xref: /openbmc/linux/fs/xfs/xfs_file.c (revision f3a8b664)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Locking primitives for read and write IO paths to ensure we consistently use
52  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53  */
54 static inline void
55 xfs_rw_ilock(
56 	struct xfs_inode	*ip,
57 	int			type)
58 {
59 	if (type & XFS_IOLOCK_EXCL)
60 		inode_lock(VFS_I(ip));
61 	xfs_ilock(ip, type);
62 }
63 
64 static inline void
65 xfs_rw_iunlock(
66 	struct xfs_inode	*ip,
67 	int			type)
68 {
69 	xfs_iunlock(ip, type);
70 	if (type & XFS_IOLOCK_EXCL)
71 		inode_unlock(VFS_I(ip));
72 }
73 
74 static inline void
75 xfs_rw_ilock_demote(
76 	struct xfs_inode	*ip,
77 	int			type)
78 {
79 	xfs_ilock_demote(ip, type);
80 	if (type & XFS_IOLOCK_EXCL)
81 		inode_unlock(VFS_I(ip));
82 }
83 
84 /*
85  * Clear the specified ranges to zero through either the pagecache or DAX.
86  * Holes and unwritten extents will be left as-is as they already are zeroed.
87  */
88 int
89 xfs_zero_range(
90 	struct xfs_inode	*ip,
91 	xfs_off_t		pos,
92 	xfs_off_t		count,
93 	bool			*did_zero)
94 {
95 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
96 }
97 
98 int
99 xfs_update_prealloc_flags(
100 	struct xfs_inode	*ip,
101 	enum xfs_prealloc_flags	flags)
102 {
103 	struct xfs_trans	*tp;
104 	int			error;
105 
106 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 			0, 0, 0, &tp);
108 	if (error)
109 		return error;
110 
111 	xfs_ilock(ip, XFS_ILOCK_EXCL);
112 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113 
114 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
115 		VFS_I(ip)->i_mode &= ~S_ISUID;
116 		if (VFS_I(ip)->i_mode & S_IXGRP)
117 			VFS_I(ip)->i_mode &= ~S_ISGID;
118 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 	}
120 
121 	if (flags & XFS_PREALLOC_SET)
122 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 	if (flags & XFS_PREALLOC_CLEAR)
124 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125 
126 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 	if (flags & XFS_PREALLOC_SYNC)
128 		xfs_trans_set_sync(tp);
129 	return xfs_trans_commit(tp);
130 }
131 
132 /*
133  * Fsync operations on directories are much simpler than on regular files,
134  * as there is no file data to flush, and thus also no need for explicit
135  * cache flush operations, and there are no non-transaction metadata updates
136  * on directories either.
137  */
138 STATIC int
139 xfs_dir_fsync(
140 	struct file		*file,
141 	loff_t			start,
142 	loff_t			end,
143 	int			datasync)
144 {
145 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
146 	struct xfs_mount	*mp = ip->i_mount;
147 	xfs_lsn_t		lsn = 0;
148 
149 	trace_xfs_dir_fsync(ip);
150 
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip))
153 		lsn = ip->i_itemp->ili_last_lsn;
154 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
155 
156 	if (!lsn)
157 		return 0;
158 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160 
161 STATIC int
162 xfs_file_fsync(
163 	struct file		*file,
164 	loff_t			start,
165 	loff_t			end,
166 	int			datasync)
167 {
168 	struct inode		*inode = file->f_mapping->host;
169 	struct xfs_inode	*ip = XFS_I(inode);
170 	struct xfs_mount	*mp = ip->i_mount;
171 	int			error = 0;
172 	int			log_flushed = 0;
173 	xfs_lsn_t		lsn = 0;
174 
175 	trace_xfs_file_fsync(ip);
176 
177 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 	if (error)
179 		return error;
180 
181 	if (XFS_FORCED_SHUTDOWN(mp))
182 		return -EIO;
183 
184 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 
186 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 		/*
188 		 * If we have an RT and/or log subvolume we need to make sure
189 		 * to flush the write cache the device used for file data
190 		 * first.  This is to ensure newly written file data make
191 		 * it to disk before logging the new inode size in case of
192 		 * an extending write.
193 		 */
194 		if (XFS_IS_REALTIME_INODE(ip))
195 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 	}
199 
200 	/*
201 	 * All metadata updates are logged, which means that we just have to
202 	 * flush the log up to the latest LSN that touched the inode. If we have
203 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 	 * log force before we clear the ili_fsync_fields field. This ensures
205 	 * that we don't get a racing sync operation that does not wait for the
206 	 * metadata to hit the journal before returning. If we race with
207 	 * clearing the ili_fsync_fields, then all that will happen is the log
208 	 * force will do nothing as the lsn will already be on disk. We can't
209 	 * race with setting ili_fsync_fields because that is done under
210 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 	 * until after the ili_fsync_fields is cleared.
212 	 */
213 	xfs_ilock(ip, XFS_ILOCK_SHARED);
214 	if (xfs_ipincount(ip)) {
215 		if (!datasync ||
216 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 			lsn = ip->i_itemp->ili_last_lsn;
218 	}
219 
220 	if (lsn) {
221 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 		ip->i_itemp->ili_fsync_fields = 0;
223 	}
224 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
225 
226 	/*
227 	 * If we only have a single device, and the log force about was
228 	 * a no-op we might have to flush the data device cache here.
229 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 	 * an already allocated file and thus do not have any metadata to
231 	 * commit.
232 	 */
233 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 	    mp->m_logdev_targp == mp->m_ddev_targp &&
235 	    !XFS_IS_REALTIME_INODE(ip) &&
236 	    !log_flushed)
237 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
238 
239 	return error;
240 }
241 
242 STATIC ssize_t
243 xfs_file_dio_aio_read(
244 	struct kiocb		*iocb,
245 	struct iov_iter		*to)
246 {
247 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
248 	struct inode		*inode = mapping->host;
249 	struct xfs_inode	*ip = XFS_I(inode);
250 	loff_t			isize = i_size_read(inode);
251 	size_t			count = iov_iter_count(to);
252 	loff_t			end = iocb->ki_pos + count - 1;
253 	struct iov_iter		data;
254 	struct xfs_buftarg	*target;
255 	ssize_t			ret = 0;
256 
257 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
258 
259 	if (!count)
260 		return 0; /* skip atime */
261 
262 	if (XFS_IS_REALTIME_INODE(ip))
263 		target = ip->i_mount->m_rtdev_targp;
264 	else
265 		target = ip->i_mount->m_ddev_targp;
266 
267 	/* DIO must be aligned to device logical sector size */
268 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
269 		if (iocb->ki_pos == isize)
270 			return 0;
271 		return -EINVAL;
272 	}
273 
274 	file_accessed(iocb->ki_filp);
275 
276 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
277 	if (mapping->nrpages) {
278 		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
279 		if (ret)
280 			goto out_unlock;
281 
282 		/*
283 		 * Invalidate whole pages. This can return an error if we fail
284 		 * to invalidate a page, but this should never happen on XFS.
