xref: /openbmc/linux/fs/xfs/xfs_file.c (revision f6723b56)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
41 
42 #include <linux/aio.h>
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 
47 static const struct vm_operations_struct xfs_file_vm_ops;
48 
49 /*
50  * Locking primitives for read and write IO paths to ensure we consistently use
51  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52  */
53 static inline void
54 xfs_rw_ilock(
55 	struct xfs_inode	*ip,
56 	int			type)
57 {
58 	if (type & XFS_IOLOCK_EXCL)
59 		mutex_lock(&VFS_I(ip)->i_mutex);
60 	xfs_ilock(ip, type);
61 }
62 
63 static inline void
64 xfs_rw_iunlock(
65 	struct xfs_inode	*ip,
66 	int			type)
67 {
68 	xfs_iunlock(ip, type);
69 	if (type & XFS_IOLOCK_EXCL)
70 		mutex_unlock(&VFS_I(ip)->i_mutex);
71 }
72 
73 static inline void
74 xfs_rw_ilock_demote(
75 	struct xfs_inode	*ip,
76 	int			type)
77 {
78 	xfs_ilock_demote(ip, type);
79 	if (type & XFS_IOLOCK_EXCL)
80 		mutex_unlock(&VFS_I(ip)->i_mutex);
81 }
82 
83 /*
84  *	xfs_iozero
85  *
86  *	xfs_iozero clears the specified range of buffer supplied,
87  *	and marks all the affected blocks as valid and modified.  If
88  *	an affected block is not allocated, it will be allocated.  If
89  *	an affected block is not completely overwritten, and is not
90  *	valid before the operation, it will be read from disk before
91  *	being partially zeroed.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status;
102 
103 	mapping = VFS_I(ip)->i_mapping;
104 	do {
105 		unsigned offset, bytes;
106 		void *fsdata;
107 
108 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 		bytes = PAGE_CACHE_SIZE - offset;
110 		if (bytes > count)
111 			bytes = count;
112 
113 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 					AOP_FLAG_UNINTERRUPTIBLE,
115 					&page, &fsdata);
116 		if (status)
117 			break;
118 
119 		zero_user(page, offset, bytes);
120 
121 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 					page, fsdata);
123 		WARN_ON(status <= 0); /* can't return less than zero! */
124 		pos += bytes;
125 		count -= bytes;
126 		status = 0;
127 	} while (count);
128 
129 	return (-status);
130 }
131 
132 /*
133  * Fsync operations on directories are much simpler than on regular files,
134  * as there is no file data to flush, and thus also no need for explicit
135  * cache flush operations, and there are no non-transaction metadata updates
136  * on directories either.
137  */
138 STATIC int
139 xfs_dir_fsync(
140 	struct file		*file,
141 	loff_t			start,
142 	loff_t			end,
143 	int			datasync)
144 {
145 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
146 	struct xfs_mount	*mp = ip->i_mount;
147 	xfs_lsn_t		lsn = 0;
148 
149 	trace_xfs_dir_fsync(ip);
150 
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip))
153 		lsn = ip->i_itemp->ili_last_lsn;
154 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
155 
156 	if (!lsn)
157 		return 0;
158 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160 
161 STATIC int
162 xfs_file_fsync(
163 	struct file		*file,
164 	loff_t			start,
165 	loff_t			end,
166 	int			datasync)
167 {
168 	struct inode		*inode = file->f_mapping->host;
169 	struct xfs_inode	*ip = XFS_I(inode);
170 	struct xfs_mount	*mp = ip->i_mount;
171 	int			error = 0;
172 	int			log_flushed = 0;
173 	xfs_lsn_t		lsn = 0;
174 
175 	trace_xfs_file_fsync(ip);
176 
177 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 	if (error)
179 		return error;
180 
181 	if (XFS_FORCED_SHUTDOWN(mp))
182 		return -XFS_ERROR(EIO);
183 
184 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 
186 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 		/*
188 		 * If we have an RT and/or log subvolume we need to make sure
189 		 * to flush the write cache the device used for file data
190 		 * first.  This is to ensure newly written file data make
191 		 * it to disk before logging the new inode size in case of
192 		 * an extending write.
193 		 */
194 		if (XFS_IS_REALTIME_INODE(ip))
195 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 	}
199 
200 	/*
201 	 * All metadata updates are logged, which means that we just have
202 	 * to flush the log up to the latest LSN that touched the inode.
203 	 */
204 	xfs_ilock(ip, XFS_ILOCK_SHARED);
205 	if (xfs_ipincount(ip)) {
206 		if (!datasync ||
207 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 			lsn = ip->i_itemp->ili_last_lsn;
209 	}
210 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
211 
212 	if (lsn)
213 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214 
215 	/*
216 	 * If we only have a single device, and the log force about was
217 	 * a no-op we might have to flush the data device cache here.
218 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 	 * an already allocated file and thus do not have any metadata to
220 	 * commit.
