1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 84 trace_xfs_dir_fsync(ip); 85 return xfs_log_force_inode(ip); 86 } 87 88 STATIC int 89 xfs_file_fsync( 90 struct file *file, 91 loff_t start, 92 loff_t end, 93 int datasync) 94 { 95 struct inode *inode = file->f_mapping->host; 96 struct xfs_inode *ip = XFS_I(inode); 97 struct xfs_mount *mp = ip->i_mount; 98 int error = 0; 99 int log_flushed = 0; 100 xfs_lsn_t lsn = 0; 101 102 trace_xfs_file_fsync(ip); 103 104 error = file_write_and_wait_range(file, start, end); 105 if (error) 106 return error; 107 108 if (XFS_FORCED_SHUTDOWN(mp)) 109 return -EIO; 110 111 xfs_iflags_clear(ip, XFS_ITRUNCATED); 112 113 /* 114 * If we have an RT and/or log subvolume we need to make sure to flush 115 * the write cache the device used for file data first. This is to 116 * ensure newly written file data make it to disk before logging the new 117 * inode size in case of an extending write. 118 */ 119 if (XFS_IS_REALTIME_INODE(ip)) 120 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 121 else if (mp->m_logdev_targp != mp->m_ddev_targp) 122 xfs_blkdev_issue_flush(mp->m_ddev_targp); 123 124 /* 125 * All metadata updates are logged, which means that we just have to 126 * flush the log up to the latest LSN that touched the inode. If we have 127 * concurrent fsync/fdatasync() calls, we need them to all block on the 128 * log force before we clear the ili_fsync_fields field. This ensures 129 * that we don't get a racing sync operation that does not wait for the 130 * metadata to hit the journal before returning. If we race with 131 * clearing the ili_fsync_fields, then all that will happen is the log 132 * force will do nothing as the lsn will already be on disk. We can't 133 * race with setting ili_fsync_fields because that is done under 134 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 135 * until after the ili_fsync_fields is cleared. 136 */ 137 xfs_ilock(ip, XFS_ILOCK_SHARED); 138 if (xfs_ipincount(ip)) { 139 if (!datasync || 140 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 141 lsn = ip->i_itemp->ili_last_lsn; 142 } 143 144 if (lsn) { 145 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 146 ip->i_itemp->ili_fsync_fields = 0; 147 } 148 xfs_iunlock(ip, XFS_ILOCK_SHARED); 149 150 /* 151 * If we only have a single device, and the log force about was 152 * a no-op we might have to flush the data device cache here. 153 * This can only happen for fdatasync/O_DSYNC if we were overwriting 154 * an already allocated file and thus do not have any metadata to 155 * commit. 156 */ 157 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 158 mp->m_logdev_targp == mp->m_ddev_targp) 159 xfs_blkdev_issue_flush(mp->m_ddev_targp); 160 161 return error; 162 } 163 164 STATIC ssize_t 165 xfs_file_dio_aio_read( 166 struct kiocb *iocb, 167 struct iov_iter *to) 168 { 169 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 170 size_t count = iov_iter_count(to); 171 ssize_t ret; 172 173 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 174 175 if (!count) 176 return 0; /* skip atime */ 177 178 file_accessed(iocb->ki_filp); 179 180 if (iocb->ki_flags & IOCB_NOWAIT) { 181 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 182 return -EAGAIN; 183 } else { 184 xfs_ilock(ip, XFS_IOLOCK_SHARED); 185 } 186 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 187 is_sync_kiocb(iocb)); 188 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 189 190 return ret; 191 } 192 193 static noinline ssize_t 194 xfs_file_dax_read( 195 struct kiocb *iocb, 196 struct iov_iter *to) 197 { 198 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 199 size_t count = iov_iter_count(to); 200 ssize_t ret = 0; 201 202 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 203 204 if (!count) 205 return 0; /* skip atime */ 206 207 if (iocb->ki_flags & IOCB_NOWAIT) { 208 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 209 return -EAGAIN; 210 } else { 211 xfs_ilock(ip, XFS_IOLOCK_SHARED); 212 } 213 214 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 215 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 216 217 file_accessed(iocb->ki_filp); 218 return ret; 219 } 220 221 STATIC ssize_t 222 xfs_file_buffered_aio_read( 223 struct kiocb *iocb, 224 struct iov_iter *to) 225 { 226 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 227 ssize_t ret; 228 229 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 230 231 if (iocb->ki_flags & IOCB_NOWAIT) { 232 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 233 return -EAGAIN; 234 } else { 235 xfs_ilock(ip, XFS_IOLOCK_SHARED); 236 } 237 ret = generic_file_read_iter(iocb, to); 238 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 239 240 return ret; 241 } 242 243 STATIC ssize_t 244 xfs_file_read_iter( 245 struct kiocb *iocb, 246 struct iov_iter *to) 247 { 248 struct inode *inode = file_inode(iocb->ki_filp); 249 struct xfs_mount *mp = XFS_I(inode)->i_mount; 250 ssize_t ret = 0; 251 252 XFS_STATS_INC(mp, xs_read_calls); 253 254 if (XFS_FORCED_SHUTDOWN(mp)) 255 return -EIO; 256 257 if (IS_DAX(inode)) 258 ret = xfs_file_dax_read(iocb, to); 259 else if (iocb->ki_flags & IOCB_DIRECT) 260 ret = xfs_file_dio_aio_read(iocb, to); 261 else 262 ret = xfs_file_buffered_aio_read(iocb, to); 263 264 if (ret > 0) 265 XFS_STATS_ADD(mp, xs_read_bytes, ret); 266 return ret; 267 } 268 269 /* 270 * Common pre-write limit and setup checks. 271 * 272 * Called with the iolocked held either shared and exclusive according to 273 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 274 * if called for a direct write beyond i_size. 275 */ 276 STATIC ssize_t 277 xfs_file_aio_write_checks( 278 struct kiocb *iocb, 279 struct iov_iter *from, 280 int *iolock) 281 { 282 struct file *file = iocb->ki_filp; 283 struct inode *inode = file->f_mapping->host; 284 struct xfs_inode *ip = XFS_I(inode); 285 ssize_t error = 0; 286 size_t count = iov_iter_count(from); 287 bool drained_dio = false; 288 loff_t isize; 289 290 restart: 291 error = generic_write_checks(iocb, from); 292 if (error <= 0) 293 return error; 294 295 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 296 if (error) 297 return error; 298 299 /* 300 * For changing security info in file_remove_privs() we need i_rwsem 301 * exclusively. 302 */ 303 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 304 xfs_iunlock(ip, *iolock); 305 *iolock = XFS_IOLOCK_EXCL; 306 xfs_ilock(ip, *iolock); 307 goto restart; 308 } 309 /* 310 * If the offset is beyond the size of the file, we need to zero any 311 * blocks that fall between the existing EOF and the start of this 312 * write. If zeroing is needed and we are currently holding the 313 * iolock shared, we need to update it to exclusive which implies 314 * having to redo all checks before. 315 * 316 * We need to serialise against EOF updates that occur in IO 317 * completions here. We want to make sure that nobody is changing the 318 * size while we do this check until we have placed an IO barrier (i.e. 319 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 320 * The spinlock effectively forms a memory barrier once we have the 321 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 322 * and hence be able to correctly determine if we need to run zeroing. 