xref: /openbmc/linux/fs/xfs/xfs_file.c (revision f35e839a)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38 
39 #include <linux/aio.h>
40 #include <linux/dcache.h>
41 #include <linux/falloc.h>
42 #include <linux/pagevec.h>
43 
44 static const struct vm_operations_struct xfs_file_vm_ops;
45 
46 /*
47  * Locking primitives for read and write IO paths to ensure we consistently use
48  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
49  */
50 static inline void
51 xfs_rw_ilock(
52 	struct xfs_inode	*ip,
53 	int			type)
54 {
55 	if (type & XFS_IOLOCK_EXCL)
56 		mutex_lock(&VFS_I(ip)->i_mutex);
57 	xfs_ilock(ip, type);
58 }
59 
60 static inline void
61 xfs_rw_iunlock(
62 	struct xfs_inode	*ip,
63 	int			type)
64 {
65 	xfs_iunlock(ip, type);
66 	if (type & XFS_IOLOCK_EXCL)
67 		mutex_unlock(&VFS_I(ip)->i_mutex);
68 }
69 
70 static inline void
71 xfs_rw_ilock_demote(
72 	struct xfs_inode	*ip,
73 	int			type)
74 {
75 	xfs_ilock_demote(ip, type);
76 	if (type & XFS_IOLOCK_EXCL)
77 		mutex_unlock(&VFS_I(ip)->i_mutex);
78 }
79 
80 /*
81  *	xfs_iozero
82  *
83  *	xfs_iozero clears the specified range of buffer supplied,
84  *	and marks all the affected blocks as valid and modified.  If
85  *	an affected block is not allocated, it will be allocated.  If
86  *	an affected block is not completely overwritten, and is not
87  *	valid before the operation, it will be read from disk before
88  *	being partially zeroed.
89  */
90 int
91 xfs_iozero(
92 	struct xfs_inode	*ip,	/* inode			*/
93 	loff_t			pos,	/* offset in file		*/
94 	size_t			count)	/* size of data to zero		*/
95 {
96 	struct page		*page;
97 	struct address_space	*mapping;
98 	int			status;
99 
100 	mapping = VFS_I(ip)->i_mapping;
101 	do {
102 		unsigned offset, bytes;
103 		void *fsdata;
104 
105 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
106 		bytes = PAGE_CACHE_SIZE - offset;
107 		if (bytes > count)
108 			bytes = count;
109 
110 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
111 					AOP_FLAG_UNINTERRUPTIBLE,
112 					&page, &fsdata);
113 		if (status)
114 			break;
115 
116 		zero_user(page, offset, bytes);
117 
118 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
119 					page, fsdata);
120 		WARN_ON(status <= 0); /* can't return less than zero! */
121 		pos += bytes;
122 		count -= bytes;
123 		status = 0;
124 	} while (count);
125 
126 	return (-status);
127 }
128 
129 /*
130  * Fsync operations on directories are much simpler than on regular files,
131  * as there is no file data to flush, and thus also no need for explicit
132  * cache flush operations, and there are no non-transaction metadata updates
133  * on directories either.
134  */
135 STATIC int
136 xfs_dir_fsync(
137 	struct file		*file,
138 	loff_t			start,
139 	loff_t			end,
140 	int			datasync)
141 {
142 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
143 	struct xfs_mount	*mp = ip->i_mount;
144 	xfs_lsn_t		lsn = 0;
145 
146 	trace_xfs_dir_fsync(ip);
147 
148 	xfs_ilock(ip, XFS_ILOCK_SHARED);
149 	if (xfs_ipincount(ip))
150 		lsn = ip->i_itemp->ili_last_lsn;
151 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
152 
153 	if (!lsn)
154 		return 0;
155 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
156 }
157 
158 STATIC int
159 xfs_file_fsync(
160 	struct file		*file,
161 	loff_t			start,
162 	loff_t			end,
163 	int			datasync)
164 {
165 	struct inode		*inode = file->f_mapping->host;
166 	struct xfs_inode	*ip = XFS_I(inode);
167 	struct xfs_mount	*mp = ip->i_mount;
168 	int			error = 0;
169 	int			log_flushed = 0;
170 	xfs_lsn_t		lsn = 0;
171 
172 	trace_xfs_file_fsync(ip);
173 
174 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
175 	if (error)
176 		return error;
177 
178 	if (XFS_FORCED_SHUTDOWN(mp))
179 		return -XFS_ERROR(EIO);
180 
181 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
182 
183 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
184 		/*
185 		 * If we have an RT and/or log subvolume we need to make sure
186 		 * to flush the write cache the device used for file data
187 		 * first.  This is to ensure newly written file data make
188 		 * it to disk before logging the new inode size in case of
189 		 * an extending write.
190 		 */
191 		if (XFS_IS_REALTIME_INODE(ip))
192 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
193 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
194 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
195 	}
196 
197 	/*
198 	 * All metadata updates are logged, which means that we just have
199 	 * to flush the log up to the latest LSN that touched the inode.
200 	 */
201 	xfs_ilock(ip, XFS_ILOCK_SHARED);
202 	if (xfs_ipincount(ip)) {
203 		if (!datasync ||
204 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
205 			lsn = ip->i_itemp->ili_last_lsn;
206 	}
207 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
208 
209 	if (lsn)
210 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
211 
212 	/*
213 	 * If we only have a single device, and the log force about was
214 	 * a no-op we might have to flush the data device cache here.
215 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
216 	 * an already allocated file and thus do not have any metadata to
217 	 * commit.
