xref: /openbmc/linux/fs/xfs/xfs_file.c (revision f7d84fa7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Clear the specified ranges to zero through either the pagecache or DAX.
52  * Holes and unwritten extents will be left as-is as they already are zeroed.
53  */
54 int
55 xfs_zero_range(
56 	struct xfs_inode	*ip,
57 	xfs_off_t		pos,
58 	xfs_off_t		count,
59 	bool			*did_zero)
60 {
61 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62 }
63 
64 int
65 xfs_update_prealloc_flags(
66 	struct xfs_inode	*ip,
67 	enum xfs_prealloc_flags	flags)
68 {
69 	struct xfs_trans	*tp;
70 	int			error;
71 
72 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 			0, 0, 0, &tp);
74 	if (error)
75 		return error;
76 
77 	xfs_ilock(ip, XFS_ILOCK_EXCL);
78 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79 
80 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 		VFS_I(ip)->i_mode &= ~S_ISUID;
82 		if (VFS_I(ip)->i_mode & S_IXGRP)
83 			VFS_I(ip)->i_mode &= ~S_ISGID;
84 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 	}
86 
87 	if (flags & XFS_PREALLOC_SET)
88 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 	if (flags & XFS_PREALLOC_CLEAR)
90 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91 
92 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 	if (flags & XFS_PREALLOC_SYNC)
94 		xfs_trans_set_sync(tp);
95 	return xfs_trans_commit(tp);
96 }
97 
98 /*
99  * Fsync operations on directories are much simpler than on regular files,
100  * as there is no file data to flush, and thus also no need for explicit
101  * cache flush operations, and there are no non-transaction metadata updates
102  * on directories either.
103  */
104 STATIC int
105 xfs_dir_fsync(
106 	struct file		*file,
107 	loff_t			start,
108 	loff_t			end,
109 	int			datasync)
110 {
111 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
112 	struct xfs_mount	*mp = ip->i_mount;
113 	xfs_lsn_t		lsn = 0;
114 
115 	trace_xfs_dir_fsync(ip);
116 
117 	xfs_ilock(ip, XFS_ILOCK_SHARED);
118 	if (xfs_ipincount(ip))
119 		lsn = ip->i_itemp->ili_last_lsn;
120 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
121 
122 	if (!lsn)
123 		return 0;
124 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126 
127 STATIC int
128 xfs_file_fsync(
129 	struct file		*file,
130 	loff_t			start,
131 	loff_t			end,
132 	int			datasync)
133 {
134 	struct inode		*inode = file->f_mapping->host;
135 	struct xfs_inode	*ip = XFS_I(inode);
136 	struct xfs_mount	*mp = ip->i_mount;
137 	int			error = 0;
138 	int			log_flushed = 0;
139 	xfs_lsn_t		lsn = 0;
140 
141 	trace_xfs_file_fsync(ip);
142 
143 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 	if (error)
145 		return error;
146 
147 	if (XFS_FORCED_SHUTDOWN(mp))
148 		return -EIO;
149 
150 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
151 
152 	/*
153 	 * If we have an RT and/or log subvolume we need to make sure to flush
154 	 * the write cache the device used for file data first.  This is to
155 	 * ensure newly written file data make it to disk before logging the new
156 	 * inode size in case of an extending write.
157 	 */
158 	if (XFS_IS_REALTIME_INODE(ip))
159 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
162 
163 	/*
164 	 * All metadata updates are logged, which means that we just have to
165 	 * flush the log up to the latest LSN that touched the inode. If we have
166 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 	 * log force before we clear the ili_fsync_fields field. This ensures
168 	 * that we don't get a racing sync operation that does not wait for the
169 	 * metadata to hit the journal before returning. If we race with
170 	 * clearing the ili_fsync_fields, then all that will happen is the log
171 	 * force will do nothing as the lsn will already be on disk. We can't
172 	 * race with setting ili_fsync_fields because that is done under
173 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 	 * until after the ili_fsync_fields is cleared.
175 	 */
176 	xfs_ilock(ip, XFS_ILOCK_SHARED);
177 	if (xfs_ipincount(ip)) {
178 		if (!datasync ||
179 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 			lsn = ip->i_itemp->ili_last_lsn;
181 	}
182 
183 	if (lsn) {
184 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 		ip->i_itemp->ili_fsync_fields = 0;
186 	}
187 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
188 
189 	/*
190 	 * If we only have a single device, and the log force about was
191 	 * a no-op we might have to flush the data device cache here.
192 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 	 * an already allocated file and thus do not have any metadata to
194 	 * commit.
195 	 */
196 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 	    mp->m_logdev_targp == mp->m_ddev_targp)
198 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 
200 	return error;
201 }
202 
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 	struct kiocb		*iocb,
206 	struct iov_iter		*to)
207 {
208 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
209 	size_t			count = iov_iter_count(to);
210 	ssize_t			ret;
211 
212 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213 
214 	if (!count)
215 		return 0; /* skip atime */
216 
217 	file_accessed(iocb->ki_filp);
218 
219 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222 
223 	return ret;
224 }
225 
226 static noinline ssize_t
227 xfs_file_dax_read(
228 	struct kiocb		*iocb,
229 	struct iov_iter		*to)
230 {
231 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 	size_t			count = iov_iter_count(to);
233 	ssize_t			ret = 0;
234 
235 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236 
237 	if (!count)
238 		return 0; /* skip atime */
239 
240 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
241 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
242 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243 
244 	file_accessed(iocb->ki_filp);
245 	return ret;
246 }
247 
248 STATIC ssize_t
249 xfs_file_buffered_aio_read(
250 	struct kiocb		*iocb,
251 	struct iov_iter		*to)
252 {
253 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
254 	ssize_t			ret;
255 
256 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
257 
258 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
259 	ret = generic_file_read_iter(iocb, to);
260 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
261 
262 	return ret;
263 }
264 
265 STATIC ssize_t
266 xfs_file_read_iter(
267 	struct kiocb		*iocb,
268 	struct iov_iter		*to)
269 {
270 	struct inode		*inode = file_inode(iocb->ki_filp);
271 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
272 	ssize_t			ret = 0;
273 
274 	XFS_STATS_INC(mp, xs_read_calls);
275 
276 	if (XFS_FORCED_SHUTDOWN(mp))
277 		return -EIO;
278 
279 	if (IS_DAX(inode))
280 		ret = xfs_file_dax_read(iocb, to);
281 	else if (iocb->ki_flags & IOCB_DIRECT)
282 		ret = xfs_file_dio_aio_read(iocb, to);
283 	else
284 		ret = xfs_file_buffered_aio_read(iocb, to);
285 
286 	if (ret > 0)
287 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
288 	return ret;
289 }
290 
291 /*
292  * Zero any on disk space between the current EOF and the new, larger EOF.