323 */ 324 spin_lock(&ip->i_flags_lock); 325 isize = i_size_read(inode); 326 if (iocb->ki_pos > isize) { 327 spin_unlock(&ip->i_flags_lock); 328 if (!drained_dio) { 329 if (*iolock == XFS_IOLOCK_SHARED) { 330 xfs_iunlock(ip, *iolock); 331 *iolock = XFS_IOLOCK_EXCL; 332 xfs_ilock(ip, *iolock); 333 iov_iter_reexpand(from, count); 334 } 335 /* 336 * We now have an IO submission barrier in place, but 337 * AIO can do EOF updates during IO completion and hence 338 * we now need to wait for all of them to drain. Non-AIO 339 * DIO will have drained before we are given the 340 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 341 * no-op. 342 */ 343 inode_dio_wait(inode); 344 drained_dio = true; 345 goto restart; 346 } 347 348 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 349 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 350 NULL, &xfs_buffered_write_iomap_ops); 351 if (error) 352 return error; 353 } else 354 spin_unlock(&ip->i_flags_lock); 355 356 /* 357 * Updating the timestamps will grab the ilock again from 358 * xfs_fs_dirty_inode, so we have to call it after dropping the 359 * lock above. Eventually we should look into a way to avoid 360 * the pointless lock roundtrip. 361 */ 362 return file_modified(file); 363 } 364 365 static int 366 xfs_dio_write_end_io( 367 struct kiocb *iocb, 368 ssize_t size, 369 int error, 370 unsigned flags) 371 { 372 struct inode *inode = file_inode(iocb->ki_filp); 373 struct xfs_inode *ip = XFS_I(inode); 374 loff_t offset = iocb->ki_pos; 375 unsigned int nofs_flag; 376 377 trace_xfs_end_io_direct_write(ip, offset, size); 378 379 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 380 return -EIO; 381 382 if (error) 383 return error; 384 if (!size) 385 return 0; 386 387 /* 388 * Capture amount written on completion as we can't reliably account 389 * for it on submission. 390 */ 391 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 392 393 /* 394 * We can allocate memory here while doing writeback on behalf of 395 * memory reclaim. To avoid memory allocation deadlocks set the 396 * task-wide nofs context for the following operations. 397 */ 398 nofs_flag = memalloc_nofs_save(); 399 400 if (flags & IOMAP_DIO_COW) { 401 error = xfs_reflink_end_cow(ip, offset, size); 402 if (error) 403 goto out; 404 } 405 406 /* 407 * Unwritten conversion updates the in-core isize after extent 408 * conversion but before updating the on-disk size. Updating isize any 409 * earlier allows a racing dio read to find unwritten extents before 410 * they are converted. 411 */ 412 if (flags & IOMAP_DIO_UNWRITTEN) { 413 error = xfs_iomap_write_unwritten(ip, offset, size, true); 414 goto out; 415 } 416 417 /* 418 * We need to update the in-core inode size here so that we don't end up 419 * with the on-disk inode size being outside the in-core inode size. We 420 * have no other method of updating EOF for AIO, so always do it here 421 * if necessary. 422 * 423 * We need to lock the test/set EOF update as we can be racing with 424 * other IO completions here to update the EOF. Failing to serialise 425 * here can result in EOF moving backwards and Bad Things Happen when 426 * that occurs. 427 */ 428 spin_lock(&ip->i_flags_lock); 429 if (offset + size > i_size_read(inode)) { 430 i_size_write(inode, offset + size); 431 spin_unlock(&ip->i_flags_lock); 432 error = xfs_setfilesize(ip, offset, size); 433 } else { 434 spin_unlock(&ip->i_flags_lock); 435 } 436 437 out: 438 memalloc_nofs_restore(nofs_flag); 439 return error; 440 } 441 442 static const struct iomap_dio_ops xfs_dio_write_ops = { 443 .end_io = xfs_dio_write_end_io, 444 }; 445 446 /* 447 * xfs_file_dio_aio_write - handle direct IO writes 448 * 449 * Lock the inode appropriately to prepare for and issue a direct IO write. 450 * By separating it from the buffered write path we remove all the tricky to 451 * follow locking changes and looping. 452 * 453 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 454 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 455 * pages are flushed out. 456 * 457 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 458 * allowing them to be done in parallel with reads and other direct IO writes. 