221 	 */
222 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 	    mp->m_logdev_targp == mp->m_ddev_targp &&
224 	    !XFS_IS_REALTIME_INODE(ip) &&
225 	    !log_flushed)
226 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
227 
228 	return -error;
229 }
230 
231 STATIC ssize_t
232 xfs_file_aio_read(
233 	struct kiocb		*iocb,
234 	const struct iovec	*iovp,
235 	unsigned long		nr_segs,
236 	loff_t			pos)
237 {
238 	struct file		*file = iocb->ki_filp;
239 	struct inode		*inode = file->f_mapping->host;
240 	struct xfs_inode	*ip = XFS_I(inode);
241 	struct xfs_mount	*mp = ip->i_mount;
242 	size_t			size = 0;
243 	ssize_t			ret = 0;
244 	int			ioflags = 0;
245 	xfs_fsize_t		n;
246 
247 	XFS_STATS_INC(xs_read_calls);
248 
249 	BUG_ON(iocb->ki_pos != pos);
250 
251 	if (unlikely(file->f_flags & O_DIRECT))
252 		ioflags |= IO_ISDIRECT;
253 	if (file->f_mode & FMODE_NOCMTIME)
254 		ioflags |= IO_INVIS;
255 
256 	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
257 	if (ret < 0)
258 		return ret;
259 
260 	if (unlikely(ioflags & IO_ISDIRECT)) {
261 		xfs_buftarg_t	*target =
262 			XFS_IS_REALTIME_INODE(ip) ?
263 				mp->m_rtdev_targp : mp->m_ddev_targp;
264 		/* DIO must be aligned to device logical sector size */
265 		if ((pos | size) & target->bt_logical_sectormask) {
266 			if (pos == i_size_read(inode))
267 				return 0;
268 			return -XFS_ERROR(EINVAL);
269 		}
270 	}
271 
272 	n = mp->m_super->s_maxbytes - pos;
273 	if (n <= 0 || size == 0)
274 		return 0;
275 
276 	if (n < size)
277 		size = n;
278 
279 	if (XFS_FORCED_SHUTDOWN(mp))
280 		return -EIO;
281 
282 	/*
283 	 * Locking is a bit tricky here. If we take an exclusive lock
284 	 * for direct IO, we effectively serialise all new concurrent
285 	 * read IO to this file and block it behind IO that is currently in
286 	 * progress because IO in progress holds the IO lock shared. We only
287 	 * need to hold the lock exclusive to blow away the page cache, so
288 	 * only take lock exclusively if the page cache needs invalidation.
289 	 * This allows the normal direct IO case of no page cache pages to
290 	 * proceeed concurrently without serialisation.
291 	 */
292 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
293 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
294 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
295 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
296 
297 		if (inode->i_mapping->nrpages) {
298 			ret = -filemap_write_and_wait_range(
299 							VFS_I(ip)->i_mapping,
300 							pos, -1);
301 			if (ret) {
302 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
303 				return ret;
304 			}
305 			truncate_pagecache_range(VFS_I(ip), pos, -1);
306 		}
307 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
308 	}
309 
310 	trace_xfs_file_read(ip, size, pos, ioflags);
311 
312 	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
313 	if (ret > 0)
314 		XFS_STATS_ADD(xs_read_bytes, ret);
315 
316 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
317 	return ret;
318 }
319 
320 STATIC ssize_t
321 xfs_file_splice_read(
322 	struct file		*infilp,
323 	loff_t			*ppos,
324 	struct pipe_inode_info	*pipe,
325 	size_t			count,
326 	unsigned int		flags)
327 {
328 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
329 	int			ioflags = 0;
330 	ssize_t			ret;
331 
332 	XFS_STATS_INC(xs_read_calls);
333 
334 	if (infilp->f_mode & FMODE_NOCMTIME)
335 		ioflags |= IO_INVIS;
336 
337 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
338 		return -EIO;
339 
340 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
341 
342 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
343 
344 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
345 	if (ret > 0)
346 		XFS_STATS_ADD(xs_read_bytes, ret);
347 
348 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349 	return ret;
350 }
351 
352 /*
353  * xfs_file_splice_write() does not use xfs_rw_ilock() because
354  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
355  * couuld cause lock inversions between the aio_write path and the splice path
356  * if someone is doing concurrent splice(2) based writes and write(2) based
357  * writes to the same inode. The only real way to fix this is to re-implement
358  * the generic code here with correct locking orders.
359  */
360 STATIC ssize_t
361 xfs_file_splice_write(
362 	struct pipe_inode_info	*pipe,
363 	struct file		*outfilp,
364 	loff_t			*ppos,
365 	size_t			count,
366 	unsigned int		flags)
367 {
368 	struct inode		*inode = outfilp->f_mapping->host;
369 	struct xfs_inode	*ip = XFS_I(inode);
370 	int			ioflags = 0;
371 	ssize_t			ret;
372 
373 	XFS_STATS_INC(xs_write_calls);
374 
375 	if (outfilp->f_mode & FMODE_NOCMTIME)
376 		ioflags |= IO_INVIS;
377 
378 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
379 		return -EIO;
380 
381 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
382 
383 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
384 
385 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
386 	if (ret > 0)
387 		XFS_STATS_ADD(xs_write_bytes, ret);
388 
389 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
390 	return ret;
391 }
392 
393 /*
394  * This routine is called to handle zeroing any space in the last block of the
395  * file that is beyond the EOF.  We do this since the size is being increased
396  * without writing anything to that block and we don't want to read the
397  * garbage on the disk.
398  */
399 STATIC int				/* error (positive) */
400 xfs_zero_last_block(
401 	struct xfs_inode	*ip,
402 	xfs_fsize_t		offset,
403 	xfs_fsize_t		isize)
404 {
405 	struct xfs_mount	*mp = ip->i_mount;
406 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
407 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
408 	int			zero_len;
409 	int			nimaps = 1;
410 	int			error = 0;
411 	struct xfs_bmbt_irec	imap;
412 
413 	xfs_ilock(ip, XFS_ILOCK_EXCL);
414 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
415 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
416 	if (error)
417 		return error;
418 
419 	ASSERT(nimaps > 0);
420 
421 	/*
422 	 * If the block underlying isize is just a hole, then there
423 	 * is nothing to zero.