293  *
294  * This handles the normal case of zeroing the remainder of the last block in
295  * the file and the unusual case of zeroing blocks out beyond the size of the
296  * file.  This second case only happens with fixed size extents and when the
297  * system crashes before the inode size was updated but after blocks were
298  * allocated.
299  *
300  * Expects the iolock to be held exclusive, and will take the ilock internally.
301  */
302 int					/* error (positive) */
303 xfs_zero_eof(
304 	struct xfs_inode	*ip,
305 	xfs_off_t		offset,		/* starting I/O offset */
306 	xfs_fsize_t		isize,		/* current inode size */
307 	bool			*did_zeroing)
308 {
309 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
310 	ASSERT(offset > isize);
311 
312 	trace_xfs_zero_eof(ip, isize, offset - isize);
313 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
314 }
315 
316 /*
317  * Common pre-write limit and setup checks.
318  *
319  * Called with the iolocked held either shared and exclusive according to
320  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
321  * if called for a direct write beyond i_size.
322  */
323 STATIC ssize_t
324 xfs_file_aio_write_checks(
325 	struct kiocb		*iocb,
326 	struct iov_iter		*from,
327 	int			*iolock)
328 {
329 	struct file		*file = iocb->ki_filp;
330 	struct inode		*inode = file->f_mapping->host;
331 	struct xfs_inode	*ip = XFS_I(inode);
332 	ssize_t			error = 0;
333 	size_t			count = iov_iter_count(from);
334 	bool			drained_dio = false;
335 
336 restart:
337 	error = generic_write_checks(iocb, from);
338 	if (error <= 0)
339 		return error;
340 
341 	error = xfs_break_layouts(inode, iolock);
342 	if (error)
343 		return error;
344 
345 	/*
346 	 * For changing security info in file_remove_privs() we need i_rwsem
347 	 * exclusively.
348 	 */
349 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
350 		xfs_iunlock(ip, *iolock);
351 		*iolock = XFS_IOLOCK_EXCL;
352 		xfs_ilock(ip, *iolock);
353 		goto restart;
354 	}
355 	/*
356 	 * If the offset is beyond the size of the file, we need to zero any
357 	 * blocks that fall between the existing EOF and the start of this
358 	 * write.  If zeroing is needed and we are currently holding the
359 	 * iolock shared, we need to update it to exclusive which implies
360 	 * having to redo all checks before.
361 	 *
362 	 * We need to serialise against EOF updates that occur in IO
363 	 * completions here. We want to make sure that nobody is changing the
364 	 * size while we do this check until we have placed an IO barrier (i.e.
365 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
366 	 * The spinlock effectively forms a memory barrier once we have the
367 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
368 	 * and hence be able to correctly determine if we need to run zeroing.
369 	 */
370 	spin_lock(&ip->i_flags_lock);
371 	if (iocb->ki_pos > i_size_read(inode)) {
372 		bool	zero = false;
373 
374 		spin_unlock(&ip->i_flags_lock);
375 		if (!drained_dio) {
376 			if (*iolock == XFS_IOLOCK_SHARED) {
377 				xfs_iunlock(ip, *iolock);
378 				*iolock = XFS_IOLOCK_EXCL;
379 				xfs_ilock(ip, *iolock);
380 				iov_iter_reexpand(from, count);
381 			}
382 			/*
383 			 * We now have an IO submission barrier in place, but
384 			 * AIO can do EOF updates during IO completion and hence
385 			 * we now need to wait for all of them to drain. Non-AIO
386 			 * DIO will have drained before we are given the
387 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
388 			 * no-op.
389 			 */
390 			inode_dio_wait(inode);
391 			drained_dio = true;
392 			goto restart;
393 		}
394 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
395 		if (error)
396 			return error;
397 	} else
398 		spin_unlock(&ip->i_flags_lock);
399 
400 	/*
401 	 * Updating the timestamps will grab the ilock again from
402 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
403 	 * lock above.  Eventually we should look into a way to avoid
404 	 * the pointless lock roundtrip.
405 	 */
406 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
407 		error = file_update_time(file);
408 		if (error)
409 			return error;
410 	}
411 
412 	/*
413 	 * If we're writing the file then make sure to clear the setuid and
414 	 * setgid bits if the process is not being run by root.  This keeps
415 	 * people from modifying setuid and setgid binaries.
416 	 */
417 	if (!IS_NOSEC(inode))
418 		return file_remove_privs(file);
419 	return 0;
420 }
421 
422 static int
423 xfs_dio_write_end_io(
424 	struct kiocb		*iocb,
425 	ssize_t			size,
426 	unsigned		flags)
427 {
428 	struct inode		*inode = file_inode(iocb->ki_filp);
429 	struct xfs_inode	*ip = XFS_I(inode);
430 	loff_t			offset = iocb->ki_pos;
431 	bool			update_size = false;
432 	int			error = 0;
433 
434 	trace_xfs_end_io_direct_write(ip, offset, size);
435 
436 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
437 		return -EIO;
438 
439 	if (size <= 0)
440 		return size;
441 
442 	/*
443 	 * We need to update the in-core inode size here so that we don't end up
444 	 * with the on-disk inode size being outside the in-core inode size. We
445 	 * have no other method of updating EOF for AIO, so always do it here
446 	 * if necessary.