218 	 */
219 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
220 	    mp->m_logdev_targp == mp->m_ddev_targp &&
221 	    !XFS_IS_REALTIME_INODE(ip) &&
222 	    !log_flushed)
223 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
224 
225 	return -error;
226 }
227 
228 STATIC ssize_t
229 xfs_file_aio_read(
230 	struct kiocb		*iocb,
231 	const struct iovec	*iovp,
232 	unsigned long		nr_segs,
233 	loff_t			pos)
234 {
235 	struct file		*file = iocb->ki_filp;
236 	struct inode		*inode = file->f_mapping->host;
237 	struct xfs_inode	*ip = XFS_I(inode);
238 	struct xfs_mount	*mp = ip->i_mount;
239 	size_t			size = 0;
240 	ssize_t			ret = 0;
241 	int			ioflags = 0;
242 	xfs_fsize_t		n;
243 
244 	XFS_STATS_INC(xs_read_calls);
245 
246 	BUG_ON(iocb->ki_pos != pos);
247 
248 	if (unlikely(file->f_flags & O_DIRECT))
249 		ioflags |= IO_ISDIRECT;
250 	if (file->f_mode & FMODE_NOCMTIME)
251 		ioflags |= IO_INVIS;
252 
253 	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
254 	if (ret < 0)
255 		return ret;
256 
257 	if (unlikely(ioflags & IO_ISDIRECT)) {
258 		xfs_buftarg_t	*target =
259 			XFS_IS_REALTIME_INODE(ip) ?
260 				mp->m_rtdev_targp : mp->m_ddev_targp;
261 		if ((pos & target->bt_smask) || (size & target->bt_smask)) {
262 			if (pos == i_size_read(inode))
263 				return 0;
264 			return -XFS_ERROR(EINVAL);
265 		}
266 	}
267 
268 	n = mp->m_super->s_maxbytes - pos;
269 	if (n <= 0 || size == 0)
270 		return 0;
271 
272 	if (n < size)
273 		size = n;
274 
275 	if (XFS_FORCED_SHUTDOWN(mp))
276 		return -EIO;
277 
278 	/*
279 	 * Locking is a bit tricky here. If we take an exclusive lock
280 	 * for direct IO, we effectively serialise all new concurrent
281 	 * read IO to this file and block it behind IO that is currently in
282 	 * progress because IO in progress holds the IO lock shared. We only
283 	 * need to hold the lock exclusive to blow away the page cache, so
284 	 * only take lock exclusively if the page cache needs invalidation.
285 	 * This allows the normal direct IO case of no page cache pages to
286 	 * proceeed concurrently without serialisation.
287 	 */
288 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
289 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
290 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
291 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
292 
293 		if (inode->i_mapping->nrpages) {
294 			ret = -filemap_write_and_wait_range(
295 							VFS_I(ip)->i_mapping,
296 							pos, -1);
297 			if (ret) {
298 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
299 				return ret;
300 			}
301 			truncate_pagecache_range(VFS_I(ip), pos, -1);
302 		}
303 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
304 	}
305 
306 	trace_xfs_file_read(ip, size, pos, ioflags);
307 
308 	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
309 	if (ret > 0)
310 		XFS_STATS_ADD(xs_read_bytes, ret);
311 
312 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
313 	return ret;
314 }
315 
316 STATIC ssize_t
317 xfs_file_splice_read(
318 	struct file		*infilp,
319 	loff_t			*ppos,
320 	struct pipe_inode_info	*pipe,
321 	size_t			count,
322 	unsigned int		flags)
323 {
324 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
325 	int			ioflags = 0;
326 	ssize_t			ret;
327 
328 	XFS_STATS_INC(xs_read_calls);
329 
330 	if (infilp->f_mode & FMODE_NOCMTIME)
331 		ioflags |= IO_INVIS;
332 
333 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
334 		return -EIO;
335 
336 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
337 
338 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
339 
340 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
341 	if (ret > 0)
342 		XFS_STATS_ADD(xs_read_bytes, ret);
343 
344 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
345 	return ret;
346 }
347 
348 /*
349  * xfs_file_splice_write() does not use xfs_rw_ilock() because
350  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
351  * couuld cause lock inversions between the aio_write path and the splice path
352  * if someone is doing concurrent splice(2) based writes and write(2) based
353  * writes to the same inode. The only real way to fix this is to re-implement
354  * the generic code here with correct locking orders.
355  */
356 STATIC ssize_t
357 xfs_file_splice_write(
358 	struct pipe_inode_info	*pipe,
359 	struct file		*outfilp,
360 	loff_t			*ppos,
361 	size_t			count,
362 	unsigned int		flags)
363 {
364 	struct inode		*inode = outfilp->f_mapping->host;
365 	struct xfs_inode	*ip = XFS_I(inode);
366 	int			ioflags = 0;
367 	ssize_t			ret;
368 
369 	XFS_STATS_INC(xs_write_calls);
370 
371 	if (outfilp->f_mode & FMODE_NOCMTIME)
372 		ioflags |= IO_INVIS;
373 
374 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 		return -EIO;
376 
377 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
378 
379 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
380 
381 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
382 	if (ret > 0)
383 		XFS_STATS_ADD(xs_write_bytes, ret);
384 
385 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
386 	return ret;
387 }
388 
389 /*
390  * This routine is called to handle zeroing any space in the last block of the
391  * file that is beyond the EOF.  We do this since the size is being increased
392  * without writing anything to that block and we don't want to read the
393  * garbage on the disk.