424 	 */
425 	if (imap.br_startblock == HOLESTARTBLOCK)
426 		return 0;
427 
428 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
429 	if (isize + zero_len > offset)
430 		zero_len = offset - isize;
431 	return xfs_iozero(ip, isize, zero_len);
432 }
433 
434 /*
435  * Zero any on disk space between the current EOF and the new, larger EOF.
436  *
437  * This handles the normal case of zeroing the remainder of the last block in
438  * the file and the unusual case of zeroing blocks out beyond the size of the
439  * file.  This second case only happens with fixed size extents and when the
440  * system crashes before the inode size was updated but after blocks were
441  * allocated.
442  *
443  * Expects the iolock to be held exclusive, and will take the ilock internally.
444  */
445 int					/* error (positive) */
446 xfs_zero_eof(
447 	struct xfs_inode	*ip,
448 	xfs_off_t		offset,		/* starting I/O offset */
449 	xfs_fsize_t		isize)		/* current inode size */
450 {
451 	struct xfs_mount	*mp = ip->i_mount;
452 	xfs_fileoff_t		start_zero_fsb;
453 	xfs_fileoff_t		end_zero_fsb;
454 	xfs_fileoff_t		zero_count_fsb;
455 	xfs_fileoff_t		last_fsb;
456 	xfs_fileoff_t		zero_off;
457 	xfs_fsize_t		zero_len;
458 	int			nimaps;
459 	int			error = 0;
460 	struct xfs_bmbt_irec	imap;
461 
462 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
463 	ASSERT(offset > isize);
464 
465 	/*
466 	 * First handle zeroing the block on which isize resides.
467 	 *
468 	 * We only zero a part of that block so it is handled specially.
469 	 */
470 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 		error = xfs_zero_last_block(ip, offset, isize);
472 		if (error)
473 			return error;
474 	}
475 
476 	/*
477 	 * Calculate the range between the new size and the old where blocks
478 	 * needing to be zeroed may exist.
479 	 *
480 	 * To get the block where the last byte in the file currently resides,
481 	 * we need to subtract one from the size and truncate back to a block
482 	 * boundary.  We subtract 1 in case the size is exactly on a block
483 	 * boundary.
484 	 */
485 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 	if (last_fsb == end_zero_fsb) {
490 		/*
491 		 * The size was only incremented on its last block.
492 		 * We took care of that above, so just return.
493 		 */
494 		return 0;
495 	}
496 
497 	ASSERT(start_zero_fsb <= end_zero_fsb);
498 	while (start_zero_fsb <= end_zero_fsb) {
499 		nimaps = 1;
500 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
501 
502 		xfs_ilock(ip, XFS_ILOCK_EXCL);
503 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 					  &imap, &nimaps, 0);
505 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 		if (error)
507 			return error;
508 
509 		ASSERT(nimaps > 0);
510 
511 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 		    imap.br_startblock == HOLESTARTBLOCK) {
513 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 			continue;
516 		}
517 
518 		/*
519 		 * There are blocks we need to zero.
520 		 */
521 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523 
524 		if ((zero_off + zero_len) > offset)
525 			zero_len = offset - zero_off;
526 
527 		error = xfs_iozero(ip, zero_off, zero_len);
528 		if (error)
529 			return error;
530 
531 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533 	}
534 
535 	return 0;
536 }
537 
538 /*
539  * Common pre-write limit and setup checks.
540  *
541  * Called with the iolocked held either shared and exclusive according to
542  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
543  * if called for a direct write beyond i_size.
544  */
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 	struct file		*file,
548 	loff_t			*pos,
549 	size_t			*count,
550 	int			*iolock)
551 {
552 	struct inode		*inode = file->f_mapping->host;
553 	struct xfs_inode	*ip = XFS_I(inode);
554 	int			error = 0;
555 
556 restart:
557 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
558 	if (error)
559 		return error;
560 
561 	/*
562 	 * If the offset is beyond the size of the file, we need to zero any
563 	 * blocks that fall between the existing EOF and the start of this
564 	 * write.  If zeroing is needed and we are currently holding the
565 	 * iolock shared, we need to update it to exclusive which implies
566 	 * having to redo all checks before.
567 	 */
568 	if (*pos > i_size_read(inode)) {
569 		if (*iolock == XFS_IOLOCK_SHARED) {
570 			xfs_rw_iunlock(ip, *iolock);
571 			*iolock = XFS_IOLOCK_EXCL;
572 			xfs_rw_ilock(ip, *iolock);
573 			goto restart;
574 		}
575 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
576 		if (error)
577 			return error;
578 	}
579 
580 	/*
581 	 * Updating the timestamps will grab the ilock again from
582 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
583 	 * lock above.  Eventually we should look into a way to avoid
584 	 * the pointless lock roundtrip.
585 	 */
586 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
587 		error = file_update_time(file);
588 		if (error)
589 			return error;
590 	}
591 
592 	/*
593 	 * If we're writing the file then make sure to clear the setuid and
594 	 * setgid bits if the process is not being run by root.  This keeps
595 	 * people from modifying setuid and setgid binaries.
596 	 */
597 	return file_remove_suid(file);
598 }
599 
600 /*
601  * xfs_file_dio_aio_write - handle direct IO writes
602  *
603  * Lock the inode appropriately to prepare for and issue a direct IO write.
604  * By separating it from the buffered write path we remove all the tricky to
605  * follow locking changes and looping.
606  *
607  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
608  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
609  * pages are flushed out.
610  *
611  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
612  * allowing them to be done in parallel with reads and other direct IO writes.