285 		 * Warn if it does fail.
286 		 */
287 		ret = invalidate_inode_pages2_range(mapping,
288 				iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
289 		WARN_ON_ONCE(ret);
290 		ret = 0;
291 	}
292 
293 	data = *to;
294 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
295 			xfs_get_blocks_direct, NULL, NULL, 0);
296 	if (ret >= 0) {
297 		iocb->ki_pos += ret;
298 		iov_iter_advance(to, ret);
299 	}
300 
301 out_unlock:
302 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
303 	return ret;
304 }
305 
306 static noinline ssize_t
307 xfs_file_dax_read(
308 	struct kiocb		*iocb,
309 	struct iov_iter		*to)
310 {
311 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
312 	size_t			count = iov_iter_count(to);
313 	ssize_t			ret = 0;
314 
315 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
316 
317 	if (!count)
318 		return 0; /* skip atime */
319 
320 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
321 	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
322 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323 
324 	file_accessed(iocb->ki_filp);
325 	return ret;
326 }
327 
328 STATIC ssize_t
329 xfs_file_buffered_aio_read(
330 	struct kiocb		*iocb,
331 	struct iov_iter		*to)
332 {
333 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
334 	ssize_t			ret;
335 
336 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
337 
338 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
339 	ret = generic_file_read_iter(iocb, to);
340 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341 
342 	return ret;
343 }
344 
345 STATIC ssize_t
346 xfs_file_read_iter(
347 	struct kiocb		*iocb,
348 	struct iov_iter		*to)
349 {
350 	struct inode		*inode = file_inode(iocb->ki_filp);
351 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
352 	ssize_t			ret = 0;
353 
354 	XFS_STATS_INC(mp, xs_read_calls);
355 
356 	if (XFS_FORCED_SHUTDOWN(mp))
357 		return -EIO;
358 
359 	if (IS_DAX(inode))
360 		ret = xfs_file_dax_read(iocb, to);
361 	else if (iocb->ki_flags & IOCB_DIRECT)
362 		ret = xfs_file_dio_aio_read(iocb, to);
363 	else
364 		ret = xfs_file_buffered_aio_read(iocb, to);
365 
366 	if (ret > 0)
367 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
368 	return ret;
369 }
370 
371 /*
372  * Zero any on disk space between the current EOF and the new, larger EOF.
373  *
374  * This handles the normal case of zeroing the remainder of the last block in
375  * the file and the unusual case of zeroing blocks out beyond the size of the
376  * file.  This second case only happens with fixed size extents and when the
377  * system crashes before the inode size was updated but after blocks were
378  * allocated.
379  *
380  * Expects the iolock to be held exclusive, and will take the ilock internally.
381  */
382 int					/* error (positive) */
383 xfs_zero_eof(
384 	struct xfs_inode	*ip,
385 	xfs_off_t		offset,		/* starting I/O offset */
386 	xfs_fsize_t		isize,		/* current inode size */
387 	bool			*did_zeroing)
388 {
389 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
390 	ASSERT(offset > isize);
391 
392 	trace_xfs_zero_eof(ip, isize, offset - isize);
393 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
394 }
395 
396 /*
397  * Common pre-write limit and setup checks.
398  *
399  * Called with the iolocked held either shared and exclusive according to
400  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
401  * if called for a direct write beyond i_size.
402  */
403 STATIC ssize_t
404 xfs_file_aio_write_checks(
405 	struct kiocb		*iocb,
406 	struct iov_iter		*from,
407 	int			*iolock)
408 {
409 	struct file		*file = iocb->ki_filp;
410 	struct inode		*inode = file->f_mapping->host;
411 	struct xfs_inode	*ip = XFS_I(inode);
412 	ssize_t			error = 0;
413 	size_t			count = iov_iter_count(from);
414 	bool			drained_dio = false;
415 
416 restart:
417 	error = generic_write_checks(iocb, from);
418 	if (error <= 0)
419 		return error;
420 
421 	error = xfs_break_layouts(inode, iolock, true);
422 	if (error)
423 		return error;
424 
425 	/* For changing security info in file_remove_privs() we need i_mutex */
426 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
427 		xfs_rw_iunlock(ip, *iolock);
428 		*iolock = XFS_IOLOCK_EXCL;
429 		xfs_rw_ilock(ip, *iolock);
430 		goto restart;
431 	}
432 	/*
433 	 * If the offset is beyond the size of the file, we need to zero any
434 	 * blocks that fall between the existing EOF and the start of this
435 	 * write.  If zeroing is needed and we are currently holding the
436 	 * iolock shared, we need to update it to exclusive which implies
437 	 * having to redo all checks before.
438 	 *
439 	 * We need to serialise against EOF updates that occur in IO
440 	 * completions here. We want to make sure that nobody is changing the
441 	 * size while we do this check until we have placed an IO barrier (i.e.
442 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
443 	 * The spinlock effectively forms a memory barrier once we have the
444 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
445 	 * and hence be able to correctly determine if we need to run zeroing.
446 	 */
447 	spin_lock(&ip->i_flags_lock);
448 	if (iocb->ki_pos > i_size_read(inode)) {
449 		bool	zero = false;
450 
451 		spin_unlock(&ip->i_flags_lock);
452 		if (!drained_dio) {
453 			if (*iolock == XFS_IOLOCK_SHARED) {
454 				xfs_rw_iunlock(ip, *iolock);
455 				*iolock = XFS_IOLOCK_EXCL;
456 				xfs_rw_ilock(ip, *iolock);
457 				iov_iter_reexpand(from, count);
458 			}
459 			/*
460 			 * We now have an IO submission barrier in place, but
461 			 * AIO can do EOF updates during IO completion and hence
462 			 * we now need to wait for all of them to drain. Non-AIO
463 			 * DIO will have drained before we are given the
464 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
465 			 * no-op.