447 	 *
448 	 * We need to lock the test/set EOF update as we can be racing with
449 	 * other IO completions here to update the EOF. Failing to serialise
450 	 * here can result in EOF moving backwards and Bad Things Happen when
451 	 * that occurs.
452 	 */
453 	spin_lock(&ip->i_flags_lock);
454 	if (offset + size > i_size_read(inode)) {
455 		i_size_write(inode, offset + size);
456 		update_size = true;
457 	}
458 	spin_unlock(&ip->i_flags_lock);
459 
460 	if (flags & IOMAP_DIO_COW) {
461 		error = xfs_reflink_end_cow(ip, offset, size);
462 		if (error)
463 			return error;
464 	}
465 
466 	if (flags & IOMAP_DIO_UNWRITTEN)
467 		error = xfs_iomap_write_unwritten(ip, offset, size);
468 	else if (update_size)
469 		error = xfs_setfilesize(ip, offset, size);
470 
471 	return error;
472 }
473 
474 /*
475  * xfs_file_dio_aio_write - handle direct IO writes
476  *
477  * Lock the inode appropriately to prepare for and issue a direct IO write.
478  * By separating it from the buffered write path we remove all the tricky to
479  * follow locking changes and looping.
480  *
481  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
482  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
483  * pages are flushed out.
484  *
485  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
486  * allowing them to be done in parallel with reads and other direct IO writes.
487  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
488  * needs to do sub-block zeroing and that requires serialisation against other
489  * direct IOs to the same block. In this case we need to serialise the
490  * submission of the unaligned IOs so that we don't get racing block zeroing in
491  * the dio layer.  To avoid the problem with aio, we also need to wait for
492  * outstanding IOs to complete so that unwritten extent conversion is completed
493  * before we try to map the overlapping block. This is currently implemented by
494  * hitting it with a big hammer (i.e. inode_dio_wait()).
495  *
496  * Returns with locks held indicated by @iolock and errors indicated by
497  * negative return values.
498  */
499 STATIC ssize_t
500 xfs_file_dio_aio_write(
501 	struct kiocb		*iocb,
502 	struct iov_iter		*from)
503 {
504 	struct file		*file = iocb->ki_filp;
505 	struct address_space	*mapping = file->f_mapping;
506 	struct inode		*inode = mapping->host;
507 	struct xfs_inode	*ip = XFS_I(inode);
508 	struct xfs_mount	*mp = ip->i_mount;
509 	ssize_t			ret = 0;
510 	int			unaligned_io = 0;
511 	int			iolock;
512 	size_t			count = iov_iter_count(from);
513 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
514 					mp->m_rtdev_targp : mp->m_ddev_targp;
515 
516 	/* DIO must be aligned to device logical sector size */
517 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
518 		return -EINVAL;
519 
520 	/*
521 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
522 	 * the file system block size.  We don't need to consider the EOF
523 	 * extension case here because xfs_file_aio_write_checks() will relock
524 	 * the inode as necessary for EOF zeroing cases and fill out the new
525 	 * inode size as appropriate.
526 	 */
527 	if ((iocb->ki_pos & mp->m_blockmask) ||
528 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
529 		unaligned_io = 1;
530 
531 		/*
532 		 * We can't properly handle unaligned direct I/O to reflink
533 		 * files yet, as we can't unshare a partial block.
534 		 */
535 		if (xfs_is_reflink_inode(ip)) {
536 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
537 			return -EREMCHG;
538 		}
539 		iolock = XFS_IOLOCK_EXCL;
540 	} else {
541 		iolock = XFS_IOLOCK_SHARED;
542 	}
543 
544 	xfs_ilock(ip, iolock);
545 
546 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
547 	if (ret)
548 		goto out;
549 	count = iov_iter_count(from);
550 
551 	/*
552 	 * If we are doing unaligned IO, wait for all other IO to drain,
553 	 * otherwise demote the lock if we had to take the exclusive lock
554 	 * for other reasons in xfs_file_aio_write_checks.
555 	 */
556 	if (unaligned_io)
557 		inode_dio_wait(inode);
558 	else if (iolock == XFS_IOLOCK_EXCL) {
559 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
560 		iolock = XFS_IOLOCK_SHARED;
561 	}
562 
563 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
564 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
565 out:
566 	xfs_iunlock(ip, iolock);
567 
568 	/*
569 	 * No fallback to buffered IO on errors for XFS, direct IO will either
570 	 * complete fully or fail.
