlock(ip, iolock);
680 
681 	if (ret > 0) {
682 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
683 		/* Handle various SYNC-type writes */
684 		ret = generic_write_sync(iocb, ret);
685 	}
686 	return ret;
687 }
688 
689 STATIC ssize_t
690 xfs_file_write_iter(
691 	struct kiocb		*iocb,
692 	struct iov_iter		*from)
693 {
694 	struct file		*file = iocb->ki_filp;
695 	struct address_space	*mapping = file->f_mapping;
696 	struct inode		*inode = mapping->host;
697 	struct xfs_inode	*ip = XFS_I(inode);
698 	ssize_t			ret;
699 	size_t			ocount = iov_iter_count(from);
700 
701 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
702 
703 	if (ocount == 0)
704 		return 0;
705 
706 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
707 		return -EIO;
708 
709 	if (IS_DAX(inode))
710 		return xfs_file_dax_write(iocb, from);
711 
712 	if (iocb->ki_flags & IOCB_DIRECT) {
713 		/*
714 		 * Allow a directio write to fall back to a buffered
715 		 * write *only* in the case that we're doing a reflink
716 		 * CoW.  In all other directio scenarios we do not
717 		 * allow an operation to fall back to buffered mode.
718 		 */
719 		ret = xfs_file_dio_aio_write(iocb, from);
720 		if (ret != -ENOTBLK)
721 			return ret;
722 	}
723 
724 	return xfs_file_buffered_aio_write(iocb, from);
725 }
726 
727 static void
728 xfs_wait_dax_page(
729 	struct inode		*inode)
730 {
731 	struct xfs_inode        *ip = XFS_I(inode);
732 
733 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
734 	schedule();
735 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
736 }
737 
738 static int
739 xfs_break_dax_layouts(
740 	struct inode		*inode,
741 	bool			*retry)
742 {
743 	struct page		*page;
744 
745 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
746 
747 	page = dax_layout_busy_page(inode->i_mapping);
748 	if (!page)
749 		return 0;
750 
751 	*retry = true;
752 	return ___wait_var_event(&page->_refcount,
753 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
754 			0, 0, xfs_wait_dax_page(inode));
755 }
756 
757 int
758 xfs_break_layouts(
759 	struct inode		*inode,
760 	uint			*iolock,
761 	enum layout_break_reason reason)
762 {
763 	bool			retry;
764 	int			error;
765 
766 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
767 
768 	do {
769 		retry = false;
770 		switch (reason) {
771 		case BREAK_UNMAP:
772 			error = xfs_break_dax_layouts(inode, &retry);
773 			if (error || retry)
774 				break;
775 			/* fall through */
776 		case BREAK_WRITE:
777 			error = xfs_break_leased_layouts(inode, iolock, &retry);
778 			break;
779 		default:
780 			WARN_ON_ONCE(1);
781 			error = -EINVAL;
782 		}
783 	} while (error == 0 && retry);
784 
785 	return error;
786 }
787 
788 #define	XFS_FALLOC_FL_SUPPORTED						\
789 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
790 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
791 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
792 
793 STATIC long
794 xfs_file_fallocate(
795 	struct file		*file,
796 	int			mode,
797 	loff_t			offset,
798 	loff_t			len)
799 {
800 	struct inode		*inode = file_inode(file);
801 	struct xfs_inode	*ip = XFS_I(inode);
802 	long			error;
803 	enum xfs_prealloc_flags	flags = 0;
804 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
805 	loff_t			new_size = 0;
806 	bool			do_file_insert = false;
807 
808 	if (!S_ISREG(inode->i_mode))
809 		return -EINVAL;
810 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
811 		return -EOPNOTSUPP;
812 
813 	xfs_ilock(ip, iolock);
814 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
815 	if (error)
816 		goto out_unlock;
817 
818 	/*
819 	 * Must wait for all AIO to complete before we continue as AIO can
820 	 * change the file size on completion without holding any locks we
821 	 * currently hold. We must do this first because AIO can update both
822 	 * the on disk and in memory inode sizes, and the operations that follow
823 	 * require the in-memory size to be fully up-to-date.
824 	 */
825 	inode_dio_wait(inode);
826 
827 	/*
828 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
829 	 * the cached range over the first operation we are about to run.