466 			 */
467 			inode_dio_wait(inode);
468 			drained_dio = true;
469 			goto restart;
470 		}
471 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
472 		if (error)
473 			return error;
474 	} else
475 		spin_unlock(&ip->i_flags_lock);
476 
477 	/*
478 	 * Updating the timestamps will grab the ilock again from
479 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
480 	 * lock above.  Eventually we should look into a way to avoid
481 	 * the pointless lock roundtrip.
482 	 */
483 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
484 		error = file_update_time(file);
485 		if (error)
486 			return error;
487 	}
488 
489 	/*
490 	 * If we're writing the file then make sure to clear the setuid and
491 	 * setgid bits if the process is not being run by root.  This keeps
492 	 * people from modifying setuid and setgid binaries.
493 	 */
494 	if (!IS_NOSEC(inode))
495 		return file_remove_privs(file);
496 	return 0;
497 }
498 
499 /*
500  * xfs_file_dio_aio_write - handle direct IO writes
501  *
502  * Lock the inode appropriately to prepare for and issue a direct IO write.
503  * By separating it from the buffered write path we remove all the tricky to
504  * follow locking changes and looping.
505  *
506  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
507  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
508  * pages are flushed out.
509  *
510  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
511  * allowing them to be done in parallel with reads and other direct IO writes.
512  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
513  * needs to do sub-block zeroing and that requires serialisation against other
514  * direct IOs to the same block. In this case we need to serialise the
515  * submission of the unaligned IOs so that we don't get racing block zeroing in
516  * the dio layer.  To avoid the problem with aio, we also need to wait for
517  * outstanding IOs to complete so that unwritten extent conversion is completed
518  * before we try to map the overlapping block. This is currently implemented by
519  * hitting it with a big hammer (i.e. inode_dio_wait()).
520  *
521  * Returns with locks held indicated by @iolock and errors indicated by
522  * negative return values.
523  */
524 STATIC ssize_t
525 xfs_file_dio_aio_write(
526 	struct kiocb		*iocb,
527 	struct iov_iter		*from)
528 {
529 	struct file		*file = iocb->ki_filp;
530 	struct address_space	*mapping = file->f_mapping;
531 	struct inode		*inode = mapping->host;
532 	struct xfs_inode	*ip = XFS_I(inode);
533 	struct xfs_mount	*mp = ip->i_mount;
534 	ssize_t			ret = 0;
535 	int			unaligned_io = 0;
536 	int			iolock;
537 	size_t			count = iov_iter_count(from);
538 	loff_t			end;
539 	struct iov_iter		data;
540 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
541 					mp->m_rtdev_targp : mp->m_ddev_targp;
542 
543 	/* DIO must be aligned to device logical sector size */
544 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
545 		return -EINVAL;
546 
547 	/*
548 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
549 	 * the file system block size.  We don't need to consider the EOF
550 	 * extension case here because xfs_file_aio_write_checks() will relock
551 	 * the inode as necessary for EOF zeroing cases and fill out the new
552 	 * inode size as appropriate.
553 	 */
554 	if ((iocb->ki_pos & mp->m_blockmask) ||
555 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
556 		unaligned_io = 1;
557 		iolock = XFS_IOLOCK_EXCL;
558 	} else {
559 		iolock = XFS_IOLOCK_SHARED;
560 	}
561 
562 	xfs_rw_ilock(ip, iolock);
563 
564 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
565 	if (ret)
566 		goto out;
567 	count = iov_iter_count(from);
568 	end = iocb->ki_pos + count - 1;
569 
570 	if (mapping->nrpages) {
571 		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
572 		if (ret)
573 			goto out;
574 
575 		/*
576 		 * Invalidate whole pages. This can return an error if we fail
577 		 * to invalidate a page, but this should never happen on XFS.
578 		 * Warn if it does fail.
579 		 */
580 		ret = invalidate_inode_pages2_range(mapping,
581 				iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
582 		WARN_ON_ONCE(ret);
583 		ret = 0;
584 	}
585 
586 	/*
587 	 * If we are doing unaligned IO, wait for all other IO to drain,
588 	 * otherwise demote the lock if we had to take the exclusive lock
589 	 * for other reasons in xfs_file_aio_write_checks.
590 	 */
591 	if (unaligned_io)
592 		inode_dio_wait(inode);
593 	else if (iolock == XFS_IOLOCK_EXCL) {
594 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
595 		iolock = XFS_IOLOCK_SHARED;
596 	}
597 
598 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
599 
600 	/* If this is a block-aligned directio CoW, remap immediately. */
601 	if (xfs_is_reflink_inode(ip) && !unaligned_io) {
602 		ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
603 		if (ret)
604 			goto out;
605 	}
606 
607 	data = *from;
608 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
609 			xfs_get_blocks_direct, xfs_end_io_direct_write,
610 			NULL, DIO_ASYNC_EXTEND);
611 
612 	/* see generic_file_direct_write() for why this is necessary */
613 	if (mapping->nrpages) {
614 		invalidate_inode_pages2_range(mapping,
615 					      iocb->ki_pos >> PAGE_SHIFT,
616 					      end >> PAGE_SHIFT);
617 	}
618 
619 	if (ret > 0) {
620 		iocb->ki_pos += ret;
621 		iov_iter_advance(from, ret);
622 	}
623 out:
624 	xfs_rw_iunlock(ip, iolock);
625 
626 	/*
627 	 * No fallback to buffered IO on errors for XFS, direct IO will either
628 	 * complete fully or fail.