571 	 */
572 	ASSERT(ret < 0 || ret == count);
573 	return ret;
574 }
575 
576 static noinline ssize_t
577 xfs_file_dax_write(
578 	struct kiocb		*iocb,
579 	struct iov_iter		*from)
580 {
581 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
582 	struct xfs_inode	*ip = XFS_I(inode);
583 	int			iolock = XFS_IOLOCK_EXCL;
584 	ssize_t			ret, error = 0;
585 	size_t			count;
586 	loff_t			pos;
587 
588 	xfs_ilock(ip, iolock);
589 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
590 	if (ret)
591 		goto out;
592 
593 	pos = iocb->ki_pos;
594 	count = iov_iter_count(from);
595 
596 	trace_xfs_file_dax_write(ip, count, pos);
597 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
598 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
599 		i_size_write(inode, iocb->ki_pos);
600 		error = xfs_setfilesize(ip, pos, ret);
601 	}
602 out:
603 	xfs_iunlock(ip, iolock);
604 	return error ? error : ret;
605 }
606 
607 STATIC ssize_t
608 xfs_file_buffered_aio_write(
609 	struct kiocb		*iocb,
610 	struct iov_iter		*from)
611 {
612 	struct file		*file = iocb->ki_filp;
613 	struct address_space	*mapping = file->f_mapping;
614 	struct inode		*inode = mapping->host;
615 	struct xfs_inode	*ip = XFS_I(inode);
616 	ssize_t			ret;
617 	int			enospc = 0;
618 	int			iolock;
619 
620 write_retry:
621 	iolock = XFS_IOLOCK_EXCL;
622 	xfs_ilock(ip, iolock);
623 
624 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
625 	if (ret)
626 		goto out;
627 
628 	/* We can write back this queue in page reclaim */
629 	current->backing_dev_info = inode_to_bdi(inode);
630 
631 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
632 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
633 	if (likely(ret >= 0))
634 		iocb->ki_pos += ret;
635 
636 	/*
637 	 * If we hit a space limit, try to free up some lingering preallocated
638 	 * space before returning an error. In the case of ENOSPC, first try to
639 	 * write back all dirty inodes to free up some of the excess reserved
640 	 * metadata space. This reduces the chances that the eofblocks scan
641 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
642 	 * also behaves as a filter to prevent too many eofblocks scans from
643 	 * running at the same time.
644 	 */
645 	if (ret == -EDQUOT && !enospc) {
646 		xfs_iunlock(ip, iolock);
647 		enospc = xfs_inode_free_quota_eofblocks(ip);
648 		if (enospc)
649 			goto write_retry;
650 		enospc = xfs_inode_free_quota_cowblocks(ip);
651 		if (enospc)
652 			goto write_retry;
653 		iolock = 0;
654 	} else if (ret == -ENOSPC && !enospc) {
655 		struct xfs_eofblocks eofb = {0};
656 
657 		enospc = 1;
658 		xfs_flush_inodes(ip->i_mount);
659 
660 		xfs_iunlock(ip, iolock);
661 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
662 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
663 		goto write_retry;
664 	}
665 
666 	current->backing_dev_info = NULL;
667 out:
668 	if (iolock)
669 		xfs_iunlock(ip, iolock);
670 	return ret;
671 }
672 
673 STATIC ssize_t
674 xfs_file_write_iter(
675 	struct kiocb		*iocb,
676 	struct iov_iter		*from)
677 {
678 	struct file		*file = iocb->ki_filp;
679 	struct address_space	*mapping = file->f_mapping;
680 	struct inode		*inode = mapping->host;
681 	struct xfs_inode	*ip = XFS_I(inode);
682 	ssize_t			ret;
683 	size_t			ocount = iov_iter_count(from);
684 
685 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
686 
687 	if (ocount == 0)
688 		return 0;
689 
690 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
691 		return -EIO;
692 
693 	if (IS_DAX(inode))
694 		ret = xfs_file_dax_write(iocb, from);
695 	else if (iocb->ki_flags & IOCB_DIRECT) {
696 		/*
697 		 * Allow a directio write to fall back to a buffered
698 		 * write *only* in the case that we're doing a reflink
699 		 * CoW.  In all other directio scenarios we do not
700 		 * allow an operation to fall back to buffered mode.
701 		 */
702 		ret = xfs_file_dio_aio_write(iocb, from);
703 		if (ret == -EREMCHG)
704 			goto buffered;
705 	} else {
706 buffered:
707 		ret = xfs_file_buffered_aio_write(iocb, from);
708 	}
709 
710 	if (ret > 0) {
711 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
712 
713 		/* Handle various SYNC-type writes */
714 		ret = generic_write_sync(iocb, ret);
715 	}
716 	return ret;
717 }
718 
719 #define	XFS_FALLOC_FL_SUPPORTED						\
720 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
721 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
722 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
723 
724 STATIC long
725 xfs_file_fallocate(
726 	struct file		*file,
727 	int			mode,
728 	loff_t			offset,
729 	loff_t			len)
730 {
731 	struct inode		*inode = file_inode(file);
732 	struct xfs_inode	*ip = XFS_I(inode);
733 	long			error;
734 	enum xfs_prealloc_flags	flags = 0;
735 	uint			iolock = XFS_IOLOCK_EXCL;
736 	loff_t			new_size = 0;
737 	bool			do_file_insert = 0;
738 
739 	if (!S_ISREG(inode->i_mode))
740 		return -EINVAL;
741 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
742 		return -EOPNOTSUPP;
743 
744 	xfs_ilock(ip, iolock);
745 	error = xfs_break_layouts(inode, &iolock);
746 	if (error)
747 		goto out_unlock;
748 
749 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
750 	iolock |= XFS_MMAPLOCK_EXCL;
751 
752 	if (mode & FALLOC_FL_PUNCH_HOLE) {
753 		error = xfs_free_file_space(ip, offset, len);
754 		if (error)
755 			goto out_unlock;
756 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
757 		unsigned int blksize_mask = i_blocksize(inode) - 1;
758 
759 		if (offset & blksize_mask || len & blksize_mask) {
760 			error = -EINVAL;
761 			goto out_unlock;