613  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
614  * needs to do sub-block zeroing and that requires serialisation against other
615  * direct IOs to the same block. In this case we need to serialise the
616  * submission of the unaligned IOs so that we don't get racing block zeroing in
617  * the dio layer.  To avoid the problem with aio, we also need to wait for
618  * outstanding IOs to complete so that unwritten extent conversion is completed
619  * before we try to map the overlapping block. This is currently implemented by
620  * hitting it with a big hammer (i.e. inode_dio_wait()).
621  *
622  * Returns with locks held indicated by @iolock and errors indicated by
623  * negative return values.
624  */
625 STATIC ssize_t
626 xfs_file_dio_aio_write(
627 	struct kiocb		*iocb,
628 	const struct iovec	*iovp,
629 	unsigned long		nr_segs,
630 	loff_t			pos,
631 	size_t			ocount)
632 {
633 	struct file		*file = iocb->ki_filp;
634 	struct address_space	*mapping = file->f_mapping;
635 	struct inode		*inode = mapping->host;
636 	struct xfs_inode	*ip = XFS_I(inode);
637 	struct xfs_mount	*mp = ip->i_mount;
638 	ssize_t			ret = 0;
639 	size_t			count = ocount;
640 	int			unaligned_io = 0;
641 	int			iolock;
642 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
643 					mp->m_rtdev_targp : mp->m_ddev_targp;
644 
645 	/* DIO must be aligned to device logical sector size */
646 	if ((pos | count) & target->bt_logical_sectormask)
647 		return -XFS_ERROR(EINVAL);
648 
649 	/* "unaligned" here means not aligned to a filesystem block */
650 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
651 		unaligned_io = 1;
652 
653 	/*
654 	 * We don't need to take an exclusive lock unless there page cache needs
655 	 * to be invalidated or unaligned IO is being executed. We don't need to
656 	 * consider the EOF extension case here because
657 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
658 	 * EOF zeroing cases and fill out the new inode size as appropriate.
659 	 */
660 	if (unaligned_io || mapping->nrpages)
661 		iolock = XFS_IOLOCK_EXCL;
662 	else
663 		iolock = XFS_IOLOCK_SHARED;
664 	xfs_rw_ilock(ip, iolock);
665 
666 	/*
667 	 * Recheck if there are cached pages that need invalidate after we got
668 	 * the iolock to protect against other threads adding new pages while
669 	 * we were waiting for the iolock.
670 	 */
671 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
672 		xfs_rw_iunlock(ip, iolock);
673 		iolock = XFS_IOLOCK_EXCL;
674 		xfs_rw_ilock(ip, iolock);
675 	}
676 
677 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
678 	if (ret)
679 		goto out;
680 
681 	if (mapping->nrpages) {
682 		ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
683 						    pos, -1);
684 		if (ret)
685 			goto out;
686 		truncate_pagecache_range(VFS_I(ip), pos, -1);
687 	}
688 
689 	/*
690 	 * If we are doing unaligned IO, wait for all other IO to drain,
691 	 * otherwise demote the lock if we had to flush cached pages
692 	 */
693 	if (unaligned_io)
694 		inode_dio_wait(inode);
695 	else if (iolock == XFS_IOLOCK_EXCL) {
696 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
697 		iolock = XFS_IOLOCK_SHARED;
698 	}
699 
700 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
701 	ret = generic_file_direct_write(iocb, iovp,
702 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
703 
704 out:
705 	xfs_rw_iunlock(ip, iolock);
706 
707 	/* No fallback to buffered IO on errors for XFS. */
708 	ASSERT(ret < 0 || ret == count);
709 	return ret;
710 }
711 
712 STATIC ssize_t
713 xfs_file_buffered_aio_write(
714 	struct kiocb		*iocb,
715 	const struct iovec	*iovp,
716 	unsigned long		nr_segs,
717 	loff_t			pos,
718 	size_t			ocount)
719 {
720 	struct file		*file = iocb->ki_filp;
721 	struct address_space	*mapping = file->f_mapping;
722 	struct inode		*inode = mapping->host;
723 	struct xfs_inode	*ip = XFS_I(inode);
724 	ssize_t			ret;
725 	int			enospc = 0;
726 	int			iolock = XFS_IOLOCK_EXCL;
727 	size_t			count = ocount;
728 
729 	xfs_rw_ilock(ip, iolock);
730 
731 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
732 	if (ret)
733 		goto out;
734 
735 	/* We can write back this queue in page reclaim */
736 	current->backing_dev_info = mapping->backing_dev_info;
737 
738 write_retry:
739 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
740 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
741 			pos, &iocb->ki_pos, count, 0);
742 
743 	/*
744 	 * If we just got an ENOSPC, try to write back all dirty inodes to
745 	 * convert delalloc space to free up some of the excess reserved
746 	 * metadata space.