629 	 */
630 	ASSERT(ret < 0 || ret == count);
631 	return ret;
632 }
633 
634 static noinline ssize_t
635 xfs_file_dax_write(
636 	struct kiocb		*iocb,
637 	struct iov_iter		*from)
638 {
639 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
640 	struct xfs_inode	*ip = XFS_I(inode);
641 	int			iolock = XFS_IOLOCK_EXCL;
642 	ssize_t			ret, error = 0;
643 	size_t			count;
644 	loff_t			pos;
645 
646 	xfs_rw_ilock(ip, iolock);
647 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
648 	if (ret)
649 		goto out;
650 
651 	pos = iocb->ki_pos;
652 	count = iov_iter_count(from);
653 
654 	trace_xfs_file_dax_write(ip, count, pos);
655 
656 	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
657 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
658 		i_size_write(inode, iocb->ki_pos);
659 		error = xfs_setfilesize(ip, pos, ret);
660 	}
661 
662 out:
663 	xfs_rw_iunlock(ip, iolock);
664 	return error ? error : ret;
665 }
666 
667 STATIC ssize_t
668 xfs_file_buffered_aio_write(
669 	struct kiocb		*iocb,
670 	struct iov_iter		*from)
671 {
672 	struct file		*file = iocb->ki_filp;
673 	struct address_space	*mapping = file->f_mapping;
674 	struct inode		*inode = mapping->host;
675 	struct xfs_inode	*ip = XFS_I(inode);
676 	ssize_t			ret;
677 	int			enospc = 0;
678 	int			iolock = XFS_IOLOCK_EXCL;
679 
680 	xfs_rw_ilock(ip, iolock);
681 
682 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
683 	if (ret)
684 		goto out;
685 
686 	/* We can write back this queue in page reclaim */
687 	current->backing_dev_info = inode_to_bdi(inode);
688 
689 write_retry:
690 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
691 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
692 	if (likely(ret >= 0))
693 		iocb->ki_pos += ret;
694 
695 	/*
696 	 * If we hit a space limit, try to free up some lingering preallocated
697 	 * space before returning an error. In the case of ENOSPC, first try to
698 	 * write back all dirty inodes to free up some of the excess reserved
699 	 * metadata space. This reduces the chances that the eofblocks scan
700 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
701 	 * also behaves as a filter to prevent too many eofblocks scans from
702 	 * running at the same time.
703 	 */
704 	if (ret == -EDQUOT && !enospc) {
705 		enospc = xfs_inode_free_quota_eofblocks(ip);
706 		if (enospc)
707 			goto write_retry;
708 		enospc = xfs_inode_free_quota_cowblocks(ip);
709 		if (enospc)
710 			goto write_retry;
711 	} else if (ret == -ENOSPC && !enospc) {
712 		struct xfs_eofblocks eofb = {0};
713 
714 		enospc = 1;
715 		xfs_flush_inodes(ip->i_mount);
716 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
717 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
718 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
719 		goto write_retry;
720 	}
721 
722 	current->backing_dev_info = NULL;
723 out:
724 	xfs_rw_iunlock(ip, iolock);
725 	return ret;
726 }
727 
728 STATIC ssize_t
729 xfs_file_write_iter(
730 	struct kiocb		*iocb,
731 	struct iov_iter		*from)
732 {
733 	struct file		*file = iocb->ki_filp;
734 	struct address_space	*mapping = file->f_mapping;
735 	struct inode		*inode = mapping->host;
736 	struct xfs_inode	*ip = XFS_I(inode);
737 	ssize_t			ret;
738 	size_t			ocount = iov_iter_count(from);
739 
740 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
741 
742 	if (ocount == 0)
743 		return 0;
744 
745 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
746 		return -EIO;
747 
748 	if (IS_DAX(inode))
749 		ret = xfs_file_dax_write(iocb, from);
750 	else if (iocb->ki_flags & IOCB_DIRECT) {
751 		/*
752 		 * Allow a directio write to fall back to a buffered
753 		 * write *only* in the case that we're doing a reflink
754 		 * CoW.  In all other directio scenarios we do not
755 		 * allow an operation to fall back to buffered mode.
756 		 */
757 		ret = xfs_file_dio_aio_write(iocb, from);
758 		if (ret == -EREMCHG)
759 			goto buffered;
760 	} else {
761 buffered:
762 		ret = xfs_file_buffered_aio_write(iocb, from);
763 	}
764 
765 	if (ret > 0) {
766 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
767 
768 		/* Handle various SYNC-type writes */
769 		ret = generic_write_sync(iocb, ret);
770 	}
771 	return ret;
772 }
773 
774 #define	XFS_FALLOC_FL_SUPPORTED						\
775 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
776 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
777 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
778 
779 STATIC long
780 xfs_file_fallocate(
781 	struct file		*file,
782 	int			mode,
783 	loff_t			offset,
784 	loff_t			len)
785 {
786 	struct inode		*inode = file_inode(file);
787 	struct xfs_inode	*ip = XFS_I(inode);
788 	long			error;
789 	enum xfs_prealloc_flags	flags = 0;
790 	uint			iolock = XFS_IOLOCK_EXCL;
791 	loff_t			new_size = 0;
792 	bool			do_file_insert = 0;
793 
794 	if (!S_ISREG(inode->i_mode))
795 		return -EINVAL;
796 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
797 		return -EOPNOTSUPP;
798 
799 	xfs_ilock(ip, iolock);
800 	error = xfs_break_layouts(inode, &iolock, false);
801 	if (error)
802 		goto out_unlock;
803 
804 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
805 	iolock |= XFS_MMAPLOCK_EXCL;
806 
807 	if (mode & FALLOC_FL_PUNCH_HOLE) {
808 		error = xfs_free_file_space(ip, offset, len);
809 		if (error)
810 			goto out_unlock;
811 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
812 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
813 
814 		if (offset & blksize_mask || len & blksize_mask) {
815 			error = -EINVAL;
816 			goto out_unlock;
817 		}
818 
819 		/*
820 		 * There is no need to overlap collapse range with EOF,
821 		 * in which case it is effectively a truncate operation
822 		 */
823 		if (offset + len >= i_size_read(inode)) {
824 			error = -EINVAL;
825 			goto out_unlock;
826 		}
827 
828 		new_size = i_size_read(inode) - len;
829 
830 		error = xfs_collapse_file_space(ip, offset, len);
831 		if (error)
832 			goto out_unlock;
833 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
834 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
835 
836 		new_size = i_size_read(inode) + len;
837 		if (offset & blksize_mask || len & blksize_mask) {
838 			error = -EINVAL;
839 			goto out_unlock;
840 		}
841 
842 		/* check the new inode size does not wrap through zero */
843 		if (new_size > inode->i_sb->s_maxbytes) {
844 			error = -EFBIG;
845 			goto out_unlock;
846 		}
847 
848 		/* Offset should be less than i_size */
849 		if (offset >= i_size_read(inode)) {
850 			error = -EINVAL;
851 			goto out_unlock;
852 		}
853 		do_file_insert = 1;
854 	} else {
855 		flags |= XFS_PREALLOC_SET;
856 
857 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
858 		    offset + len > i_size_read(inode)) {
859 			new_size = offset + len;
860 			error = inode_newsize_ok(inode, new_size);
861 			if (error)
862 				goto out_unlock;
863 		}
864 
865 		if (mode & FALLOC_FL_ZERO_RANGE)
866 			error = xfs_zero_file_space(ip, offset, len);
867 		else {
868 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
869 				error = xfs_reflink_unshare(ip, offset, len);
870 				if (error)
871 					goto out_unlock;
872 			}
873 			error = xfs_alloc_file_space(ip, offset, len,
874 						     XFS_BMAPI_PREALLOC);
875 		}
876 		if (error)
877 			goto out_unlock;
878 	}
879 
880 	if (file->f_flags & O_DSYNC)
881 		flags |= XFS_PREALLOC_SYNC;
882 
883 	error = xfs_update_prealloc_flags(ip, flags);
884 	if (error)
885 		goto out_unlock;
886 
887 	/* Change file size if needed */
888 	if (new_size) {
889 		struct iattr iattr;
890 
891 		iattr.ia_valid = ATTR_SIZE;
892 		iattr.ia_size = new_size;
893 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
894 		if (error)
895 			goto out_unlock;
896 	}
897 
898 	/*
899 	 * Perform hole insertion now that the file size has been
900 	 * updated so that if we crash during the operation we don't
901 	 * leave shifted extents past EOF and hence losing access to
902 	 * the data that is contained within them.