830 	 *
831 	 * We care about zero and collapse here because they both run a hole
832 	 * punch over the range first. Because that can zero data, and the range
833 	 * of invalidation for the shift operations is much larger, we still do
834 	 * the required flush for collapse in xfs_prepare_shift().
835 	 *
836 	 * Insert has the same range requirements as collapse, and we extend the
837 	 * file first which can zero data. Hence insert has the same
838 	 * flush/invalidate requirements as collapse and so they are both
839 	 * handled at the right time by xfs_prepare_shift().
840 	 */
841 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
842 		    FALLOC_FL_COLLAPSE_RANGE)) {
843 		error = xfs_flush_unmap_range(ip, offset, len);
844 		if (error)
845 			goto out_unlock;
846 	}
847 
848 	if (mode & FALLOC_FL_PUNCH_HOLE) {
849 		error = xfs_free_file_space(ip, offset, len);
850 		if (error)
851 			goto out_unlock;
852 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
853 		unsigned int blksize_mask = i_blocksize(inode) - 1;
854 
855 		if (offset & blksize_mask || len & blksize_mask) {
856 			error = -EINVAL;
857 			goto out_unlock;
858 		}
859 
860 		/*
861 		 * There is no need to overlap collapse range with EOF,
862 		 * in which case it is effectively a truncate operation
863 		 */
864 		if (offset + len >= i_size_read(inode)) {
865 			error = -EINVAL;
866 			goto out_unlock;
867 		}
868 
869 		new_size = i_size_read(inode) - len;
870 
871 		error = xfs_collapse_file_space(ip, offset, len);
872 		if (error)
873 			goto out_unlock;
874 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
875 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
876 		loff_t		isize = i_size_read(inode);
877 
878 		if (offset & blksize_mask || len & blksize_mask) {
879 			error = -EINVAL;
880 			goto out_unlock;
881 		}
882 
883 		/*
884 		 * New inode size must not exceed ->s_maxbytes, accounting for
885 		 * possible signed overflow.
886 		 */
887 		if (inode->i_sb->s_maxbytes - isize < len) {
888 			error = -EFBIG;
889 			goto out_unlock;
890 		}
891 		new_size = isize + len;
892 
893 		/* Offset should be less than i_size */
894 		if (offset >= isize) {
895 			error = -EINVAL;
896 			goto out_unlock;
897 		}
898 		do_file_insert = true;
899 	} else {
900 		flags |= XFS_PREALLOC_SET;
901 
902 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
903 		    offset + len > i_size_read(inode)) {
904 			new_size = offset + len;
905 			error = inode_newsize_ok(inode, new_size);
906 			if (error)
907 				goto out_unlock;
908 		}
909 
910 		if (mode & FALLOC_FL_ZERO_RANGE) {
911 			/*
912 			 * Punch a hole and prealloc the range.  We use a hole
913 			 * punch rather than unwritten extent conversion for two
914 			 * reasons:
915 			 *
916 			 *   1.) Hole punch handles partial block zeroing for us.
917 			 *   2.) If prealloc returns ENOSPC, the file range is
918 			 *       still zero-valued by virtue of the hole punch.
919 			 */
920 			unsigned int blksize = i_blocksize(inode);
921 
922 			trace_xfs_zero_file_space(ip);
923 
924 			error = xfs_free_file_space(ip, offset, len);
925 			if (error)
926 				goto out_unlock;
927 
928 			len = round_up(offset + len, blksize) -
929 			      round_down(offset, blksize);
930 			offset = round_down(offset, blksize);
931 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
932 			error = xfs_reflink_unshare(ip, offset, len);
933 			if (error)
934 				goto out_unlock;
935 		} else {
936 			/*
937 			 * If always_cow mode we can't use preallocations and
938 			 * thus should not create them.