459 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 460 * needs to do sub-block zeroing and that requires serialisation against other 461 * direct IOs to the same block. In this case we need to serialise the 462 * submission of the unaligned IOs so that we don't get racing block zeroing in 463 * the dio layer. To avoid the problem with aio, we also need to wait for 464 * outstanding IOs to complete so that unwritten extent conversion is completed 465 * before we try to map the overlapping block. This is currently implemented by 466 * hitting it with a big hammer (i.e. inode_dio_wait()). 467 * 468 * Returns with locks held indicated by @iolock and errors indicated by 469 * negative return values. 470 */ 471 STATIC ssize_t 472 xfs_file_dio_aio_write( 473 struct kiocb *iocb, 474 struct iov_iter *from) 475 { 476 struct file *file = iocb->ki_filp; 477 struct address_space *mapping = file->f_mapping; 478 struct inode *inode = mapping->host; 479 struct xfs_inode *ip = XFS_I(inode); 480 struct xfs_mount *mp = ip->i_mount; 481 ssize_t ret = 0; 482 int unaligned_io = 0; 483 int iolock; 484 size_t count = iov_iter_count(from); 485 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 486 487 /* DIO must be aligned to device logical sector size */ 488 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 489 return -EINVAL; 490 491 /* 492 * Don't take the exclusive iolock here unless the I/O is unaligned to 493 * the file system block size. We don't need to consider the EOF 494 * extension case here because xfs_file_aio_write_checks() will relock 495 * the inode as necessary for EOF zeroing cases and fill out the new 496 * inode size as appropriate. 497 */ 498 if ((iocb->ki_pos & mp->m_blockmask) || 499 ((iocb->ki_pos + count) & mp->m_blockmask)) { 500 unaligned_io = 1; 501 502 /* 503 * We can't properly handle unaligned direct I/O to reflink 504 * files yet, as we can't unshare a partial block. 505 */ 506 if (xfs_is_cow_inode(ip)) { 507 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 508 return -EREMCHG; 509 } 510 iolock = XFS_IOLOCK_EXCL; 511 } else { 512 iolock = XFS_IOLOCK_SHARED; 513 } 514 515 if (iocb->ki_flags & IOCB_NOWAIT) { 516 /* unaligned dio always waits, bail */ 517 if (unaligned_io) 518 return -EAGAIN; 519 if (!xfs_ilock_nowait(ip, iolock)) 520 return -EAGAIN; 521 } else { 522 xfs_ilock(ip, iolock); 523 } 524 525 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 526 if (ret) 527 goto out; 528 count = iov_iter_count(from); 529 530 /* 531 * If we are doing unaligned IO, we can't allow any other overlapping IO 532 * in-flight at the same time or we risk data corruption. Wait for all 533 * other IO to drain before we submit. If the IO is aligned, demote the 534 * iolock if we had to take the exclusive lock in 535 * xfs_file_aio_write_checks() for other reasons. 536 */ 537 if (unaligned_io) { 538 inode_dio_wait(inode); 539 } else if (iolock == XFS_IOLOCK_EXCL) { 540 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 541 iolock = XFS_IOLOCK_SHARED; 542 } 543 544 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 545 /* 546 * If unaligned, this is the only IO in-flight. Wait on it before we 547 * release the iolock to prevent subsequent overlapping IO. 548 */ 549 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 550 &xfs_dio_write_ops, 551 is_sync_kiocb(iocb) || unaligned_io); 552 out: 553 xfs_iunlock(ip, iolock); 554 555 /* 556 * No fallback to buffered IO on errors for XFS, direct IO will either 557 * complete fully or fail. 558 */ 559 ASSERT(ret < 0 || ret == count); 560 return ret; 561 } 562 563 static noinline ssize_t 564 xfs_file_dax_write( 565 struct kiocb *iocb, 566 struct iov_iter *from) 567 { 568 struct inode *inode = iocb->ki_filp->f_mapping->host; 569 struct xfs_inode *ip = XFS_I(inode); 570 int iolock = XFS_IOLOCK_EXCL; 571 ssize_t ret, error = 0; 572 size_t count; 573 loff_t pos; 574 575 if (iocb->ki_flags & IOCB_NOWAIT) { 576 if (!xfs_ilock_nowait(ip, iolock)) 577 return -EAGAIN; 578 } else { 579 xfs_ilock(ip, iolock); 580 } 581 582 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 583 if (ret) 584 goto out; 585 586 pos = iocb->ki_pos; 587 count = iov_iter_count(from); 588 589 trace_xfs_file_dax_write(ip, count, pos); 590 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); 591 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 592 i_size_write(inode, iocb->ki_pos); 593 error = xfs_setfilesize(ip, pos, ret); 594 } 595 out: 596 xfs_iunlock(ip, iolock); 597 if (error) 598 return error; 599 600 if (ret > 0) { 601 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 602 603 /* Handle various SYNC-type writes */ 604 ret = generic_write_sync(iocb, ret); 605 } 606 return ret; 607 } 608 609 STATIC ssize_t 610 xfs_file_buffered_aio_write( 611 struct kiocb *iocb, 612 struct iov_iter *from) 613 { 614 struct file *file = iocb->ki_filp; 615 struct address_space *mapping = file->f_mapping; 616 struct inode *inode = mapping->host; 617 struct xfs_inode *ip = XFS_I(inode); 618 ssize_t ret; 619 int enospc = 0; 620 int iolock; 621 622 if (iocb->ki_flags & IOCB_NOWAIT) 623 return -EOPNOTSUPP; 624 625 write_retry: 626 iolock = XFS_IOLOCK_EXCL; 627 xfs_ilock(ip, iolock); 628 629 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 630 if (ret) 631 goto out; 632 633 /* We can write back this queue in page reclaim */ 634 current->backing_dev_info = inode_to_bdi(inode); 635 636 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 637 ret = iomap_file_buffered_write(iocb, from, 638 &xfs_buffered_write_iomap_ops); 639 if (likely(ret >= 0)) 640 iocb->ki_pos += ret; 641 642 /* 643 * If we hit a space limit, try to free up some lingering preallocated 644 * space before returning an error. In the case of ENOSPC, first try to 645 * write back all dirty inodes to free up some of the excess reserved 646 * metadata space. This reduces the chances that the eofblocks scan 647 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 648 * also behaves as a filter to prevent too many eofblocks scans from 649 * running at the same time. 650 */ 651 if (ret == -EDQUOT && !enospc) { 652 xfs_iunlock(ip, iolock); 653 enospc = xfs_inode_free_quota_eofblocks(ip); 654 if (enospc) 655 goto write_retry; 656 enospc = xfs_inode_free_quota_cowblocks(ip); 657 if (enospc) 658 goto write_retry; 659 iolock = 0; 660 } else if (ret == -ENOSPC && !enospc) { 661 struct xfs_eofblocks eofb = {0}; 662 663 enospc = 1; 664 xfs_flush_inodes(ip->i_mount); 665 666 xfs_iunlock(ip, iolock); 667 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 668 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 669 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 670 goto write_retry; 671 } 672 673 current->backing_dev_info = NULL; 674 out: 675 if (iolock) 676 xfs_iunlock(ip, iolock); 677 678 if (ret > 0) { 679 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 680 /* Handle various SYNC-type writes */ 681 ret = generic_write_sync(iocb, ret); 682 } 683 return ret; 684 } 685 686 STATIC ssize_t 687 xfs_file_write_iter( 688 struct kiocb *iocb, 689 struct iov_iter *from) 690 { 691 struct file *file = iocb->ki_filp; 692 struct address_space *mapping = file->f_mapping; 693 struct inode *inode = mapping->host; 694 struct xfs_inode *ip = XFS_I(inode); 695 ssize_t ret; 696 size_t ocount = iov_iter_count(from); 697 698 XFS_STATS_INC(ip->i_mount, xs_write_calls); 699 700 if (ocount == 0) 701 return 0; 702 703 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 704 return -EIO; 705 706 if (IS_DAX(inode)) 707 return xfs_file_dax_write(iocb, from); 708 709 if (iocb->ki_flags & IOCB_DIRECT) { 710 /* 711 * Allow a directio write to fall back to a buffered 712 * write *only* in the case that we're doing a reflink 713 * CoW. In all other