747 	 */
748 	if (ret == -ENOSPC && !enospc) {
749 		enospc = 1;
750 		xfs_flush_inodes(ip->i_mount);
751 		goto write_retry;
752 	}
753 
754 	current->backing_dev_info = NULL;
755 out:
756 	xfs_rw_iunlock(ip, iolock);
757 	return ret;
758 }
759 
760 STATIC ssize_t
761 xfs_file_aio_write(
762 	struct kiocb		*iocb,
763 	const struct iovec	*iovp,
764 	unsigned long		nr_segs,
765 	loff_t			pos)
766 {
767 	struct file		*file = iocb->ki_filp;
768 	struct address_space	*mapping = file->f_mapping;
769 	struct inode		*inode = mapping->host;
770 	struct xfs_inode	*ip = XFS_I(inode);
771 	ssize_t			ret;
772 	size_t			ocount = 0;
773 
774 	XFS_STATS_INC(xs_write_calls);
775 
776 	BUG_ON(iocb->ki_pos != pos);
777 
778 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
779 	if (ret)
780 		return ret;
781 
782 	if (ocount == 0)
783 		return 0;
784 
785 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
786 		ret = -EIO;
787 		goto out;
788 	}
789 
790 	if (unlikely(file->f_flags & O_DIRECT))
791 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
792 	else
793 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
794 						  ocount);
795 
796 	if (ret > 0) {
797 		ssize_t err;
798 
799 		XFS_STATS_ADD(xs_write_bytes, ret);
800 
801 		/* Handle various SYNC-type writes */
802 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
803 		if (err < 0)
804 			ret = err;
805 	}
806 
807 out:
808 	return ret;
809 }
810 
811 STATIC long
812 xfs_file_fallocate(
813 	struct file		*file,
814 	int			mode,
815 	loff_t			offset,
816 	loff_t			len)
817 {
818 	struct inode		*inode = file_inode(file);
819 	struct xfs_inode	*ip = XFS_I(inode);
820 	struct xfs_trans	*tp;
821 	long			error;
822 	loff_t			new_size = 0;
823 
824 	if (!S_ISREG(inode->i_mode))
825 		return -EINVAL;
826 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
827 		return -EOPNOTSUPP;
828 
829 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
830 	if (mode & FALLOC_FL_PUNCH_HOLE) {
831 		error = xfs_free_file_space(ip, offset, len);
832 		if (error)
833 			goto out_unlock;
834 	} else {
835 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
836 		    offset + len > i_size_read(inode)) {
837 			new_size = offset + len;
838 			error = -inode_newsize_ok(inode, new_size);
839 			if (error)
840 				goto out_unlock;
841 		}
842 
843 		error = xfs_alloc_file_space(ip, offset, len,
844 					     XFS_BMAPI_PREALLOC);
845 		if (error)
846 			goto out_unlock;
847 	}
848 
849 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
850 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
851 	if (error) {
852 		xfs_trans_cancel(tp, 0);
853 		goto out_unlock;
854 	}
855 
856 	xfs_ilock(ip, XFS_ILOCK_EXCL);
857 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
858 	ip->i_d.di_mode &= ~S_ISUID;
859 	if (ip->i_d.di_mode & S_IXGRP)
860 		ip->i_d.di_mode &= ~S_ISGID;
861 
862 	if (!(mode & FALLOC_FL_PUNCH_HOLE))
863 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
864 
865 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
866 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
867 
868 	if (file->f_flags & O_DSYNC)
869 		xfs_trans_set_sync(tp);
870 	error = xfs_trans_commit(tp, 0);
871 	if (error)
872 		goto out_unlock;
873 
874 	/* Change file size if needed */
875 	if (new_size) {
876 		struct iattr iattr;
877 
878 		iattr.ia_valid = ATTR_SIZE;
879 		iattr.ia_size = new_size;
880 		error = xfs_setattr_size(ip, &iattr);
881 	}
882 
883 out_unlock:
884 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
885 	return -error;
886 }
887 
888 
889 STATIC int
890 xfs_file_open(
891 	struct inode	*inode,
892 	struct file	*file)
893 {
894 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
895 		return -EFBIG;
896 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
897 		return -EIO;
898 	return 0;
899 }
900 
901 STATIC int
902 xfs_dir_open(
903 	struct inode	*inode,
904 	struct file	*file)
905 {
906 	struct xfs_inode *ip = XFS_I(inode);
907 	int		mode;
908 	int		error;
909 
910 	error = xfs_file_open(inode, file);
911 	if (error)
912 		return error;
913 
914 	/*
915 	 * If there are any blocks, read-ahead block 0 as we're almost
916 	 * certain to have the next operation be a read there.
917 	 */
918 	mode = xfs_ilock_data_map_shared(ip);
919 	if (ip->i_d.di_nextents > 0)
920 		xfs_dir3_data_readahead(NULL, ip, 0, -1);
921 	xfs_iunlock(ip, mode);
922 	return 0;
923 }
924 
925 STATIC int
926 xfs_file_release(
927 	struct inode	*inode,
928 	struct file	*filp)
929 {
930 	return -xfs_release(XFS_I(inode));
931 }
932 
933 STATIC int
934 xfs_file_readdir(
935 	struct file	*file,
936 	struct dir_context *ctx)
937 {
938 	struct inode	*inode = file_inode(file);
939 	xfs_inode_t	*ip = XFS_I(inode);
940 	int		error;
941 	size_t		bufsize;
942 
943 	/*
944 	 * The Linux API doesn't pass down the total size of the buffer
945 	 * we read into down to the filesystem.  With the filldir concept
946 	 * it's not needed for correct information, but the XFS dir2 leaf
947 	 * code wants an estimate of the buffer size to calculate it's
948 	 * readahead window and size the buffers used for mapping to
949 	 * physical blocks.
950 	 *
951 	 * Try to give it an estimate that's good enough, maybe at some
952 	 * point we can change the ->readdir prototype to include the
953 	 * buffer size.  For now we use the current glibc buffer size.
954 	 */
955 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
956 
957 	error = xfs_readdir(ip, ctx, bufsize);
958 	if (error)
959 		return -error;
960 	return 0;
961 }
962 
963 STATIC int
964 xfs_file_mmap(
965 	struct file	*filp,
966 	struct vm_area_struct *vma)
967 {
968 	vma->vm_ops = &xfs_file_vm_ops;
969 
970 	file_accessed(filp);
971 	return 0;
972 }
973 
974 /*
975  * mmap()d file has taken write protection fault and is being made
976  * writable. We can set the page state up correctly for a writable
977  * page, which means we can do correct delalloc accounting (ENOSPC
978  * checking!) and unwritten extent mapping.