939 			 */
940 			if (xfs_is_always_cow_inode(ip)) {
941 				error = -EOPNOTSUPP;
942 				goto out_unlock;
943 			}
944 		}
945 
946 		if (!xfs_is_always_cow_inode(ip)) {
947 			error = xfs_alloc_file_space(ip, offset, len,
948 						     XFS_BMAPI_PREALLOC);
949 			if (error)
950 				goto out_unlock;
951 		}
952 	}
953 
954 	if (file->f_flags & O_DSYNC)
955 		flags |= XFS_PREALLOC_SYNC;
956 
957 	error = xfs_update_prealloc_flags(ip, flags);
958 	if (error)
959 		goto out_unlock;
960 
961 	/* Change file size if needed */
962 	if (new_size) {
963 		struct iattr iattr;
964 
965 		iattr.ia_valid = ATTR_SIZE;
966 		iattr.ia_size = new_size;
967 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
968 		if (error)
969 			goto out_unlock;
970 	}
971 
972 	/*
973 	 * Perform hole insertion now that the file size has been
974 	 * updated so that if we crash during the operation we don't
975 	 * leave shifted extents past EOF and hence losing access to
976 	 * the data that is contained within them.
977 	 */
978 	if (do_file_insert)
979 		error = xfs_insert_file_space(ip, offset, len);
980 
981 out_unlock:
982 	xfs_iunlock(ip, iolock);
983 	return error;
984 }
985 
986 STATIC int
987 xfs_file_fadvise(
988 	struct file	*file,
989 	loff_t		start,
990 	loff_t		end,
991 	int		advice)
992 {
993 	struct xfs_inode *ip = XFS_I(file_inode(file));
994 	int ret;
995 	int lockflags = 0;
996 
997 	/*
998 	 * Operations creating pages in page cache need protection from hole
999 	 * punching and similar ops
1000 	 */
1001 	if (advice == POSIX_FADV_WILLNEED) {
1002 		lockflags = XFS_IOLOCK_SHARED;
1003 		xfs_ilock(ip, lockflags);
1004 	}
1005 	ret = generic_fadvise(file, start, end, advice);
1006 	if (lockflags)
1007 		xfs_iunlock(ip, lockflags);
1008 	return ret;
1009 }
1010 
1011 STATIC loff_t
1012 xfs_file_remap_range(
1013 	struct file		*file_in,
1014 	loff_t			pos_in,
1015 	struct file		*file_out,
1016 	loff_t			pos_out,
1017 	loff_t			len,
1018 	unsigned int		remap_flags)
1019 {
1020 	struct inode		*inode_in = file_inode(file_in);
1021 	struct xfs_inode	*src = XFS_I(inode_in);
1022 	struct inode		*inode_out = file_inode(file_out);
1023 	struct xfs_inode	*dest = XFS_I(inode_out);
1024 	struct xfs_mount	*mp = src->i_mount;
1025 	loff_t			remapped = 0;
1026 	xfs_extlen_t		cowextsize;
1027 	int			ret;
1028 
1029 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1030 		return -EINVAL;
1031 
1032 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1033 		return -EOPNOTSUPP;
1034 
1035 	if (XFS_FORCED_SHUTDOWN(mp))
1036 		return -EIO;
1037 
1038 	/* Prepare and then clone file data. */
1039 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1040 			&len, remap_flags);
1041 	if (ret || len == 0)
1042 		return ret;
1043 
1044 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1045 
1046 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1047 			&remapped);
1048 	if (ret)
1049 		goto out_unlock;
1050 
1051 	/*
1052 	 * Carry the cowextsize hint from src to dest if we're sharing the
1053 	 * entire source file to the entire destination file, the source file
1054 	 * has a cowextsize hint, and the destination file does not.
1055 	 */
1056 	cowextsize = 0;
1057 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1058 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1059 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1060 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1061 		cowextsize = src->i_d.di_cowextsize;
1062 
1063 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1064 			remap_flags);
1065 	if (ret)
1066 		goto out_unlock;
1067 
1068 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1069 		xfs_log_force_inode(dest);
1070 out_unlock:
1071 	xfs_iunlock2_io_mmap(src, dest);
1072 	if (ret)
1073 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1074 	return remapped > 0 ? remapped : ret;
1075 }
1076 
1077 STATIC int
1078 xfs_file_open(
1079 	struct inode	*inode,
1080 	struct file	*file)
1081 {
1082 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1083 		return -EFBIG;
1084 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1085 		return -EIO;
1086 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1087 	return 0;
1088 }
1089 
1090 STATIC int
1091 xfs_dir_open(
1092 	struct inode	*inode,
1093 	struct file	*file)
1094 {
1095 	struct xfs_inode *ip = XFS_I(inode);
1096 	int		mode;
1097 	int		error;
1098 
1099 	error = xfs_file_open(inode, file);
1100 	if (error)
1101 		return error;
1102 
1103 	/*
1104 	 * If there are any blocks, read-ahead block 0 as we're almost
1105 	 * certain to have the next operation be a read there.