762 		}
763 
764 		/*
765 		 * There is no need to overlap collapse range with EOF,
766 		 * in which case it is effectively a truncate operation
767 		 */
768 		if (offset + len >= i_size_read(inode)) {
769 			error = -EINVAL;
770 			goto out_unlock;
771 		}
772 
773 		new_size = i_size_read(inode) - len;
774 
775 		error = xfs_collapse_file_space(ip, offset, len);
776 		if (error)
777 			goto out_unlock;
778 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
779 		unsigned int blksize_mask = i_blocksize(inode) - 1;
780 
781 		new_size = i_size_read(inode) + len;
782 		if (offset & blksize_mask || len & blksize_mask) {
783 			error = -EINVAL;
784 			goto out_unlock;
785 		}
786 
787 		/* check the new inode size does not wrap through zero */
788 		if (new_size > inode->i_sb->s_maxbytes) {
789 			error = -EFBIG;
790 			goto out_unlock;
791 		}
792 
793 		/* Offset should be less than i_size */
794 		if (offset >= i_size_read(inode)) {
795 			error = -EINVAL;
796 			goto out_unlock;
797 		}
798 		do_file_insert = 1;
799 	} else {
800 		flags |= XFS_PREALLOC_SET;
801 
802 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
803 		    offset + len > i_size_read(inode)) {
804 			new_size = offset + len;
805 			error = inode_newsize_ok(inode, new_size);
806 			if (error)
807 				goto out_unlock;
808 		}
809 
810 		if (mode & FALLOC_FL_ZERO_RANGE)
811 			error = xfs_zero_file_space(ip, offset, len);
812 		else {
813 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
814 				error = xfs_reflink_unshare(ip, offset, len);
815 				if (error)
816 					goto out_unlock;
817 			}
818 			error = xfs_alloc_file_space(ip, offset, len,
819 						     XFS_BMAPI_PREALLOC);
820 		}
821 		if (error)
822 			goto out_unlock;
823 	}
824 
825 	if (file->f_flags & O_DSYNC)
826 		flags |= XFS_PREALLOC_SYNC;
827 
828 	error = xfs_update_prealloc_flags(ip, flags);
829 	if (error)
830 		goto out_unlock;
831 
832 	/* Change file size if needed */
833 	if (new_size) {
834 		struct iattr iattr;
835 
836 		iattr.ia_valid = ATTR_SIZE;
837 		iattr.ia_size = new_size;
838 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
839 		if (error)
840 			goto out_unlock;
841 	}
842 
843 	/*
844 	 * Perform hole insertion now that the file size has been
845 	 * updated so that if we crash during the operation we don't
846 	 * leave shifted extents past EOF and hence losing access to
847 	 * the data that is contained within them.
848 	 */
849 	if (do_file_insert)
850 		error = xfs_insert_file_space(ip, offset, len);
851 
852 out_unlock:
853 	xfs_iunlock(ip, iolock);
854 	return error;
855 }
856 
857 STATIC int
858 xfs_file_clone_range(
859 	struct file	*file_in,
860 	loff_t		pos_in,
861 	struct file	*file_out,
862 	loff_t		pos_out,
863 	u64		len)
864 {
865 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
866 				     len, false);
867 }
868 
869 STATIC ssize_t
870 xfs_file_dedupe_range(
871 	struct file	*src_file,
872 	u64		loff,
873 	u64		len,
874 	struct file	*dst_file,
875 	u64		dst_loff)
876 {
877 	int		error;
878 
879 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
880 				     len, true);
881 	if (error)
882 		return error;
883 	return len;
884 }
885 
886 STATIC int
887 xfs_file_open(
888 	struct inode	*inode,
889 	struct file	*file)
890 {
891 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
892 		return -EFBIG;
893 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
894 		return -EIO;
895 	return 0;
896 }
897 
898 STATIC int
899 xfs_dir_open(
900 	struct inode	*inode,
901 	struct file	*file)
902 {
903 	struct xfs_inode *ip = XFS_I(inode);
904 	int		mode;
905 	int		error;
906 
907 	error = xfs_file_open(inode, file);
908 	if (error)
909 		return error;
910 
911 	/*
912 	 * If there are any blocks, read-ahead block 0 as we're almost
913 	 * certain to have the next operation be a read there.
914 	 */
915 	mode = xfs_ilock_data_map_shared(ip);
916 	if (ip->i_d.di_nextents > 0)
917 		error = xfs_dir3_data_readahead(ip, 0, -1);
918 	xfs_iunlock(ip, mode);
919 	return error;
920 }
921 
922 STATIC int
923 xfs_file_release(
924 	struct inode	*inode,
925 	struct file	*filp)
926 {
927 	return xfs_release(XFS_I(inode));
928 }
929 
930 STATIC int
931 xfs_file_readdir(
932 	struct file	*file,
933 	struct dir_context *ctx)
934 {
935 	struct inode	*inode = file_inode(file);
936 	xfs_inode_t	*ip = XFS_I(inode);
937 	size_t		bufsize;
938 
939 	/*
940 	 * The Linux API doesn't pass down the total size of the buffer
941 	 * we read into down to the filesystem.  With the filldir concept
942 	 * it's not needed for correct information, but the XFS dir2 leaf
943 	 * code wants an estimate of the buffer size to calculate it's
944 	 * readahead window and size the buffers used for mapping to
945 	 * physical blocks.
946 	 *
947 	 * Try to give it an estimate that's good enough, maybe at some
948 	 * point we can change the ->readdir prototype to include the
949 	 * buffer size.  For now we use the current glibc buffer size.
950 	 */
951 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
952 
953 	return xfs_readdir(ip, ctx, bufsize);
954 }
955 
956 /*
957  * This type is designed to indicate the type of offset we would like
958  * to search from page cache for xfs_seek_hole_data().
959  */
960 enum {
961 	HOLE_OFF = 0,
962 	DATA_OFF,
963 };
964 
965 /*
966  * Lookup the desired type of offset from the given page.
967  *
968  * On success, return true and the offset argument will point to the
969  * start of the region that was found.  Otherwise this function will
970  * return false and keep the offset argument unchanged.