903 	 */
904 	if (do_file_insert)
905 		error = xfs_insert_file_space(ip, offset, len);
906 
907 out_unlock:
908 	xfs_iunlock(ip, iolock);
909 	return error;
910 }
911 
912 STATIC ssize_t
913 xfs_file_copy_range(
914 	struct file	*file_in,
915 	loff_t		pos_in,
916 	struct file	*file_out,
917 	loff_t		pos_out,
918 	size_t		len,
919 	unsigned int	flags)
920 {
921 	int		error;
922 
923 	error = xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
924 				     len, false);
925 	if (error)
926 		return error;
927 	return len;
928 }
929 
930 STATIC int
931 xfs_file_clone_range(
932 	struct file	*file_in,
933 	loff_t		pos_in,
934 	struct file	*file_out,
935 	loff_t		pos_out,
936 	u64		len)
937 {
938 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
939 				     len, false);
940 }
941 
942 #define XFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
943 STATIC ssize_t
944 xfs_file_dedupe_range(
945 	struct file	*src_file,
946 	u64		loff,
947 	u64		len,
948 	struct file	*dst_file,
949 	u64		dst_loff)
950 {
951 	int		error;
952 
953 	/*
954 	 * Limit the total length we will dedupe for each operation.
955 	 * This is intended to bound the total time spent in this
956 	 * ioctl to something sane.
957 	 */
958 	if (len > XFS_MAX_DEDUPE_LEN)
959 		len = XFS_MAX_DEDUPE_LEN;
960 
961 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
962 				     len, true);
963 	if (error)
964 		return error;
965 	return len;
966 }
967 
968 STATIC int
969 xfs_file_open(
970 	struct inode	*inode,
971 	struct file	*file)
972 {
973 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
974 		return -EFBIG;
975 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
976 		return -EIO;
977 	return 0;
978 }
979 
980 STATIC int
981 xfs_dir_open(
982 	struct inode	*inode,
983 	struct file	*file)
984 {
985 	struct xfs_inode *ip = XFS_I(inode);
986 	int		mode;
987 	int		error;
988 
989 	error = xfs_file_open(inode, file);
990 	if (error)
991 		return error;
992 
993 	/*
994 	 * If there are any blocks, read-ahead block 0 as we're almost
995 	 * certain to have the next operation be a read there.
996 	 */
997 	mode = xfs_ilock_data_map_shared(ip);
998 	if (ip->i_d.di_nextents > 0)
999 		xfs_dir3_data_readahead(ip, 0, -1);
1000 	xfs_iunlock(ip, mode);
1001 	return 0;
1002 }
1003 
1004 STATIC int
1005 xfs_file_release(
1006 	struct inode	*inode,
1007 	struct file	*filp)
1008 {
1009 	return xfs_release(XFS_I(inode));
1010 }
1011 
1012 STATIC int
1013 xfs_file_readdir(
1014 	struct file	*file,
1015 	struct dir_context *ctx)
1016 {
1017 	struct inode	*inode = file_inode(file);
1018 	xfs_inode_t	*ip = XFS_I(inode);
1019 	size_t		bufsize;
1020 
1021 	/*
1022 	 * The Linux API doesn't pass down the total size of the buffer
1023 	 * we read into down to the filesystem.  With the filldir concept
1024 	 * it's not needed for correct information, but the XFS dir2 leaf
1025 	 * code wants an estimate of the buffer size to calculate it's
1026 	 * readahead window and size the buffers used for mapping to
1027 	 * physical blocks.
1028 	 *
1029 	 * Try to give it an estimate that's good enough, maybe at some
1030 	 * point we can change the ->readdir prototype to include the
1031 	 * buffer size.  For now we use the current glibc buffer size.
1032 	 */
1033 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1034 
1035 	return xfs_readdir(ip, ctx, bufsize);
1036 }
1037 
1038 /*
1039  * This type is designed to indicate the type of offset we would like
1040  * to search from page cache for xfs_seek_hole_data().
1041  */
1042 enum {
1043 	HOLE_OFF = 0,
1044 	DATA_OFF,
1045 };
1046 
1047 /*
1048  * Lookup the desired type of offset from the given page.
1049  *
1050  * On success, return true and the offset argument will point to the
1051  * start of the region that was found.  Otherwise this function will
1052  * return false and keep the offset argument unchanged.
1053  */
1054 STATIC bool
1055 xfs_lookup_buffer_offset(
1056 	struct page		*page,
1057 	loff_t			*offset,
1058 	unsigned int		type)
1059 {
1060 	loff_t			lastoff = page_offset(page);
1061 	bool			found = false;
1062 	struct buffer_head	*bh, *head;
1063 
1064 	bh = head = page_buffers(page);
1065 	do {
1066 		/*
1067 		 * Unwritten extents that have data in the page
1068 		 * cache covering them can be identified by the
1069 		 * BH_Unwritten state flag.  Pages with multiple
1070 		 * buffers might have a mix of holes, data and
1071 		 * unwritten extents - any buffer with valid
1072 		 * data in it should have BH_Uptodate flag set
1073 		 * on it.