1106 	 */
1107 	mode = xfs_ilock_data_map_shared(ip);
1108 	if (ip->i_df.if_nextents > 0)
1109 		error = xfs_dir3_data_readahead(ip, 0, 0);
1110 	xfs_iunlock(ip, mode);
1111 	return error;
1112 }
1113 
1114 STATIC int
1115 xfs_file_release(
1116 	struct inode	*inode,
1117 	struct file	*filp)
1118 {
1119 	return xfs_release(XFS_I(inode));
1120 }
1121 
1122 STATIC int
1123 xfs_file_readdir(
1124 	struct file	*file,
1125 	struct dir_context *ctx)
1126 {
1127 	struct inode	*inode = file_inode(file);
1128 	xfs_inode_t	*ip = XFS_I(inode);
1129 	size_t		bufsize;
1130 
1131 	/*
1132 	 * The Linux API doesn't pass down the total size of the buffer
1133 	 * we read into down to the filesystem.  With the filldir concept
1134 	 * it's not needed for correct information, but the XFS dir2 leaf
1135 	 * code wants an estimate of the buffer size to calculate it's
1136 	 * readahead window and size the buffers used for mapping to
1137 	 * physical blocks.
1138 	 *
1139 	 * Try to give it an estimate that's good enough, maybe at some
1140 	 * point we can change the ->readdir prototype to include the
1141 	 * buffer size.  For now we use the current glibc buffer size.
1142 	 */
1143 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1144 
1145 	return xfs_readdir(NULL, ip, ctx, bufsize);
1146 }
1147 
1148 STATIC loff_t
1149 xfs_file_llseek(
1150 	struct file	*file,
1151 	loff_t		offset,
1152 	int		whence)
1153 {
1154 	struct inode		*inode = file->f_mapping->host;
1155 
1156 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1157 		return -EIO;
1158 
1159 	switch (whence) {
1160 	default:
1161 		return generic_file_llseek(file, offset, whence);
1162 	case SEEK_HOLE:
1163 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1164 		break;
1165 	case SEEK_DATA:
1166 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1167 		break;
1168 	}
1169 
1170 	if (offset < 0)
1171 		return offset;
1172 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1173 }
1174 
1175 /*
1176  * Locking for serialisation of IO during page faults. This results in a lock
1177  * ordering of:
1178  *
1179  * mmap_lock (MM)
1180  *   sb_start_pagefault(vfs, freeze)
1181  *     i_mmaplock (XFS - truncate serialisation)
1182  *       page_lock (MM)
1183  *         i_lock (XFS - extent map serialisation)
1184  */
1185 static vm_fault_t
1186 __xfs_filemap_fault(
1187 	struct vm_fault		*vmf,
1188 	enum page_entry_size	pe_size,
1189 	bool			write_fault)
1190 {
1191 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1192 	struct xfs_inode	*ip = XFS_I(inode);
1193 	vm_fault_t		ret;
1194 
1195 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1196 
1197 	if (write_fault) {
1198 		sb_start_pagefault(inode->i_sb);
1199 		file_update_time(vmf->vma->vm_file);
1200 	}
1201 
1202 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1203 	if (IS_DAX(inode)) {
1204 		pfn_t pfn;
1205 
1206 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1207 				(write_fault && !vmf->cow_page) ?