971  */
972 STATIC bool
973 xfs_lookup_buffer_offset(
974 	struct page		*page,
975 	loff_t			*offset,
976 	unsigned int		type)
977 {
978 	loff_t			lastoff = page_offset(page);
979 	bool			found = false;
980 	struct buffer_head	*bh, *head;
981 
982 	bh = head = page_buffers(page);
983 	do {
984 		/*
985 		 * Unwritten extents that have data in the page
986 		 * cache covering them can be identified by the
987 		 * BH_Unwritten state flag.  Pages with multiple
988 		 * buffers might have a mix of holes, data and
989 		 * unwritten extents - any buffer with valid
990 		 * data in it should have BH_Uptodate flag set
991 		 * on it.
992 		 */
993 		if (buffer_unwritten(bh) ||
994 		    buffer_uptodate(bh)) {
995 			if (type == DATA_OFF)
996 				found = true;
997 		} else {
998 			if (type == HOLE_OFF)
999 				found = true;
1000 		}
1001 
1002 		if (found) {
1003 			*offset = lastoff;
1004 			break;
1005 		}
1006 		lastoff += bh->b_size;
1007 	} while ((bh = bh->b_this_page) != head);
1008 
1009 	return found;
1010 }
1011 
1012 /*
1013  * This routine is called to find out and return a data or hole offset
1014  * from the page cache for unwritten extents according to the desired
1015  * type for xfs_seek_hole_data().
1016  *
1017  * The argument offset is used to tell where we start to search from the
1018  * page cache.  Map is used to figure out the end points of the range to
1019  * lookup pages.
1020  *
1021  * Return true if the desired type of offset was found, and the argument
1022  * offset is filled with that address.  Otherwise, return false and keep
1023  * offset unchanged.
1024  */
1025 STATIC bool
1026 xfs_find_get_desired_pgoff(
1027 	struct inode		*inode,
1028 	struct xfs_bmbt_irec	*map,
1029 	unsigned int		type,
1030 	loff_t			*offset)
1031 {
1032 	struct xfs_inode	*ip = XFS_I(inode);
1033 	struct xfs_mount	*mp = ip->i_mount;
1034 	struct pagevec		pvec;
1035 	pgoff_t			index;
1036 	pgoff_t			end;
1037 	loff_t			endoff;
1038 	loff_t			startoff = *offset;
1039 	loff_t			lastoff = startoff;
1040 	bool			found = false;
1041 
1042 	pagevec_init(&pvec, 0);
1043 
1044 	index = startoff >> PAGE_SHIFT;
1045 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1046 	end = (endoff - 1) >> PAGE_SHIFT;
1047 	do {
1048 		int		want;
1049 		unsigned	nr_pages;
1050 		unsigned int	i;
1051 
1052 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
1053 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1054 					  want);
1055 		if (nr_pages == 0)
1056 			break;
1057 
1058 		for (i = 0; i < nr_pages; i++) {
1059 			struct page	*page = pvec.pages[i];
1060 			loff_t		b_offset;
1061 
1062 			/*
1063 			 * At this point, the page may be truncated or
1064 			 * invalidated (changing page->mapping to NULL),
1065 			 * or even swizzled back from swapper_space to tmpfs
1066 			 * file mapping. However, page->index will not change
1067 			 * because we have a reference on the page.
1068 			 *
1069 			 * If current page offset is beyond where we've ended,
1070 			 * we've found a hole.
1071 			 */
1072 			if (type == HOLE_OFF && lastoff < endoff &&
1073 			    lastoff < page_offset(pvec.pages[i])) {
1074 				found = true;
1075 				*offset = lastoff;
1076 				goto out;
1077 			}
1078 			/* Searching done if the page index is out of range. */
1079 			if (page->index > end)
1080 				goto out;
1081 
1082 			lock_page(page);
1083 			/*
1084 			 * Page truncated or invalidated(page->mapping == NULL).
1085 			 * We can freely skip it and proceed to check the next
1086 			 * page.
1087 			 */
1088 			if (unlikely(page->mapping != inode->i_mapping)) {
1089 				unlock_page(page);
1090 				continue;
1091 			}
1092 
1093 			if (!page_has_buffers(page)) {
1094 				unlock_page(page);
1095 				continue;
1096 			}
1097 
1098 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1099 			if (found) {
1100 				/*
1101 				 * The found offset may be less than the start
1102 				 * point to search if this is the first time to
1103 				 * come here.
1104 				 */
1105 				*offset = max_t(loff_t, startoff, b_offset);
1106 				unlock_page(page);
1107 				goto out;
1108 			}
1109 
1110 			/*
1111 			 * We either searching data but nothing was found, or
1112 			 * searching hole but found a data buffer.  In either
1113 			 * case, probably the next page contains the desired
1114 			 * things, update the last offset to it so.
1115 			 */
1116 			lastoff = page_offset(page) + PAGE_SIZE;
1117 			unlock_page(page);
1118 		}
1119 
1120 		/*
1121 		 * The number of returned pages less than our desired, search
1122 		 * done.
1123 		 */
1124 		if (nr_pages < want)
1125 			break;
1126 
1127 		index = pvec.pages[i - 1]->index + 1;
1128 		pagevec_release(&pvec);
1129 	} while (index <= end);
1130 
1131 	/* No page at lastoff and we are not done - we found a hole. */
1132 	if (type == HOLE_OFF && lastoff < endoff) {
1133 		*offset = lastoff;
1134 		found = true;
1135 	}
1136 out:
1137 	pagevec_release(&pvec);
1138 	return found;
1139 }
1140 
1141 /*
1142  * caller must lock inode with xfs_ilock_data_map_shared,
1143  * can we craft an appropriate ASSERT?