979  */
980 STATIC int
981 xfs_vm_page_mkwrite(
982 	struct vm_area_struct	*vma,
983 	struct vm_fault		*vmf)
984 {
985 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
986 }
987 
988 /*
989  * This type is designed to indicate the type of offset we would like
990  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
991  */
992 enum {
993 	HOLE_OFF = 0,
994 	DATA_OFF,
995 };
996 
997 /*
998  * Lookup the desired type of offset from the given page.
999  *
1000  * On success, return true and the offset argument will point to the
1001  * start of the region that was found.  Otherwise this function will
1002  * return false and keep the offset argument unchanged.
1003  */
1004 STATIC bool
1005 xfs_lookup_buffer_offset(
1006 	struct page		*page,
1007 	loff_t			*offset,
1008 	unsigned int		type)
1009 {
1010 	loff_t			lastoff = page_offset(page);
1011 	bool			found = false;
1012 	struct buffer_head	*bh, *head;
1013 
1014 	bh = head = page_buffers(page);
1015 	do {
1016 		/*
1017 		 * Unwritten extents that have data in the page
1018 		 * cache covering them can be identified by the
1019 		 * BH_Unwritten state flag.  Pages with multiple
1020 		 * buffers might have a mix of holes, data and
1021 		 * unwritten extents - any buffer with valid
1022 		 * data in it should have BH_Uptodate flag set
1023 		 * on it.
1024 		 */
1025 		if (buffer_unwritten(bh) ||
1026 		    buffer_uptodate(bh)) {
1027 			if (type == DATA_OFF)
1028 				found = true;
1029 		} else {
1030 			if (type == HOLE_OFF)
1031 				found = true;
1032 		}
1033 
1034 		if (found) {
1035 			*offset = lastoff;
1036 			break;
1037 		}
1038 		lastoff += bh->b_size;
1039 	} while ((bh = bh->b_this_page) != head);
1040 
1041 	return found;
1042 }
1043 
1044 /*
1045  * This routine is called to find out and return a data or hole offset
1046  * from the page cache for unwritten extents according to the desired
1047  * type for xfs_seek_data() or xfs_seek_hole().
1048  *
1049  * The argument offset is used to tell where we start to search from the
1050  * page cache.  Map is used to figure out the end points of the range to
1051  * lookup pages.
1052  *
1053  * Return true if the desired type of offset was found, and the argument
1054  * offset is filled with that address.  Otherwise, return false and keep
1055  * offset unchanged.
1056  */
1057 STATIC bool
1058 xfs_find_get_desired_pgoff(
1059 	struct inode		*inode,
1060 	struct xfs_bmbt_irec	*map,
1061 	unsigned int		type,
1062 	loff_t			*offset)
1063 {
1064 	struct xfs_inode	*ip = XFS_I(inode);
1065 	struct xfs_mount	*mp = ip->i_mount;
1066 	struct pagevec		pvec;
1067 	pgoff_t			index;
1068 	pgoff_t			end;
1069 	loff_t			endoff;
1070 	loff_t			startoff = *offset;
1071 	loff_t			lastoff = startoff;
1072 	bool			found = false;
1073 
1074 	pagevec_init(&pvec, 0);
1075 
1076 	index = startoff >> PAGE_CACHE_SHIFT;
1077 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1078 	end = endoff >> PAGE_CACHE_SHIFT;
1079 	do {
1080 		int		want;
1081 		unsigned	nr_pages;
1082 		unsigned int	i;
1083 
1084 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1085 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1086 					  want);
1087 		/*
1088 		 * No page mapped into given range.  If we are searching holes
1089 		 * and if this is the first time we got into the loop, it means
1090 		 * that the given offset is landed in a hole, return it.
1091 		 *
1092 		 * If we have already stepped through some block buffers to find
1093 		 * holes but they all contains data.  In this case, the last
1094 		 * offset is already updated and pointed to the end of the last
1095 		 * mapped page, if it does not reach the endpoint to search,
1096 		 * that means there should be a hole between them.
1097 		 */
1098 		if (nr_pages == 0) {
1099 			/* Data search found nothing */
1100 			if (type == DATA_OFF)
1101 				break;
1102 
1103 			ASSERT(type == HOLE_OFF);
1104 			if (lastoff == startoff || lastoff < endoff) {
1105 				found = true;
1106 				*offset = lastoff;
1107 			}
1108 			break;
1109 		}
1110 
1111 		/*
1112 		 * At lease we found one page.  If this is the first time we
1113 		 * step into the loop, and if the first page index offset is
1114 		 * greater than the given search offset, a hole was found.
1115 		 */
1116 		if (type == HOLE_OFF && lastoff == startoff &&
1117 		    lastoff < page_offset(pvec.pages[0])) {
1118 			found = true;
1119 			break;
1120 		}
1121 
1122 		for (i = 0; i < nr_pages; i++) {
1123 			struct page	*page = pvec.pages[i];
1124 			loff_t		b_offset;
1125 
1126 			/*
1127 			 * At this point, the page may be truncated or
1128 			 * invalidated (changing page->mapping to NULL),
1129 			 * or even swizzled back from swapper_space to tmpfs
1130 			 * file mapping. However, page->index will not change
1131 			 * because we have a reference on the page.