394  */
395 STATIC int				/* error (positive) */
396 xfs_zero_last_block(
397 	struct xfs_inode	*ip,
398 	xfs_fsize_t		offset,
399 	xfs_fsize_t		isize)
400 {
401 	struct xfs_mount	*mp = ip->i_mount;
402 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
403 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
404 	int			zero_len;
405 	int			nimaps = 1;
406 	int			error = 0;
407 	struct xfs_bmbt_irec	imap;
408 
409 	xfs_ilock(ip, XFS_ILOCK_EXCL);
410 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
411 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
412 	if (error)
413 		return error;
414 
415 	ASSERT(nimaps > 0);
416 
417 	/*
418 	 * If the block underlying isize is just a hole, then there
419 	 * is nothing to zero.
420 	 */
421 	if (imap.br_startblock == HOLESTARTBLOCK)
422 		return 0;
423 
424 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
425 	if (isize + zero_len > offset)
426 		zero_len = offset - isize;
427 	return xfs_iozero(ip, isize, zero_len);
428 }
429 
430 /*
431  * Zero any on disk space between the current EOF and the new, larger EOF.
432  *
433  * This handles the normal case of zeroing the remainder of the last block in
434  * the file and the unusual case of zeroing blocks out beyond the size of the
435  * file.  This second case only happens with fixed size extents and when the
436  * system crashes before the inode size was updated but after blocks were
437  * allocated.
438  *
439  * Expects the iolock to be held exclusive, and will take the ilock internally.
440  */
441 int					/* error (positive) */
442 xfs_zero_eof(
443 	struct xfs_inode	*ip,
444 	xfs_off_t		offset,		/* starting I/O offset */
445 	xfs_fsize_t		isize)		/* current inode size */
446 {
447 	struct xfs_mount	*mp = ip->i_mount;
448 	xfs_fileoff_t		start_zero_fsb;
449 	xfs_fileoff_t		end_zero_fsb;
450 	xfs_fileoff_t		zero_count_fsb;
451 	xfs_fileoff_t		last_fsb;
452 	xfs_fileoff_t		zero_off;
453 	xfs_fsize_t		zero_len;
454 	int			nimaps;
455 	int			error = 0;
456 	struct xfs_bmbt_irec	imap;
457 
458 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
459 	ASSERT(offset > isize);
460 
461 	/*
462 	 * First handle zeroing the block on which isize resides.
463 	 *
464 	 * We only zero a part of that block so it is handled specially.
465 	 */
466 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
467 		error = xfs_zero_last_block(ip, offset, isize);
468 		if (error)
469 			return error;
470 	}
471 
472 	/*
473 	 * Calculate the range between the new size and the old where blocks
474 	 * needing to be zeroed may exist.
475 	 *
476 	 * To get the block where the last byte in the file currently resides,
477 	 * we need to subtract one from the size and truncate back to a block
478 	 * boundary.  We subtract 1 in case the size is exactly on a block
479 	 * boundary.
480 	 */
481 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
482 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
483 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
484 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
485 	if (last_fsb == end_zero_fsb) {
486 		/*
487 		 * The size was only incremented on its last block.
488 		 * We took care of that above, so just return.
489 		 */
490 		return 0;
491 	}
492 
493 	ASSERT(start_zero_fsb <= end_zero_fsb);
494 	while (start_zero_fsb <= end_zero_fsb) {
495 		nimaps = 1;
496 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
497 
498 		xfs_ilock(ip, XFS_ILOCK_EXCL);
499 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
500 					  &imap, &nimaps, 0);
501 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
502 		if (error)
503 			return error;
504 
505 		ASSERT(nimaps > 0);
506 
507 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
508 		    imap.br_startblock == HOLESTARTBLOCK) {
509 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
510 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
511 			continue;
512 		}
513 
514 		/*
515 		 * There are blocks we need to zero.
516 		 */
517 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
518 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
519 
520 		if ((zero_off + zero_len) > offset)
521 			zero_len = offset - zero_off;
522 
523 		error = xfs_iozero(ip, zero_off, zero_len);
524 		if (error)
525 			return error;
526 
527 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
528 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
529 	}
530 
531 	return 0;
532 }
533 
534 /*
535  * Common pre-write limit and setup checks.
536  *
537  * Called with the iolocked held either shared and exclusive according to
538  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
539  * if called for a direct write beyond i_size.
540  */
541 STATIC ssize_t
542 xfs_file_aio_write_checks(
543 	struct file		*file,
544 	loff_t			*pos,
545 	size_t			*count,
546 	int			*iolock)
547 {
548 	struct inode		*inode = file->f_mapping->host;
549 	struct xfs_inode	*ip = XFS_I(inode);
550 	int			error = 0;
551 
552 restart:
553 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
554 	if (error)
555 		return error;
556 
557 	/*
558 	 * If the offset is beyond the size of the file, we need to zero any
559 	 * blocks that fall between the existing EOF and the start of this
560 	 * write.  If zeroing is needed and we are currently holding the
561 	 * iolock shared, we need to update it to exclusive which implies
562 	 * having to redo all checks before.
563 	 */
564 	if (*pos > i_size_read(inode)) {
565 		if (*iolock == XFS_IOLOCK_SHARED) {
566 			xfs_rw_iunlock(ip, *iolock);
567 			*iolock = XFS_IOLOCK_EXCL;
568 			xfs_rw_ilock(ip, *iolock);
569 			goto restart;
570 		}
571 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
572 		if (error)
573 			return error;
574 	}
575 
576 	/*
577 	 * Updating the timestamps will grab the ilock again from
578 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
579 	 * lock above.  Eventually we should look into a way to avoid
580 	 * the pointless lock roundtrip.