1144  *
1145  * end is because the VFS-level lseek interface is defined such that any
1146  * offset past i_size shall return -ENXIO, but we use this for quota code
1147  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1148  */
1149 loff_t
1150 __xfs_seek_hole_data(
1151 	struct inode		*inode,
1152 	loff_t			start,
1153 	loff_t			end,
1154 	int			whence)
1155 {
1156 	struct xfs_inode	*ip = XFS_I(inode);
1157 	struct xfs_mount	*mp = ip->i_mount;
1158 	loff_t			uninitialized_var(offset);
1159 	xfs_fileoff_t		fsbno;
1160 	xfs_filblks_t		lastbno;
1161 	int			error;
1162 
1163 	if (start >= end) {
1164 		error = -ENXIO;
1165 		goto out_error;
1166 	}
1167 
1168 	/*
1169 	 * Try to read extents from the first block indicated
1170 	 * by fsbno to the end block of the file.
1171 	 */
1172 	fsbno = XFS_B_TO_FSBT(mp, start);
1173 	lastbno = XFS_B_TO_FSB(mp, end);
1174 
1175 	for (;;) {
1176 		struct xfs_bmbt_irec	map[2];
1177 		int			nmap = 2;
1178 		unsigned int		i;
1179 
1180 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1181 				       XFS_BMAPI_ENTIRE);
1182 		if (error)
1183 			goto out_error;
1184 
1185 		/* No extents at given offset, must be beyond EOF */
1186 		if (nmap == 0) {
1187 			error = -ENXIO;
1188 			goto out_error;
1189 		}
1190 
1191 		for (i = 0; i < nmap; i++) {
1192 			offset = max_t(loff_t, start,
1193 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1194 
1195 			/* Landed in the hole we wanted? */
1196 			if (whence == SEEK_HOLE &&
1197 			    map[i].br_startblock == HOLESTARTBLOCK)
1198 				goto out;
1199 
1200 			/* Landed in the data extent we wanted? */
1201 			if (whence == SEEK_DATA &&
1202 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1203 			     (map[i].br_state == XFS_EXT_NORM &&
1204 			      !isnullstartblock(map[i].br_startblock))))
1205 				goto out;
1206 
1207 			/*
1208 			 * Landed in an unwritten extent, try to search
1209 			 * for hole or data from page cache.
1210 			 */
1211 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1212 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1213 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1214 							&offset))
1215 					goto out;
1216 			}
1217 		}
1218 
1219 		/*
1220 		 * We only received one extent out of the two requested. This
1221 		 * means we've hit EOF and didn't find what we are looking for.
1222 		 */
1223 		if (nmap == 1) {
1224 			/*
1225 			 * If we were looking for a hole, set offset to
1226 			 * the end of the file (i.e., there is an implicit
1227 			 * hole at the end of any file).
1228 		 	 */
1229 			if (whence == SEEK_HOLE) {
1230 				offset = end;
1231 				break;
1232 			}
1233 			/*
1234 			 * If we were looking for data, it's nowhere to be found
1235 			 */
1236 			ASSERT(whence == SEEK_DATA);
1237 			error = -ENXIO;
1238 			goto out_error;
1239 		}
1240 
1241 		ASSERT(i > 1);
1242 
1243 		/*
1244 		 * Nothing was found, proceed to the next round of search
1245 		 * if the next reading offset is not at or beyond EOF.
1246 		 */
1247 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1248 		start = XFS_FSB_TO_B(mp, fsbno);
1249 		if (start >= end) {
1250 			if (whence == SEEK_HOLE) {
1251 				offset = end;
1252 				break;
1253 			}
1254 			ASSERT(whence == SEEK_DATA);
1255 			error = -ENXIO;
1256 			goto out_error;
1257 		}
1258 	}
1259 
1260 out:
1261 	/*
1262 	 * If at this point we have found the hole we wanted, the returned
1263 	 * offset may be bigger than the file size as it may be aligned to
1264 	 * page boundary for unwritten extents.  We need to deal with this
1265 	 * situation in particular.
1266 	 */
1267 	if (whence == SEEK_HOLE)
1268 		offset = min_t(loff_t, offset, end);
1269 
1270 	return offset;
1271 
1272 out_error:
1273 	return error;
1274 }
1275 
1276 STATIC loff_t
1277 xfs_seek_hole_data(
1278 	struct file		*file,
1279 	loff_t			start,
1280 	int			whence)
1281 {
1282 	struct inode		*inode = file->f_mapping->host;
1283 	struct xfs_inode	*ip = XFS_I(inode);
1284 	struct xfs_mount	*mp = ip->i_mount;
1285 	uint			lock;
1286 	loff_t			offset, end;
1287 	int			error = 0;
1288 
1289 	if (XFS_FORCED_SHUTDOWN(mp))
1290 		return -EIO;
1291 
1292 	lock = xfs_ilock_data_map_shared(ip);
1293 
1294 	end = i_size_read(inode);
1295 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1296 	if (offset < 0) {
1297 		error = offset;
1298 		goto out_unlock;
1299 	}
1300 
1301 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1302 
1303 out_unlock:
1304 	xfs_iunlock(ip, lock);
1305 
1306 	if (error)
1307 		return error;
1308 	return offset;
1309 }
1310 
1311 STATIC loff_t
1312 xfs_file_llseek(
1313 	struct file	*file,
1314 	loff_t		offset,
1315 	int		whence)
1316 {
1317 	switch (whence) {
1318 	case SEEK_END:
1319 	case SEEK_CUR:
1320 	case SEEK_SET:
1321 		return generic_file_llseek(file, offset, whence);
1322 	case SEEK_HOLE:
1323 	case SEEK_DATA:
1324 		return xfs_seek_hole_data(file, offset, whence);
1325 	default:
1326 		return -EINVAL;
1327 	}
1328 }
1329 
1330 /*
1331  * Locking for serialisation of IO during page faults. This results in a lock
1332  * ordering of:
1333  *
1334  * mmap_sem (MM)
1335  *   sb_start_pagefault(vfs, freeze)
1336  *     i_mmaplock (XFS - truncate serialisation)
1337  *       page_lock (MM)
1338  *         i_lock (XFS - extent map serialisation)
1339  */
1340 
1341 /*
1342  * mmap()d file has taken write protection fault and is being made writable. We
1343  * can set the page state up correctly for a writable page, which means we can
1344  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1345  * mapping.