1074 		 */
1075 		if (buffer_unwritten(bh) ||
1076 		    buffer_uptodate(bh)) {
1077 			if (type == DATA_OFF)
1078 				found = true;
1079 		} else {
1080 			if (type == HOLE_OFF)
1081 				found = true;
1082 		}
1083 
1084 		if (found) {
1085 			*offset = lastoff;
1086 			break;
1087 		}
1088 		lastoff += bh->b_size;
1089 	} while ((bh = bh->b_this_page) != head);
1090 
1091 	return found;
1092 }
1093 
1094 /*
1095  * This routine is called to find out and return a data or hole offset
1096  * from the page cache for unwritten extents according to the desired
1097  * type for xfs_seek_hole_data().
1098  *
1099  * The argument offset is used to tell where we start to search from the
1100  * page cache.  Map is used to figure out the end points of the range to
1101  * lookup pages.
1102  *
1103  * Return true if the desired type of offset was found, and the argument
1104  * offset is filled with that address.  Otherwise, return false and keep
1105  * offset unchanged.
1106  */
1107 STATIC bool
1108 xfs_find_get_desired_pgoff(
1109 	struct inode		*inode,
1110 	struct xfs_bmbt_irec	*map,
1111 	unsigned int		type,
1112 	loff_t			*offset)
1113 {
1114 	struct xfs_inode	*ip = XFS_I(inode);
1115 	struct xfs_mount	*mp = ip->i_mount;
1116 	struct pagevec		pvec;
1117 	pgoff_t			index;
1118 	pgoff_t			end;
1119 	loff_t			endoff;
1120 	loff_t			startoff = *offset;
1121 	loff_t			lastoff = startoff;
1122 	bool			found = false;
1123 
1124 	pagevec_init(&pvec, 0);
1125 
1126 	index = startoff >> PAGE_SHIFT;
1127 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1128 	end = endoff >> PAGE_SHIFT;
1129 	do {
1130 		int		want;
1131 		unsigned	nr_pages;
1132 		unsigned int	i;
1133 
1134 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1135 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1136 					  want);
1137 		/*
1138 		 * No page mapped into given range.  If we are searching holes
1139 		 * and if this is the first time we got into the loop, it means
1140 		 * that the given offset is landed in a hole, return it.
1141 		 *
1142 		 * If we have already stepped through some block buffers to find
1143 		 * holes but they all contains data.  In this case, the last
1144 		 * offset is already updated and pointed to the end of the last
1145 		 * mapped page, if it does not reach the endpoint to search,
1146 		 * that means there should be a hole between them.
1147 		 */
1148 		if (nr_pages == 0) {
1149 			/* Data search found nothing */
1150 			if (type == DATA_OFF)
1151 				break;
1152 
1153 			ASSERT(type == HOLE_OFF);
1154 			if (lastoff == startoff || lastoff < endoff) {
1155 				found = true;
1156 				*offset = lastoff;
1157 			}
1158 			break;
1159 		}
1160 
1161 		/*
1162 		 * At lease we found one page.  If this is the first time we
1163 		 * step into the loop, and if the first page index offset is
1164 		 * greater than the given search offset, a hole was found.
1165 		 */
1166 		if (type == HOLE_OFF && lastoff == startoff &&
1167 		    lastoff < page_offset(pvec.pages[0])) {
1168 			found = true;
1169 			break;
1170 		}
1171 
1172 		for (i = 0; i < nr_pages; i++) {
1173 			struct page	*page = pvec.pages[i];
1174 			loff_t		b_offset;
1175 
1176 			/*
1177 			 * At this point, the page may be truncated or
1178 			 * invalidated (changing page->mapping to NULL),
1179 			 * or even swizzled back from swapper_space to tmpfs
1180 			 * file mapping. However, page->index will not change
1181 			 * because we have a reference on the page.
1182 			 *
1183 			 * Searching done if the page index is out of range.
1184 			 * If the current offset is not reaches the end of
1185 			 * the specified search range, there should be a hole
1186 			 * between them.
1187 			 */
1188 			if (page->index > end) {
1189 				if (type == HOLE_OFF && lastoff < endoff) {
1190 					*offset = lastoff;
1191 					found = true;
1192 				}
1193 				goto out;
1194 			}
1195 
1196 			lock_page(page);
1197 			/*
1198 			 * Page truncated or invalidated(page->mapping == NULL).
1199 			 * We can freely skip it and proceed to check the next
1200 			 * page.
1201 			 */
1202 			if (unlikely(page->mapping != inode->i_mapping)) {
1203 				unlock_page(page);
1204 				continue;
1205 			}
1206 
1207 			if (!page_has_buffers(page)) {
1208 				unlock_page(page);
1209 				continue;
1210 			}
1211 
1212 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1213 			if (found) {
1214 				/*
1215 				 * The found offset may be less than the start
1216 				 * point to search if this is the first time to
1217 				 * come here.
1218 				 */
1219 				*offset = max_t(loff_t, startoff, b_offset);
1220 				unlock_page(page);
1221 				goto out;
1222 			}
1223 
1224 			/*
1225 			 * We either searching data but nothing was found, or
1226 			 * searching hole but found a data buffer.  In either
1227 			 * case, probably the next page contains the desired
1228 			 * things, update the last offset to it so.
1229 			 */
1230 			lastoff = page_offset(page) + PAGE_SIZE;
1231 			unlock_page(page);
1232 		}
1233 
1234 		/*
1235 		 * The number of returned pages less than our desired, search
1236 		 * done.  In this case, nothing was found for searching data,
1237 		 * but we found a hole behind the last offset.
1238 		 */
1239 		if (nr_pages < want) {
1240 			if (type == HOLE_OFF) {
1241 				*offset = lastoff;
1242 				found = true;
1243 			}
1244 			break;
1245 		}
1246 
1247 		index = pvec.pages[i - 1]->index + 1;
1248 		pagevec_release(&pvec);
1249 	} while (index <= end);
1250 
1251 out:
1252 	pagevec_release(&pvec);
1253 	return found;
1254 }
1255 
1256 /*
1257  * caller must lock inode with xfs_ilock_data_map_shared,
1258  * can we craft an appropriate ASSERT?