581 	 */
582 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
583 		error = file_update_time(file);
584 		if (error)
585 			return error;
586 	}
587 
588 	/*
589 	 * If we're writing the file then make sure to clear the setuid and
590 	 * setgid bits if the process is not being run by root.  This keeps
591 	 * people from modifying setuid and setgid binaries.
592 	 */
593 	return file_remove_suid(file);
594 }
595 
596 /*
597  * xfs_file_dio_aio_write - handle direct IO writes
598  *
599  * Lock the inode appropriately to prepare for and issue a direct IO write.
600  * By separating it from the buffered write path we remove all the tricky to
601  * follow locking changes and looping.
602  *
603  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
604  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
605  * pages are flushed out.
606  *
607  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
608  * allowing them to be done in parallel with reads and other direct IO writes.
609  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
610  * needs to do sub-block zeroing and that requires serialisation against other
611  * direct IOs to the same block. In this case we need to serialise the
612  * submission of the unaligned IOs so that we don't get racing block zeroing in
613  * the dio layer.  To avoid the problem with aio, we also need to wait for
614  * outstanding IOs to complete so that unwritten extent conversion is completed
615  * before we try to map the overlapping block. This is currently implemented by
616  * hitting it with a big hammer (i.e. inode_dio_wait()).
617  *
618  * Returns with locks held indicated by @iolock and errors indicated by
619  * negative return values.
620  */
621 STATIC ssize_t
622 xfs_file_dio_aio_write(
623 	struct kiocb		*iocb,
624 	const struct iovec	*iovp,
625 	unsigned long		nr_segs,
626 	loff_t			pos,
627 	size_t			ocount)
628 {
629 	struct file		*file = iocb->ki_filp;
630 	struct address_space	*mapping = file->f_mapping;
631 	struct inode		*inode = mapping->host;
632 	struct xfs_inode	*ip = XFS_I(inode);
633 	struct xfs_mount	*mp = ip->i_mount;
634 	ssize_t			ret = 0;
635 	size_t			count = ocount;
636 	int			unaligned_io = 0;
637 	int			iolock;
638 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
639 					mp->m_rtdev_targp : mp->m_ddev_targp;
640 
641 	if ((pos & target->bt_smask) || (count & target->bt_smask))
642 		return -XFS_ERROR(EINVAL);
643 
644 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
645 		unaligned_io = 1;
646 
647 	/*
648 	 * We don't need to take an exclusive lock unless there page cache needs
649 	 * to be invalidated or unaligned IO is being executed. We don't need to
650 	 * consider the EOF extension case here because
651 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
652 	 * EOF zeroing cases and fill out the new inode size as appropriate.
653 	 */
654 	if (unaligned_io || mapping->nrpages)
655 		iolock = XFS_IOLOCK_EXCL;
656 	else
657 		iolock = XFS_IOLOCK_SHARED;
658 	xfs_rw_ilock(ip, iolock);
659 
660 	/*
661 	 * Recheck if there are cached pages that need invalidate after we got
662 	 * the iolock to protect against other threads adding new pages while
663 	 * we were waiting for the iolock.
664 	 */
665 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
666 		xfs_rw_iunlock(ip, iolock);
667 		iolock = XFS_IOLOCK_EXCL;
668 		xfs_rw_ilock(ip, iolock);
669 	}
670 
671 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
672 	if (ret)
673 		goto out;
674 
675 	if (mapping->nrpages) {
676 		ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
677 						    pos, -1);
678 		if (ret)
679 			goto out;
680 		truncate_pagecache_range(VFS_I(ip), pos, -1);
681 	}
682 
683 	/*
684 	 * If we are doing unaligned IO, wait for all other IO to drain,
685 	 * otherwise demote the lock if we had to flush cached pages
686 	 */
687 	if (unaligned_io)
688 		inode_dio_wait(inode);
689 	else if (iolock == XFS_IOLOCK_EXCL) {
690 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
691 		iolock = XFS_IOLOCK_SHARED;
692 	}
693 
694 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
695 	ret = generic_file_direct_write(iocb, iovp,
696 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
697 
698 out:
699 	xfs_rw_iunlock(ip, iolock);
700 
701 	/* No fallback to buffered IO on errors for XFS. */
702 	ASSERT(ret < 0 || ret == count);
703 	return ret;
704 }
705 
706 STATIC ssize_t
707 xfs_file_buffered_aio_write(
708 	struct kiocb		*iocb,
709 	const struct iovec	*iovp,
710 	unsigned long		nr_segs,
711 	loff_t			pos,
712 	size_t			ocount)
713 {
714 	struct file		*file = iocb->ki_filp;
715 	struct address_space	*mapping = file->f_mapping;
716 	struct inode		*inode = mapping->host;
717 	struct xfs_inode	*ip = XFS_I(inode);
718 	ssize_t			ret;
719 	int			enospc = 0;
720 	int			iolock = XFS_IOLOCK_EXCL;
721 	size_t			count = ocount;
722 
723 	xfs_rw_ilock(ip, iolock);
724 
725 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
726 	if (ret)
727 		goto out;
728 
729 	/* We can write back this queue in page reclaim */
730 	current->backing_dev_info = mapping->backing_dev_info;
731 
732 write_retry:
733 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
734 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
735 			pos, &iocb->ki_pos, count, 0);
736 
737 	/*
738 	 * If we just got an ENOSPC, try to write back all dirty inodes to
739 	 * convert delalloc space to free up some of the excess reserved
740 	 * metadata space.