1346  */
1347 STATIC int
1348 xfs_filemap_page_mkwrite(
1349 	struct vm_fault		*vmf)
1350 {
1351 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1352 	int			ret;
1353 
1354 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1355 
1356 	sb_start_pagefault(inode->i_sb);
1357 	file_update_time(vmf->vma->vm_file);
1358 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1359 
1360 	if (IS_DAX(inode)) {
1361 		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1362 	} else {
1363 		ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1364 		ret = block_page_mkwrite_return(ret);
1365 	}
1366 
1367 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1368 	sb_end_pagefault(inode->i_sb);
1369 
1370 	return ret;
1371 }
1372 
1373 STATIC int
1374 xfs_filemap_fault(
1375 	struct vm_fault		*vmf)
1376 {
1377 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1378 	int			ret;
1379 
1380 	trace_xfs_filemap_fault(XFS_I(inode));
1381 
1382 	/* DAX can shortcut the normal fault path on write faults! */
1383 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1384 		return xfs_filemap_page_mkwrite(vmf);
1385 
1386 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1387 	if (IS_DAX(inode))
1388 		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1389 	else
1390 		ret = filemap_fault(vmf);
1391 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1398  * both read and write faults. Hence we need to handle both cases. There is no
1399  * ->huge_mkwrite callout for huge pages, so we have a single function here to
1400  * handle both cases here. @flags carries the information on the type of fault
1401  * occuring.
1402  */
1403 STATIC int
1404 xfs_filemap_huge_fault(
1405 	struct vm_fault		*vmf,
1406 	enum page_entry_size	pe_size)
1407 {
1408 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1409 	struct xfs_inode	*ip = XFS_I(inode);
1410 	int			ret;
1411 
1412 	if (!IS_DAX(inode))
1413 		return VM_FAULT_FALLBACK;
1414 
1415 	trace_xfs_filemap_huge_fault(ip);
1416 
1417 	if (vmf->flags & FAULT_FLAG_WRITE) {
1418 		sb_start_pagefault(inode->i_sb);
1419 		file_update_time(vmf->vma->vm_file);
1420 	}
1421 
1422 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1423 	ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1424 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1425 
1426 	if (vmf->flags & FAULT_FLAG_WRITE)
1427 		sb_end_pagefault(inode->i_sb);
1428 
1429 	return ret;
1430 }
1431 
1432 /*
1433  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1434  * updates on write faults. In reality, it's need to serialise against
1435  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1436  * to ensure we serialise the fault barrier in place.
1437  */
1438 static int
1439 xfs_filemap_pfn_mkwrite(
1440 	struct vm_fault		*vmf)
1441 {
1442 
1443 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1444 	struct xfs_inode	*ip = XFS_I(inode);
1445 	int			ret = VM_FAULT_NOPAGE;
1446 	loff_t			size;
1447 
1448 	trace_xfs_filemap_pfn_mkwrite(ip);
1449 
1450 	sb_start_pagefault(inode->i_sb);
1451 	file_update_time(vmf->vma->vm_file);
1452 
1453 	/* check if the faulting page hasn't raced with truncate */
1454 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1455 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1456 	if (vmf->pgoff >= size)
1457 		ret = VM_FAULT_SIGBUS;
1458 	else if (IS_DAX(inode))
1459 		ret = dax_pfn_mkwrite(vmf);
1460 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1461 	sb_end_pagefault(inode->i_sb);
1462 	return ret;
1463 
1464 }
1465 
1466 static const struct vm_operations_struct xfs_file_vm_ops = {
1467 	.fault		= xfs_filemap_fault,
1468 	.huge_fault	= xfs_filemap_huge_fault,
1469 	.map_pages	= filemap_map_pages,
1470 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1471 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1472 };
1473 
1474 STATIC int
1475 xfs_file_mmap(
1476 	struct file	*filp,
1477 	struct vm_area_struct *vma)
1478 {
1479 	file_accessed(filp);
1480 	vma->vm_ops = &xfs_file_vm_ops;
1481 	if (IS_DAX(file_inode(filp)))
1482 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1483 	return 0;
1484 }
1485 
1486 const struct file_operations xfs_file_operations = {
1487 	.llseek		= xfs_file_llseek,
1488 	.read_iter	= xfs_file_read_iter,
1489 	.write_iter	= xfs_file_write_iter,
1490 	.splice_read	= generic_file_splice_read,
1491 	.splice_write	= iter_file_splice_write,
1492 	.unlocked_ioctl	= xfs_file_ioctl,
1493 #ifdef CONFIG_COMPAT
1494 	.compat_ioctl	= xfs_file_compat_ioctl,
1495 #endif
1496 	.mmap		= xfs_file_mmap,
1497 	.open		= xfs_file_open,
1498 	.release	= xfs_file_release,
1499 	.fsync		= xfs_file_fsync,
1500 	.get_unmapped_area = thp_get_unmapped_area,
1501 	.fallocate	= xfs_file_fallocate,
1502 	.clone_file_range = xfs_file_clone_range,
1503 	.dedupe_file_range = xfs_file_dedupe_range,
1504 };
1505 
1506 const struct file_operations xfs_dir_file_operations = {
1507 	.open		= xfs_dir_open,
1508 	.read		= generic_read_dir,
1509 	.iterate_shared	= xfs_file_readdir,
1510 	.llseek		= generic_file_llseek,
1511 	.unlocked_ioctl	= xfs_file_ioctl,
1512 #ifdef CONFIG_COMPAT
1513 	.compat_ioctl	= xfs_file_compat_ioctl,
1514 #endif
1515 	.fsync		= xfs_dir_fsync,
1516 };
1517