directio scenarios we do not 714 * allow an operation to fall back to buffered mode. 715 */ 716 ret = xfs_file_dio_aio_write(iocb, from); 717 if (ret != -EREMCHG) 718 return ret; 719 } 720 721 return xfs_file_buffered_aio_write(iocb, from); 722 } 723 724 static void 725 xfs_wait_dax_page( 726 struct inode *inode) 727 { 728 struct xfs_inode *ip = XFS_I(inode); 729 730 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 731 schedule(); 732 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 733 } 734 735 static int 736 xfs_break_dax_layouts( 737 struct inode *inode, 738 bool *retry) 739 { 740 struct page *page; 741 742 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 743 744 page = dax_layout_busy_page(inode->i_mapping); 745 if (!page) 746 return 0; 747 748 *retry = true; 749 return ___wait_var_event(&page->_refcount, 750 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 751 0, 0, xfs_wait_dax_page(inode)); 752 } 753 754 int 755 xfs_break_layouts( 756 struct inode *inode, 757 uint *iolock, 758 enum layout_break_reason reason) 759 { 760 bool retry; 761 int error; 762 763 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 764 765 do { 766 retry = false; 767 switch (reason) { 768 case BREAK_UNMAP: 769 error = xfs_break_dax_layouts(inode, &retry); 770 if (error || retry) 771 break; 772 /* fall through */ 773 case BREAK_WRITE: 774 error = xfs_break_leased_layouts(inode, iolock, &retry); 775 break; 776 default: 777 WARN_ON_ONCE(1); 778 error = -EINVAL; 779 } 780 } while (error == 0 && retry); 781 782 return error; 783 } 784 785 #define XFS_FALLOC_FL_SUPPORTED \ 786 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 787 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 788 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 789 790 STATIC long 791 xfs_file_fallocate( 792 struct file *file, 793 int mode, 794 loff_t offset, 795 loff_t len) 796 { 797 struct inode *inode = file_inode(file); 798 struct xfs_inode *ip = XFS_I(inode); 799 long error; 800 enum xfs_prealloc_flags flags = 0; 801 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 802 loff_t new_size = 0; 803 bool do_file_insert = false; 804 805 if (!S_ISREG(inode->i_mode)) 806 return -EINVAL; 807 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 808 return -EOPNOTSUPP; 809 810 xfs_ilock(ip, iolock); 811 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 812 if (error) 813 goto out_unlock; 814 815 /* 816 * Must wait for all AIO to complete before we continue as AIO can 817 * change the file size on completion without holding any locks we 818 * currently hold. We must do this first because AIO can update both 819 * the on disk and in memory inode sizes, and the operations that follow 820 * require the in-memory size to be fully up-to-date. 821 */ 822 inode_dio_wait(inode); 823 824 /* 825 * Now AIO and DIO has drained we flush and (if necessary) invalidate 826 * the cached range over the first operation we are about to run. 827 * 828 * We care about zero and collapse here because they both run a hole 829 * punch over the range first. Because that can zero data, and the range 830 * of invalidation for the shift operations is much larger, we still do 831 * the required flush for collapse in xfs_prepare_shift(). 832 * 833 * Insert has the same range requirements as collapse, and we extend the 834 * file first which can zero data. Hence insert has the same 835 * flush/invalidate requirements as collapse and so they are both 836 * handled at the right time by xfs_prepare_shift(). 