741 	 */
742 	if (ret == -ENOSPC && !enospc) {
743 		enospc = 1;
744 		xfs_flush_inodes(ip->i_mount);
745 		goto write_retry;
746 	}
747 
748 	current->backing_dev_info = NULL;
749 out:
750 	xfs_rw_iunlock(ip, iolock);
751 	return ret;
752 }
753 
754 STATIC ssize_t
755 xfs_file_aio_write(
756 	struct kiocb		*iocb,
757 	const struct iovec	*iovp,
758 	unsigned long		nr_segs,
759 	loff_t			pos)
760 {
761 	struct file		*file = iocb->ki_filp;
762 	struct address_space	*mapping = file->f_mapping;
763 	struct inode		*inode = mapping->host;
764 	struct xfs_inode	*ip = XFS_I(inode);
765 	ssize_t			ret;
766 	size_t			ocount = 0;
767 
768 	XFS_STATS_INC(xs_write_calls);
769 
770 	BUG_ON(iocb->ki_pos != pos);
771 
772 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
773 	if (ret)
774 		return ret;
775 
776 	if (ocount == 0)
777 		return 0;
778 
779 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
780 		ret = -EIO;
781 		goto out;
782 	}
783 
784 	if (unlikely(file->f_flags & O_DIRECT))
785 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
786 	else
787 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
788 						  ocount);
789 
790 	if (ret > 0) {
791 		ssize_t err;
792 
793 		XFS_STATS_ADD(xs_write_bytes, ret);
794 
795 		/* Handle various SYNC-type writes */
796 		err = generic_write_sync(file, pos, ret);
797 		if (err < 0)
798 			ret = err;
799 	}
800 
801 out:
802 	return ret;
803 }
804 
805 STATIC long
806 xfs_file_fallocate(
807 	struct file	*file,
808 	int		mode,
809 	loff_t		offset,
810 	loff_t		len)
811 {
812 	struct inode	*inode = file_inode(file);
813 	long		error;
814 	loff_t		new_size = 0;
815 	xfs_flock64_t	bf;
816 	xfs_inode_t	*ip = XFS_I(inode);
817 	int		cmd = XFS_IOC_RESVSP;
818 	int		attr_flags = XFS_ATTR_NOLOCK;
819 
820 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
821 		return -EOPNOTSUPP;
822 
823 	bf.l_whence = 0;
824 	bf.l_start = offset;
825 	bf.l_len = len;
826 
827 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
828 
829 	if (mode & FALLOC_FL_PUNCH_HOLE)
830 		cmd = XFS_IOC_UNRESVSP;
831 
832 	/* check the new inode size is valid before allocating */
833 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
834 	    offset + len > i_size_read(inode)) {
835 		new_size = offset + len;
836 		error = inode_newsize_ok(inode, new_size);
837 		if (error)
838 			goto out_unlock;
839 	}
840 
841 	if (file->f_flags & O_DSYNC)
842 		attr_flags |= XFS_ATTR_SYNC;
843 
844 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
845 	if (error)
846 		goto out_unlock;
847 
848 	/* Change file size if needed */
849 	if (new_size) {
850 		struct iattr iattr;
851 
852 		iattr.ia_valid = ATTR_SIZE;
853 		iattr.ia_size = new_size;
854 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
855 	}
856 
857 out_unlock:
858 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
859 	return error;
860 }
861 
862 
863 STATIC int
864 xfs_file_open(
865 	struct inode	*inode,
866 	struct file	*file)
867 {
868 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
869 		return -EFBIG;
870 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
871 		return -EIO;
872 	return 0;
873 }
874 
875 STATIC int
876 xfs_dir_open(
877 	struct inode	*inode,
878 	struct file	*file)
879 {
880 	struct xfs_inode *ip = XFS_I(inode);
881 	int		mode;
882 	int		error;
883 
884 	error = xfs_file_open(inode, file);
885 	if (error)
886 		return error;
887 
888 	/*
889 	 * If there are any blocks, read-ahead block 0 as we're almost
890 	 * certain to have the next operation be a read there.
891 	 */
892 	mode = xfs_ilock_map_shared(ip);
893 	if (ip->i_d.di_nextents > 0)
894 		xfs_dir3_data_readahead(NULL, ip, 0, -1);
895 	xfs_iunlock(ip, mode);
896 	return 0;
897 }
898 
899 STATIC int
900 xfs_file_release(
901 	struct inode	*inode,
902 	struct file	*filp)
903 {
904 	return -xfs_release(XFS_I(inode));
905 }
906 
907 STATIC int
908 xfs_file_readdir(
909 	struct file	*filp,
910 	void		*dirent,
911 	filldir_t	filldir)
912 {
913 	struct inode	*inode = file_inode(filp);
914 	xfs_inode_t	*ip = XFS_I(inode);
915 	int		error;
916 	size_t		bufsize;
917 
918 	/*
919 	 * The Linux API doesn't pass down the total size of the buffer
920 	 * we read into down to the filesystem.  With the filldir concept
921 	 * it's not needed for correct information, but the XFS dir2 leaf
922 	 * code wants an estimate of the buffer size to calculate it's
923 	 * readahead window and size the buffers used for mapping to
924 	 * physical blocks.
925 	 *
926 	 * Try to give it an estimate that's good enough, maybe at some
927 	 * point we can change the ->readdir prototype to include the
928 	 * buffer size.  For now we use the current glibc buffer size.
929 	 */
930 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
931 
932 	error = xfs_readdir(ip, dirent, bufsize,
933 				(xfs_off_t *)&filp->f_pos, filldir);
934 	if (error)
935 		return -error;
936 	return 0;
937 }
938 
939 STATIC int
940 xfs_file_mmap(
941 	struct file	*filp,
942 	struct vm_area_struct *vma)
943 {
944 	vma->vm_ops = &xfs_file_vm_ops;
945 
946 	file_accessed(filp);
947 	return 0;
948 }
949 
950 /*
951  * mmap()d file has taken write protection fault and is being made
952  * writable. We can set the page state up correctly for a writable
953  * page, which means we can do correct delalloc accounting (ENOSPC
954  * checking!) and unwritten extent mapping.