1208 				 &xfs_direct_write_iomap_ops :
1209 				 &xfs_read_iomap_ops);
1210 		if (ret & VM_FAULT_NEEDDSYNC)
1211 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1212 	} else {
1213 		if (write_fault)
1214 			ret = iomap_page_mkwrite(vmf,
1215 					&xfs_buffered_write_iomap_ops);
1216 		else
1217 			ret = filemap_fault(vmf);
1218 	}
1219 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1220 
1221 	if (write_fault)
1222 		sb_end_pagefault(inode->i_sb);
1223 	return ret;
1224 }
1225 
1226 static inline bool
1227 xfs_is_write_fault(
1228 	struct vm_fault		*vmf)
1229 {
1230 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1231 	       (vmf->vma->vm_flags & VM_SHARED);
1232 }
1233 
1234 static vm_fault_t
1235 xfs_filemap_fault(
1236 	struct vm_fault		*vmf)
1237 {
1238 	/* DAX can shortcut the normal fault path on write faults! */
1239 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1240 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1241 			xfs_is_write_fault(vmf));
1242 }
1243 
1244 static vm_fault_t
1245 xfs_filemap_huge_fault(
1246 	struct vm_fault		*vmf,
1247 	enum page_entry_size	pe_size)
1248 {
1249 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1250 		return VM_FAULT_FALLBACK;
1251 
1252 	/* DAX can shortcut the normal fault path on write faults! */
1253 	return __xfs_filemap_fault(vmf, pe_size,
1254 			xfs_is_write_fault(vmf));
1255 }
1256 
1257 static vm_fault_t
1258 xfs_filemap_page_mkwrite(
1259 	struct vm_fault		*vmf)
1260 {
1261 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1262 }
1263 
1264 /*
1265  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1266  * on write faults. In reality, it needs to serialise against truncate and
1267  * prepare memory for writing so handle is as standard write fault.
1268  */
1269 static vm_fault_t
1270 xfs_filemap_pfn_mkwrite(
1271 	struct vm_fault		*vmf)
1272 {
1273 
1274 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1275 }
1276 
1277 static void
1278 xfs_filemap_map_pages(
1279 	struct vm_fault		*vmf,
1280 	pgoff_t			start_pgoff,
1281 	pgoff_t			end_pgoff)
1282 {
1283 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1284 
1285 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1286 	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1287 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1288 }
1289 
1290 static const struct vm_operations_struct xfs_file_vm_ops = {
1291 	.fault		= xfs_filemap_fault,
1292 	.huge_fault	= xfs_filemap_huge_fault,
1293 	.map_pages	= xfs_filemap_map_pages,
1294 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1295 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1296 };
1297 
1298 STATIC int
1299 xfs_file_mmap(
1300 	struct file		*file,
1301 	struct vm_area_struct	*vma)
1302 {
1303 	struct inode		*inode = file_inode(file);
1304 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1305 
1306 	/*
1307 	 * We don't support synchronous mappings for non-DAX files and
1308 	 * for DAX files if underneath dax_device is not synchronous.
1309 	 */
1310 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1311 		return -EOPNOTSUPP;
1312 
1313 	file_accessed(file);
1314 	vma->vm_ops = &xfs_file_vm_ops;
1315 	if (IS_DAX(inode))
1316 		vma->vm_flags |= VM_HUGEPAGE;
1317 	return 0;
1318 }
1319 
1320 const struct file_operations xfs_file_operations = {
1321 	.llseek		= xfs_file_llseek,
1322 	.read_iter	= xfs_file_read_iter,
1323 	.write_iter	= xfs_file_write_iter,
1324 	.splice_read	= generic_file_splice_read,
1325 	.splice_write	= iter_file_splice_write,
1326 	.iopoll		= iomap_dio_iopoll,
1327 	.unlocked_ioctl	= xfs_file_ioctl,
1328 #ifdef CONFIG_COMPAT
1329 	.compat_ioctl	= xfs_file_compat_ioctl,
1330 #endif
1331 	.mmap		= xfs_file_mmap,
1332 	.mmap_supported_flags = MAP_SYNC,
1333 	.open		= xfs_file_open,
1334 	.release	= xfs_file_release,
1335 	.fsync		= xfs_file_fsync,
1336 	.get_unmapped_area = thp_get_unmapped_area,
1337 	.fallocate	= xfs_file_fallocate,
1338 	.fadvise	= xfs_file_fadvise,
1339 	.remap_file_range = xfs_file_remap_range,
1340 };
1341 
1342 const struct file_operations xfs_dir_file_operations = {
1343 	.open		= xfs_dir_open,
1344 	.read		= generic_read_dir,
1345 	.iterate_shared	= xfs_file_readdir,
1346 	.llseek		= generic_file_llseek,
1347 	.unlocked_ioctl	= xfs_file_ioctl,
1348 #ifdef CONFIG_COMPAT
1349 	.compat_ioctl	= xfs_file_compat_ioctl,
1350 #endif
1351 	.fsync		= xfs_dir_fsync,
1352 };
1353