1132 			 *
1133 			 * Searching done if the page index is out of range.
1134 			 * If the current offset is not reaches the end of
1135 			 * the specified search range, there should be a hole
1136 			 * between them.
1137 			 */
1138 			if (page->index > end) {
1139 				if (type == HOLE_OFF && lastoff < endoff) {
1140 					*offset = lastoff;
1141 					found = true;
1142 				}
1143 				goto out;
1144 			}
1145 
1146 			lock_page(page);
1147 			/*
1148 			 * Page truncated or invalidated(page->mapping == NULL).
1149 			 * We can freely skip it and proceed to check the next
1150 			 * page.
1151 			 */
1152 			if (unlikely(page->mapping != inode->i_mapping)) {
1153 				unlock_page(page);
1154 				continue;
1155 			}
1156 
1157 			if (!page_has_buffers(page)) {
1158 				unlock_page(page);
1159 				continue;
1160 			}
1161 
1162 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1163 			if (found) {
1164 				/*
1165 				 * The found offset may be less than the start
1166 				 * point to search if this is the first time to
1167 				 * come here.
1168 				 */
1169 				*offset = max_t(loff_t, startoff, b_offset);
1170 				unlock_page(page);
1171 				goto out;
1172 			}
1173 
1174 			/*
1175 			 * We either searching data but nothing was found, or
1176 			 * searching hole but found a data buffer.  In either
1177 			 * case, probably the next page contains the desired
1178 			 * things, update the last offset to it so.
1179 			 */
1180 			lastoff = page_offset(page) + PAGE_SIZE;
1181 			unlock_page(page);
1182 		}
1183 
1184 		/*
1185 		 * The number of returned pages less than our desired, search
1186 		 * done.  In this case, nothing was found for searching data,
1187 		 * but we found a hole behind the last offset.
1188 		 */
1189 		if (nr_pages < want) {
1190 			if (type == HOLE_OFF) {
1191 				*offset = lastoff;
1192 				found = true;
1193 			}
1194 			break;
1195 		}
1196 
1197 		index = pvec.pages[i - 1]->index + 1;
1198 		pagevec_release(&pvec);
1199 	} while (index <= end);
1200 
1201 out:
1202 	pagevec_release(&pvec);
1203 	return found;
1204 }
1205 
1206 STATIC loff_t
1207 xfs_seek_data(
1208 	struct file		*file,
1209 	loff_t			start)
1210 {
1211 	struct inode		*inode = file->f_mapping->host;
1212 	struct xfs_inode	*ip = XFS_I(inode);
1213 	struct xfs_mount	*mp = ip->i_mount;
1214 	loff_t			uninitialized_var(offset);
1215 	xfs_fsize_t		isize;
1216 	xfs_fileoff_t		fsbno;
1217 	xfs_filblks_t		end;
1218 	uint			lock;
1219 	int			error;
1220 
1221 	lock = xfs_ilock_data_map_shared(ip);
1222 
1223 	isize = i_size_read(inode);
1224 	if (start >= isize) {
1225 		error = ENXIO;
1226 		goto out_unlock;
1227 	}
1228 
1229 	/*
1230 	 * Try to read extents from the first block indicated
1231 	 * by fsbno to the end block of the file.
1232 	 */
1233 	fsbno = XFS_B_TO_FSBT(mp, start);
1234 	end = XFS_B_TO_FSB(mp, isize);
1235 	for (;;) {
1236 		struct xfs_bmbt_irec	map[2];
1237 		int			nmap = 2;
1238 		unsigned int		i;
1239 
1240 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1241 				       XFS_BMAPI_ENTIRE);
1242 		if (error)
1243 			goto out_unlock;
1244 
1245 		/* No extents at given offset, must be beyond EOF */
1246 		if (nmap == 0) {
1247 			error = ENXIO;
1248 			goto out_unlock;
1249 		}
1250 
1251 		for (i = 0; i < nmap; i++) {
1252 			offset = max_t(loff_t, start,
1253 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1254 
1255 			/* Landed in a data extent */
1256 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1257 			    (map[i].br_state == XFS_EXT_NORM &&
1258 			     !isnullstartblock(map[i].br_startblock)))
1259 				goto out;
1260 
1261 			/*
1262 			 * Landed in an unwritten extent, try to search data
1263 			 * from page cache.
1264 			 */
1265 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1266 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1267 							DATA_OFF, &offset))
1268 					goto out;
1269 			}
1270 		}
1271 
1272 		/*
1273 		 * map[0] is hole or its an unwritten extent but
1274 		 * without data in page cache.  Probably means that
1275 		 * we are reading after EOF if nothing in map[1].
1276 		 */
1277 		if (nmap == 1) {
1278 			error = ENXIO;
1279 			goto out_unlock;
1280 		}
1281 
1282 		ASSERT(i > 1);
1283 
1284 		/*
1285 		 * Nothing was found, proceed to the next round of search
1286 		 * if reading offset not beyond or hit EOF.