955  */
956 STATIC int
957 xfs_vm_page_mkwrite(
958 	struct vm_area_struct	*vma,
959 	struct vm_fault		*vmf)
960 {
961 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
962 }
963 
964 /*
965  * This type is designed to indicate the type of offset we would like
966  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
967  */
968 enum {
969 	HOLE_OFF = 0,
970 	DATA_OFF,
971 };
972 
973 /*
974  * Lookup the desired type of offset from the given page.
975  *
976  * On success, return true and the offset argument will point to the
977  * start of the region that was found.  Otherwise this function will
978  * return false and keep the offset argument unchanged.
979  */
980 STATIC bool
981 xfs_lookup_buffer_offset(
982 	struct page		*page,
983 	loff_t			*offset,
984 	unsigned int		type)
985 {
986 	loff_t			lastoff = page_offset(page);
987 	bool			found = false;
988 	struct buffer_head	*bh, *head;
989 
990 	bh = head = page_buffers(page);
991 	do {
992 		/*
993 		 * Unwritten extents that have data in the page
994 		 * cache covering them can be identified by the
995 		 * BH_Unwritten state flag.  Pages with multiple
996 		 * buffers might have a mix of holes, data and
997 		 * unwritten extents - any buffer with valid
998 		 * data in it should have BH_Uptodate flag set
999 		 * on it.
1000 		 */
1001 		if (buffer_unwritten(bh) ||
1002 		    buffer_uptodate(bh)) {
1003 			if (type == DATA_OFF)
1004 				found = true;
1005 		} else {
1006 			if (type == HOLE_OFF)
1007 				found = true;
1008 		}
1009 
1010 		if (found) {
1011 			*offset = lastoff;
1012 			break;
1013 		}
1014 		lastoff += bh->b_size;
1015 	} while ((bh = bh->b_this_page) != head);
1016 
1017 	return found;
1018 }
1019 
1020 /*
1021  * This routine is called to find out and return a data or hole offset
1022  * from the page cache for unwritten extents according to the desired
1023  * type for xfs_seek_data() or xfs_seek_hole().
1024  *
1025  * The argument offset is used to tell where we start to search from the
1026  * page cache.  Map is used to figure out the end points of the range to
1027  * lookup pages.
1028  *
1029  * Return true if the desired type of offset was found, and the argument
1030  * offset is filled with that address.  Otherwise, return false and keep
1031  * offset unchanged.
1032  */
1033 STATIC bool
1034 xfs_find_get_desired_pgoff(
1035 	struct inode		*inode,
1036 	struct xfs_bmbt_irec	*map,
1037 	unsigned int		type,
1038 	loff_t			*offset)
1039 {
1040 	struct xfs_inode	*ip = XFS_I(inode);
1041 	struct xfs_mount	*mp = ip->i_mount;
1042 	struct pagevec		pvec;
1043 	pgoff_t			index;
1044 	pgoff_t			end;
1045 	loff_t			endoff;
1046 	loff_t			startoff = *offset;
1047 	loff_t			lastoff = startoff;
1048 	bool			found = false;
1049 
1050 	pagevec_init(&pvec, 0);
1051 
1052 	index = startoff >> PAGE_CACHE_SHIFT;
1053 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1054 	end = endoff >> PAGE_CACHE_SHIFT;
1055 	do {
1056 		int		want;
1057 		unsigned	nr_pages;
1058 		unsigned int	i;
1059 
1060 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1061 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1062 					  want);
1063 		/*
1064 		 * No page mapped into given range.  If we are searching holes
1065 		 * and if this is the first time we got into the loop, it means
1066 		 * that the given offset is landed in a hole, return it.
1067 		 *
1068 		 * If we have already stepped through some block buffers to find
1069 		 * holes but they all contains data.  In this case, the last
1070 		 * offset is already updated and pointed to the end of the last
1071 		 * mapped page, if it does not reach the endpoint to search,
1072 		 * that means there should be a hole between them.
1073 		 */
1074 		if (nr_pages == 0) {
1075 			/* Data search found nothing */
1076 			if (type == DATA_OFF)
1077 				break;
1078 
1079 			ASSERT(type == HOLE_OFF);
1080 			if (lastoff == startoff || lastoff < endoff) {
1081 				found = true;
1082 				*offset = lastoff;
1083 			}
1084 			break;
1085 		}
1086 
1087 		/*
1088 		 * At lease we found one page.  If this is the first time we
1089 		 * step into the loop, and if the first page index offset is
1090 		 * greater than the given search offset, a hole was found.
1091 		 */
1092 		if (type == HOLE_OFF && lastoff == startoff &&
1093 		    lastoff < page_offset(pvec.pages[0])) {
1094 			found = true;
1095 			break;
1096 		}
1097 
1098 		for (i = 0; i < nr_pages; i++) {
1099 			struct page	*page = pvec.pages[i];
1100 			loff_t		b_offset;
1101 
1102 			/*
1103 			 * At this point, the page may be truncated or
1104 			 * invalidated (changing page->mapping to NULL),
1105 			 * or even swizzled back from swapper_space to tmpfs
1106 			 * file mapping. However, page->index will not change
1107 			 * because we have a reference on the page.
1108 			 *
1109 			 * Searching done if the page index is out of range.