1259  *
1260  * end is because the VFS-level lseek interface is defined such that any
1261  * offset past i_size shall return -ENXIO, but we use this for quota code
1262  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1263  */
1264 loff_t
1265 __xfs_seek_hole_data(
1266 	struct inode		*inode,
1267 	loff_t			start,
1268 	loff_t			end,
1269 	int			whence)
1270 {
1271 	struct xfs_inode	*ip = XFS_I(inode);
1272 	struct xfs_mount	*mp = ip->i_mount;
1273 	loff_t			uninitialized_var(offset);
1274 	xfs_fileoff_t		fsbno;
1275 	xfs_filblks_t		lastbno;
1276 	int			error;
1277 
1278 	if (start >= end) {
1279 		error = -ENXIO;
1280 		goto out_error;
1281 	}
1282 
1283 	/*
1284 	 * Try to read extents from the first block indicated
1285 	 * by fsbno to the end block of the file.
1286 	 */
1287 	fsbno = XFS_B_TO_FSBT(mp, start);
1288 	lastbno = XFS_B_TO_FSB(mp, end);
1289 
1290 	for (;;) {
1291 		struct xfs_bmbt_irec	map[2];
1292 		int			nmap = 2;
1293 		unsigned int		i;
1294 
1295 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1296 				       XFS_BMAPI_ENTIRE);
1297 		if (error)
1298 			goto out_error;
1299 
1300 		/* No extents at given offset, must be beyond EOF */
1301 		if (nmap == 0) {
1302 			error = -ENXIO;
1303 			goto out_error;
1304 		}
1305 
1306 		for (i = 0; i < nmap; i++) {
1307 			offset = max_t(loff_t, start,
1308 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1309 
1310 			/* Landed in the hole we wanted? */
1311 			if (whence == SEEK_HOLE &&
1312 			    map[i].br_startblock == HOLESTARTBLOCK)
1313 				goto out;
1314 
1315 			/* Landed in the data extent we wanted? */
1316 			if (whence == SEEK_DATA &&
1317 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1318 			     (map[i].br_state == XFS_EXT_NORM &&
1319 			      !isnullstartblock(map[i].br_startblock))))
1320 				goto out;
1321 
1322 			/*
1323 			 * Landed in an unwritten extent, try to search
1324 			 * for hole or data from page cache.
1325 			 */
1326 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1327 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1328 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1329 							&offset))
1330 					goto out;
1331 			}
1332 		}
1333 
1334 		/*
1335 		 * We only received one extent out of the two requested. This
1336 		 * means we've hit EOF and didn't find what we are looking for.
1337 		 */
1338 		if (nmap == 1) {
1339 			/*
1340 			 * If we were looking for a hole, set offset to
1341 			 * the end of the file (i.e., there is an implicit
1342 			 * hole at the end of any file).
1343 		 	 */
1344 			if (whence == SEEK_HOLE) {
1345 				offset = end;
1346 				break;
1347 			}
1348 			/*
1349 			 * If we were looking for data, it's nowhere to be found
1350 			 */
1351 			ASSERT(whence == SEEK_DATA);
1352 			error = -ENXIO;
1353 			goto out_error;
1354 		}
1355 
1356 		ASSERT(i > 1);
1357 
1358 		/*
1359 		 * Nothing was found, proceed to the next round of search
1360 		 * if the next reading offset is not at or beyond EOF.
1361 		 */
1362 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1363 		start = XFS_FSB_TO_B(mp, fsbno);
1364 		if (start >= end) {
1365 			if (whence == SEEK_HOLE) {
1366 				offset = end;
1367 				break;
1368 			}
1369 			ASSERT(whence == SEEK_DATA);
1370 			error = -ENXIO;
1371 			goto out_error;
1372 		}
1373 	}
1374 
1375 out:
1376 	/*
1377 	 * If at this point we have found the hole we wanted, the returned
1378 	 * offset may be bigger than the file size as it may be aligned to
1379 	 * page boundary for unwritten extents.  We need to deal with this
1380 	 * situation in particular.
1381 	 */
1382 	if (whence == SEEK_HOLE)
1383 		offset = min_t(loff_t, offset, end);
1384 
1385 	return offset;
1386 
1387 out_error:
1388 	return error;
1389 }
1390 
1391 STATIC loff_t
1392 xfs_seek_hole_data(
1393 	struct file		*file,
1394 	loff_t			start,
1395 	int			whence)
1396 {
1397 	struct inode		*inode = file->f_mapping->host;
1398 	struct xfs_inode	*ip = XFS_I(inode);
1399 	struct xfs_mount	*mp = ip->i_mount;
1400 	uint			lock;
1401 	loff_t			offset, end;
1402 	int			error = 0;
1403 
1404 	if (XFS_FORCED_SHUTDOWN(mp))
1405 		return -EIO;
1406 
1407 	lock = xfs_ilock_data_map_shared(ip);
1408 
1409 	end = i_size_read(inode);
1410 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1411 	if (offset < 0) {
1412 		error = offset;
1413 		goto out_unlock;
1414 	}
1415 
1416 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1417 
1418 out_unlock:
1419 	xfs_iunlock(ip, lock);
1420 
1421 	if (error)
1422 		return error;
1423 	return offset;
1424 }
1425 
1426 STATIC loff_t
1427 xfs_file_llseek(
1428 	struct file	*file,
1429 	loff_t		offset,
1430 	int		whence)
1431 {
1432 	switch (whence) {
1433 	case SEEK_END:
1434 	case SEEK_CUR:
1435 	case SEEK_SET:
1436 		return generic_file_llseek(file, offset, whence);
1437 	case SEEK_HOLE:
1438 	case SEEK_DATA:
1439 		return xfs_seek_hole_data(file, offset, whence);
1440 	default:
1441 		return -EINVAL;
1442 	}
1443 }
1444 
1445 /*
1446  * Locking for serialisation of IO during page faults. This results in a lock
1447  * ordering of:
1448  *
1449  * mmap_sem (MM)
1450  *   sb_start_pagefault(vfs, freeze)
1451  *     i_mmaplock (XFS - truncate serialisation)
1452  *       page_lock (MM)
1453  *         i_lock (XFS - extent map serialisation)
1454  */
1455 
1456 /*
1457  * mmap()d file has taken write protection fault and is being made writable. We
1458  * can set the page state up correctly for a writable page, which means we can
1459  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1460  * mapping.