1287 		 */
1288 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1289 		start = XFS_FSB_TO_B(mp, fsbno);
1290 		if (start >= isize) {
1291 			error = ENXIO;
1292 			goto out_unlock;
1293 		}
1294 	}
1295 
1296 out:
1297 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1298 
1299 out_unlock:
1300 	xfs_iunlock(ip, lock);
1301 
1302 	if (error)
1303 		return -error;
1304 	return offset;
1305 }
1306 
1307 STATIC loff_t
1308 xfs_seek_hole(
1309 	struct file		*file,
1310 	loff_t			start)
1311 {
1312 	struct inode		*inode = file->f_mapping->host;
1313 	struct xfs_inode	*ip = XFS_I(inode);
1314 	struct xfs_mount	*mp = ip->i_mount;
1315 	loff_t			uninitialized_var(offset);
1316 	xfs_fsize_t		isize;
1317 	xfs_fileoff_t		fsbno;
1318 	xfs_filblks_t		end;
1319 	uint			lock;
1320 	int			error;
1321 
1322 	if (XFS_FORCED_SHUTDOWN(mp))
1323 		return -XFS_ERROR(EIO);
1324 
1325 	lock = xfs_ilock_data_map_shared(ip);
1326 
1327 	isize = i_size_read(inode);
1328 	if (start >= isize) {
1329 		error = ENXIO;
1330 		goto out_unlock;
1331 	}
1332 
1333 	fsbno = XFS_B_TO_FSBT(mp, start);
1334 	end = XFS_B_TO_FSB(mp, isize);
1335 
1336 	for (;;) {
1337 		struct xfs_bmbt_irec	map[2];
1338 		int			nmap = 2;
1339 		unsigned int		i;
1340 
1341 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1342 				       XFS_BMAPI_ENTIRE);
1343 		if (error)
1344 			goto out_unlock;
1345 
1346 		/* No extents at given offset, must be beyond EOF */
1347 		if (nmap == 0) {
1348 			error = ENXIO;
1349 			goto out_unlock;
1350 		}
1351 
1352 		for (i = 0; i < nmap; i++) {
1353 			offset = max_t(loff_t, start,
1354 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1355 
1356 			/* Landed in a hole */
1357 			if (map[i].br_startblock == HOLESTARTBLOCK)
1358 				goto out;
1359 
1360 			/*
1361 			 * Landed in an unwritten extent, try to search hole
1362 			 * from page cache.
1363 			 */
1364 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1365 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1366 							HOLE_OFF, &offset))
1367 					goto out;
1368 			}
1369 		}
1370 
1371 		/*
1372 		 * map[0] contains data or its unwritten but contains
1373 		 * data in page cache, probably means that we are
1374 		 * reading after EOF.  We should fix offset to point
1375 		 * to the end of the file(i.e., there is an implicit
1376 		 * hole at the end of any file).
1377 		 */
1378 		if (nmap == 1) {
1379 			offset = isize;
1380 			break;
1381 		}
1382 
1383 		ASSERT(i > 1);
1384 
1385 		/*
1386 		 * Both mappings contains data, proceed to the next round of
1387 		 * search if the current reading offset not beyond or hit EOF.
1388 		 */
1389 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1390 		start = XFS_FSB_TO_B(mp, fsbno);
1391 		if (start >= isize) {
1392 			offset = isize;
1393 			break;
1394 		}
1395 	}
1396 
1397 out:
1398 	/*
1399 	 * At this point, we must have found a hole.  However, the returned
1400 	 * offset may be bigger than the file size as it may be aligned to
1401 	 * page boundary for unwritten extents, we need to deal with this
1402 	 * situation in particular.
1403 	 */
1404 	offset = min_t(loff_t, offset, isize);
1405 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1406 
1407 out_unlock:
1408 	xfs_iunlock(ip, lock);
1409 
1410 	if (error)
1411 		return -error;
1412 	return offset;
1413 }
1414 
1415 STATIC loff_t
1416 xfs_file_llseek(
1417 	struct file	*file,
1418 	loff_t		offset,
1419 	int		origin)
1420 {
1421 	switch (origin) {
1422 	case SEEK_END:
1423 	case SEEK_CUR:
1424 	case SEEK_SET:
1425 		return generic_file_llseek(file, offset, origin);
1426 	case SEEK_DATA:
1427 		return xfs_seek_data(file, offset);
1428 	case SEEK_HOLE:
1429 		return xfs_seek_hole(file, offset);
1430 	default:
1431 		return -EINVAL;
1432 	}
1433 }
1434 
1435 const struct file_operations xfs_file_operations = {
1436 	.llseek		= xfs_file_llseek,
1437 	.read		= do_sync_read,
1438 	.write		= do_sync_write,
1439 	.aio_read	= xfs_file_aio_read,
1440 	.aio_write	= xfs_file_aio_write,
1441 	.splice_read	= xfs_file_splice_read,
1442 	.splice_write	= xfs_file_splice_write,
1443 	.unlocked_ioctl	= xfs_file_ioctl,
1444 #ifdef CONFIG_COMPAT
1445 	.compat_ioctl	= xfs_file_compat_ioctl,
1446 #endif
1447 	.mmap		= xfs_file_mmap,
1448 	.open		= xfs_file_open,
1449 	.release	= xfs_file_release,
1450 	.fsync		= xfs_file_fsync,
1451 	.fallocate	= xfs_file_fallocate,
1452 };
1453 
1454 const struct file_operations xfs_dir_file_operations = {
1455 	.open		= xfs_dir_open,
1456 	.read		= generic_read_dir,
1457 	.iterate	= xfs_file_readdir,
1458 	.llseek		= generic_file_llseek,
1459 	.unlocked_ioctl	= xfs_file_ioctl,
1460 #ifdef CONFIG_COMPAT
1461 	.compat_ioctl	= xfs_file_compat_ioctl,
1462 #endif
1463 	.fsync		= xfs_dir_fsync,
1464 };
1465 
1466 static const struct vm_operations_struct xfs_file_vm_ops = {
1467 	.fault		= filemap_fault,
1468 	.page_mkwrite	= xfs_vm_page_mkwrite,
1469 	.remap_pages	= generic_file_remap_pages,
1470 };
1471