1110 			 * If the current offset is not reaches the end of
1111 			 * the specified search range, there should be a hole
1112 			 * between them.
1113 			 */
1114 			if (page->index > end) {
1115 				if (type == HOLE_OFF && lastoff < endoff) {
1116 					*offset = lastoff;
1117 					found = true;
1118 				}
1119 				goto out;
1120 			}
1121 
1122 			lock_page(page);
1123 			/*
1124 			 * Page truncated or invalidated(page->mapping == NULL).
1125 			 * We can freely skip it and proceed to check the next
1126 			 * page.
1127 			 */
1128 			if (unlikely(page->mapping != inode->i_mapping)) {
1129 				unlock_page(page);
1130 				continue;
1131 			}
1132 
1133 			if (!page_has_buffers(page)) {
1134 				unlock_page(page);
1135 				continue;
1136 			}
1137 
1138 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1139 			if (found) {
1140 				/*
1141 				 * The found offset may be less than the start
1142 				 * point to search if this is the first time to
1143 				 * come here.
1144 				 */
1145 				*offset = max_t(loff_t, startoff, b_offset);
1146 				unlock_page(page);
1147 				goto out;
1148 			}
1149 
1150 			/*
1151 			 * We either searching data but nothing was found, or
1152 			 * searching hole but found a data buffer.  In either
1153 			 * case, probably the next page contains the desired
1154 			 * things, update the last offset to it so.
1155 			 */
1156 			lastoff = page_offset(page) + PAGE_SIZE;
1157 			unlock_page(page);
1158 		}
1159 
1160 		/*
1161 		 * The number of returned pages less than our desired, search
1162 		 * done.  In this case, nothing was found for searching data,
1163 		 * but we found a hole behind the last offset.
1164 		 */
1165 		if (nr_pages < want) {
1166 			if (type == HOLE_OFF) {
1167 				*offset = lastoff;
1168 				found = true;
1169 			}
1170 			break;
1171 		}
1172 
1173 		index = pvec.pages[i - 1]->index + 1;
1174 		pagevec_release(&pvec);
1175 	} while (index <= end);
1176 
1177 out:
1178 	pagevec_release(&pvec);
1179 	return found;
1180 }
1181 
1182 STATIC loff_t
1183 xfs_seek_data(
1184 	struct file		*file,
1185 	loff_t			start)
1186 {
1187 	struct inode		*inode = file->f_mapping->host;
1188 	struct xfs_inode	*ip = XFS_I(inode);
1189 	struct xfs_mount	*mp = ip->i_mount;
1190 	loff_t			uninitialized_var(offset);
1191 	xfs_fsize_t		isize;
1192 	xfs_fileoff_t		fsbno;
1193 	xfs_filblks_t		end;
1194 	uint			lock;
1195 	int			error;
1196 
1197 	lock = xfs_ilock_map_shared(ip);
1198 
1199 	isize = i_size_read(inode);
1200 	if (start >= isize) {
1201 		error = ENXIO;
1202 		goto out_unlock;
1203 	}
1204 
1205 	/*
1206 	 * Try to read extents from the first block indicated
1207 	 * by fsbno to the end block of the file.
1208 	 */
1209 	fsbno = XFS_B_TO_FSBT(mp, start);
1210 	end = XFS_B_TO_FSB(mp, isize);
1211 	for (;;) {
1212 		struct xfs_bmbt_irec	map[2];
1213 		int			nmap = 2;
1214 		unsigned int		i;
1215 
1216 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1217 				       XFS_BMAPI_ENTIRE);
1218 		if (error)
1219 			goto out_unlock;
1220 
1221 		/* No extents at given offset, must be beyond EOF */
1222 		if (nmap == 0) {
1223 			error = ENXIO;
1224 			goto out_unlock;
1225 		}
1226 
1227 		for (i = 0; i < nmap; i++) {
1228 			offset = max_t(loff_t, start,
1229 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1230 
1231 			/* Landed in a data extent */
1232 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1233 			    (map[i].br_state == XFS_EXT_NORM &&
1234 			     !isnullstartblock(map[i].br_startblock)))
1235 				goto out;
1236 
1237 			/*
1238 			 * Landed in an unwritten extent, try to search data
1239 			 * from page cache.
1240 			 */
1241 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1242 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1243 							DATA_OFF, &offset))
1244 					goto out;
1245 			}
1246 		}
1247 
1248 		/*
1249 		 * map[0] is hole or its an unwritten extent but
1250 		 * without data in page cache.  Probably means that
1251 		 * we are reading after EOF if nothing in map[1].
1252 		 */
1253 		if (nmap == 1) {
1254 			error = ENXIO;
1255 			goto out_unlock;
1256 		}
1257 
1258 		ASSERT(i > 1);
1259 
1260 		/*
1261 		 * Nothing was found, proceed to the next round of search
1262 		 * if reading offset not beyond or hit EOF.