1461  */
1462 STATIC int
1463 xfs_filemap_page_mkwrite(
1464 	struct vm_area_struct	*vma,
1465 	struct vm_fault		*vmf)
1466 {
1467 	struct inode		*inode = file_inode(vma->vm_file);
1468 	int			ret;
1469 
1470 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1471 
1472 	sb_start_pagefault(inode->i_sb);
1473 	file_update_time(vma->vm_file);
1474 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1475 
1476 	if (IS_DAX(inode)) {
1477 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1478 	} else {
1479 		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1480 		ret = block_page_mkwrite_return(ret);
1481 	}
1482 
1483 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1484 	sb_end_pagefault(inode->i_sb);
1485 
1486 	return ret;
1487 }
1488 
1489 STATIC int
1490 xfs_filemap_fault(
1491 	struct vm_area_struct	*vma,
1492 	struct vm_fault		*vmf)
1493 {
1494 	struct inode		*inode = file_inode(vma->vm_file);
1495 	int			ret;
1496 
1497 	trace_xfs_filemap_fault(XFS_I(inode));
1498 
1499 	/* DAX can shortcut the normal fault path on write faults! */
1500 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1501 		return xfs_filemap_page_mkwrite(vma, vmf);
1502 
1503 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1504 	if (IS_DAX(inode)) {
1505 		/*
1506 		 * we do not want to trigger unwritten extent conversion on read
1507 		 * faults - that is unnecessary overhead and would also require
1508 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1509 		 * ioend for conversion on read-only mappings.
1510 		 */
1511 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1512 	} else
1513 		ret = filemap_fault(vma, vmf);
1514 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1515 
1516 	return ret;
1517 }
1518 
1519 /*
1520  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1521  * both read and write faults. Hence we need to handle both cases. There is no
1522  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1523  * handle both cases here. @flags carries the information on the type of fault
1524  * occuring.
1525  */
1526 STATIC int
1527 xfs_filemap_pmd_fault(
1528 	struct vm_area_struct	*vma,
1529 	unsigned long		addr,
1530 	pmd_t			*pmd,
1531 	unsigned int		flags)
1532 {
1533 	struct inode		*inode = file_inode(vma->vm_file);
1534 	struct xfs_inode	*ip = XFS_I(inode);
1535 	int			ret;
1536 
1537 	if (!IS_DAX(inode))
1538 		return VM_FAULT_FALLBACK;
1539 
1540 	trace_xfs_filemap_pmd_fault(ip);
1541 
1542 	if (flags & FAULT_FLAG_WRITE) {
1543 		sb_start_pagefault(inode->i_sb);
1544 		file_update_time(vma->vm_file);
1545 	}
1546 
1547 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1548 	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1549 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1550 
1551 	if (flags & FAULT_FLAG_WRITE)
1552 		sb_end_pagefault(inode->i_sb);
1553 
1554 	return ret;
1555 }
1556 
1557 /*
1558  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1559  * updates on write faults. In reality, it's need to serialise against
1560  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1561  * to ensure we serialise the fault barrier in place.
1562  */
1563 static int
1564 xfs_filemap_pfn_mkwrite(
1565 	struct vm_area_struct	*vma,
1566 	struct vm_fault		*vmf)
1567 {
1568 
1569 	struct inode		*inode = file_inode(vma->vm_file);
1570 	struct xfs_inode	*ip = XFS_I(inode);
1571 	int			ret = VM_FAULT_NOPAGE;
1572 	loff_t			size;
1573 
1574 	trace_xfs_filemap_pfn_mkwrite(ip);
1575 
1576 	sb_start_pagefault(inode->i_sb);
1577 	file_update_time(vma->vm_file);
1578 
1579 	/* check if the faulting page hasn't raced with truncate */
1580 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1581 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1582 	if (vmf->pgoff >= size)
1583 		ret = VM_FAULT_SIGBUS;
1584 	else if (IS_DAX(inode))
1585 		ret = dax_pfn_mkwrite(vma, vmf);
1586 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1587 	sb_end_pagefault(inode->i_sb);
1588 	return ret;
1589 
1590 }
1591 
1592 static const struct vm_operations_struct xfs_file_vm_ops = {
1593 	.fault		= xfs_filemap_fault,
1594 	.pmd_fault	= xfs_filemap_pmd_fault,
1595 	.map_pages	= filemap_map_pages,
1596 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1597 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1598 };
1599 
1600 STATIC int
1601 xfs_file_mmap(
1602 	struct file	*filp,
1603 	struct vm_area_struct *vma)
1604 {
1605 	file_accessed(filp);
1606 	vma->vm_ops = &xfs_file_vm_ops;
1607 	if (IS_DAX(file_inode(filp)))
1608 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1609 	return 0;
1610 }
1611 
1612 const struct file_operations xfs_file_operations = {
1613 	.llseek		= xfs_file_llseek,
1614 	.read_iter	= xfs_file_read_iter,
1615 	.write_iter	= xfs_file_write_iter,
1616 	.splice_read	= generic_file_splice_read,
1617 	.splice_write	= iter_file_splice_write,
1618 	.unlocked_ioctl	= xfs_file_ioctl,
1619 #ifdef CONFIG_COMPAT
1620 	.compat_ioctl	= xfs_file_compat_ioctl,
1621 #endif
1622 	.mmap		= xfs_file_mmap,
1623 	.open		= xfs_file_open,
1624 	.release	= xfs_file_release,
1625 	.fsync		= xfs_file_fsync,
1626 	.get_unmapped_area = thp_get_unmapped_area,
1627 	.fallocate	= xfs_file_fallocate,
1628 	.copy_file_range = xfs_file_copy_range,
1629 	.clone_file_range = xfs_file_clone_range,
1630 	.dedupe_file_range = xfs_file_dedupe_range,
1631 };
1632 
1633 const struct file_operations xfs_dir_file_operations = {
1634 	.open		= xfs_dir_open,
1635 	.read		= generic_read_dir,
1636 	.iterate_shared	= xfs_file_readdir,
1637 	.llseek		= generic_file_llseek,
1638 	.unlocked_ioctl	= xfs_file_ioctl,
1639 #ifdef CONFIG_COMPAT
1640 	.compat_ioctl	= xfs_file_compat_ioctl,
1641 #endif
1642 	.fsync		= xfs_dir_fsync,
1643 };
1644