1263 		 */
1264 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1265 		start = XFS_FSB_TO_B(mp, fsbno);
1266 		if (start >= isize) {
1267 			error = ENXIO;
1268 			goto out_unlock;
1269 		}
1270 	}
1271 
1272 out:
1273 	if (offset != file->f_pos)
1274 		file->f_pos = offset;
1275 
1276 out_unlock:
1277 	xfs_iunlock_map_shared(ip, lock);
1278 
1279 	if (error)
1280 		return -error;
1281 	return offset;
1282 }
1283 
1284 STATIC loff_t
1285 xfs_seek_hole(
1286 	struct file		*file,
1287 	loff_t			start)
1288 {
1289 	struct inode		*inode = file->f_mapping->host;
1290 	struct xfs_inode	*ip = XFS_I(inode);
1291 	struct xfs_mount	*mp = ip->i_mount;
1292 	loff_t			uninitialized_var(offset);
1293 	xfs_fsize_t		isize;
1294 	xfs_fileoff_t		fsbno;
1295 	xfs_filblks_t		end;
1296 	uint			lock;
1297 	int			error;
1298 
1299 	if (XFS_FORCED_SHUTDOWN(mp))
1300 		return -XFS_ERROR(EIO);
1301 
1302 	lock = xfs_ilock_map_shared(ip);
1303 
1304 	isize = i_size_read(inode);
1305 	if (start >= isize) {
1306 		error = ENXIO;
1307 		goto out_unlock;
1308 	}
1309 
1310 	fsbno = XFS_B_TO_FSBT(mp, start);
1311 	end = XFS_B_TO_FSB(mp, isize);
1312 
1313 	for (;;) {
1314 		struct xfs_bmbt_irec	map[2];
1315 		int			nmap = 2;
1316 		unsigned int		i;
1317 
1318 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1319 				       XFS_BMAPI_ENTIRE);
1320 		if (error)
1321 			goto out_unlock;
1322 
1323 		/* No extents at given offset, must be beyond EOF */
1324 		if (nmap == 0) {
1325 			error = ENXIO;
1326 			goto out_unlock;
1327 		}
1328 
1329 		for (i = 0; i < nmap; i++) {
1330 			offset = max_t(loff_t, start,
1331 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1332 
1333 			/* Landed in a hole */
1334 			if (map[i].br_startblock == HOLESTARTBLOCK)
1335 				goto out;
1336 
1337 			/*
1338 			 * Landed in an unwritten extent, try to search hole
1339 			 * from page cache.
1340 			 */
1341 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1342 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1343 							HOLE_OFF, &offset))
1344 					goto out;
1345 			}
1346 		}
1347 
1348 		/*
1349 		 * map[0] contains data or its unwritten but contains
1350 		 * data in page cache, probably means that we are
1351 		 * reading after EOF.  We should fix offset to point
1352 		 * to the end of the file(i.e., there is an implicit
1353 		 * hole at the end of any file).
1354 		 */
1355 		if (nmap == 1) {
1356 			offset = isize;
1357 			break;
1358 		}
1359 
1360 		ASSERT(i > 1);
1361 
1362 		/*
1363 		 * Both mappings contains data, proceed to the next round of
1364 		 * search if the current reading offset not beyond or hit EOF.
1365 		 */
1366 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1367 		start = XFS_FSB_TO_B(mp, fsbno);
1368 		if (start >= isize) {
1369 			offset = isize;
1370 			break;
1371 		}
1372 	}
1373 
1374 out:
1375 	/*
1376 	 * At this point, we must have found a hole.  However, the returned
1377 	 * offset may be bigger than the file size as it may be aligned to
1378 	 * page boundary for unwritten extents, we need to deal with this
1379 	 * situation in particular.
1380 	 */
1381 	offset = min_t(loff_t, offset, isize);
1382 	if (offset != file->f_pos)
1383 		file->f_pos = offset;
1384 
1385 out_unlock:
1386 	xfs_iunlock_map_shared(ip, lock);
1387 
1388 	if (error)
1389 		return -error;
1390 	return offset;
1391 }
1392 
1393 STATIC loff_t
1394 xfs_file_llseek(
1395 	struct file	*file,
1396 	loff_t		offset,
1397 	int		origin)
1398 {
1399 	switch (origin) {
1400 	case SEEK_END:
1401 	case SEEK_CUR:
1402 	case SEEK_SET:
1403 		return generic_file_llseek(file, offset, origin);
1404 	case SEEK_DATA:
1405 		return xfs_seek_data(file, offset);
1406 	case SEEK_HOLE:
1407 		return xfs_seek_hole(file, offset);
1408 	default:
1409 		return -EINVAL;
1410 	}
1411 }
1412 
1413 const struct file_operations xfs_file_operations = {
1414 	.llseek		= xfs_file_llseek,
1415 	.read		= do_sync_read,
1416 	.write		= do_sync_write,
1417 	.aio_read	= xfs_file_aio_read,
1418 	.aio_write	= xfs_file_aio_write,
1419 	.splice_read	= xfs_file_splice_read,
1420 	.splice_write	= xfs_file_splice_write,
1421 	.unlocked_ioctl	= xfs_file_ioctl,
1422 #ifdef CONFIG_COMPAT
1423 	.compat_ioctl	= xfs_file_compat_ioctl,
1424 #endif
1425 	.mmap		= xfs_file_mmap,
1426 	.open		= xfs_file_open,
1427 	.release	= xfs_file_release,
1428 	.fsync		= xfs_file_fsync,
1429 	.fallocate	= xfs_file_fallocate,
1430 };
1431 
1432 const struct file_operations xfs_dir_file_operations = {
1433 	.open		= xfs_dir_open,
1434 	.read		= generic_read_dir,
1435 	.readdir	= xfs_file_readdir,
1436 	.llseek		= generic_file_llseek,
1437 	.unlocked_ioctl	= xfs_file_ioctl,
1438 #ifdef CONFIG_COMPAT
1439 	.compat_ioctl	= xfs_file_compat_ioctl,
1440 #endif
1441 	.fsync		= xfs_dir_fsync,
1442 };
1443 
1444 static const struct vm_operations_struct xfs_file_vm_ops = {
1445 	.fault		= filemap_fault,
1446 	.page_mkwrite	= xfs_vm_page_mkwrite,
1447 	.remap_pages	= generic_file_remap_pages,
1448 };
1449