837 */ 838 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 839 FALLOC_FL_COLLAPSE_RANGE)) { 840 error = xfs_flush_unmap_range(ip, offset, len); 841 if (error) 842 goto out_unlock; 843 } 844 845 if (mode & FALLOC_FL_PUNCH_HOLE) { 846 error = xfs_free_file_space(ip, offset, len); 847 if (error) 848 goto out_unlock; 849 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 850 unsigned int blksize_mask = i_blocksize(inode) - 1; 851 852 if (offset & blksize_mask || len & blksize_mask) { 853 error = -EINVAL; 854 goto out_unlock; 855 } 856 857 /* 858 * There is no need to overlap collapse range with EOF, 859 * in which case it is effectively a truncate operation 860 */ 861 if (offset + len >= i_size_read(inode)) { 862 error = -EINVAL; 863 goto out_unlock; 864 } 865 866 new_size = i_size_read(inode) - len; 867 868 error = xfs_collapse_file_space(ip, offset, len); 869 if (error) 870 goto out_unlock; 871 } else if (mode & FALLOC_FL_INSERT_RANGE) { 872 unsigned int blksize_mask = i_blocksize(inode) - 1; 873 loff_t isize = i_size_read(inode); 874 875 if (offset & blksize_mask || len & blksize_mask) { 876 error = -EINVAL; 877 goto out_unlock; 878 } 879 880 /* 881 * New inode size must not exceed ->s_maxbytes, accounting for 882 * possible signed overflow. 883 */ 884 if (inode->i_sb->s_maxbytes - isize < len) { 885 error = -EFBIG; 886 goto out_unlock; 887 } 888 new_size = isize + len; 889 890 /* Offset should be less than i_size */ 891 if (offset >= isize) { 892 error = -EINVAL; 893 goto out_unlock; 894 } 895 do_file_insert = true; 896 } else { 897 flags |= XFS_PREALLOC_SET; 898 899 if (!(mode & FALLOC_FL_KEEP_SIZE) && 900 offset + len > i_size_read(inode)) { 901 new_size = offset + len; 902 error = inode_newsize_ok(inode, new_size); 903 if (error) 904 goto out_unlock; 905 } 906 907 if (mode & FALLOC_FL_ZERO_RANGE) { 908 /* 909 * Punch a hole and prealloc the range. We use a hole 910 * punch rather than unwritten extent conversion for two 911 * reasons: 912 * 913 * 1.) Hole punch handles partial block zeroing for us. 914 * 2.) If prealloc returns ENOSPC, the file range is 915 * still zero-valued by virtue of the hole punch. 916 */ 917 unsigned int blksize = i_blocksize(inode); 918 919 trace_xfs_zero_file_space(ip); 920 921 error = xfs_free_file_space(ip, offset, len); 922 if (error) 923 goto out_unlock; 924 925 len = round_up(offset + len, blksize) - 926 round_down(offset, blksize); 927 offset = round_down(offset, blksize); 928 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 929 error = xfs_reflink_unshare(ip, offset, len); 930 if (error) 931 goto out_unlock; 932 } else { 933 /* 934 * If always_cow mode we can't use preallocations and 935 * thus should not create them. 936 */ 937 if (xfs_is_always_cow_inode(ip)) { 938 error = -EOPNOTSUPP; 939 goto out_unlock; 940 } 941 } 942 943 if (!xfs_is_always_cow_inode(ip)) { 944 error = xfs_alloc_file_space(ip, offset, len, 945 XFS_BMAPI_PREALLOC); 946 if (error) 947 goto out_unlock; 948 } 949 } 950 951 if (file->f_flags & O_DSYNC) 952 flags |= XFS_PREALLOC_SYNC; 953 954 error = xfs_update_prealloc_flags(ip, flags); 955 if (error) 956 goto out_unlock; 957 958 /* Change file size if needed */ 959 if (new_size) { 960 struct iattr iattr; 961 962 iattr.ia_valid = ATTR_SIZE; 963 iattr.ia_size = new_size; 964 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 965 if (error) 966 goto out_unlock; 967 } 968 969 /* 970 * Perform hole insertion now that the file size has been 971 * updated so that if we crash during the operation we don't 972 * leave shifted extents past EOF and hence losing access to 973 * the data that is contained within them. 974 */ 975 if (do_file_insert) 976 error = xfs_insert_file_space(ip, offset, len); 977 978 out_unlock: 979 xfs_iunlock(ip, iolock); 980 return error; 981 } 982 983 STATIC int 984 xfs_file_fadvise( 985 struct file *file, 986 loff_t start, 987 loff_t end, 988 int advice) 989 { 990 struct xfs_inode *ip = XFS_I(file_inode(file)); 991 int ret; 992 int lockflags = 0; 993 994 /* 995 * Operations creating pages in page cache need protection from hole 996 * punching and similar ops 997 */ 998 if (advice == POSIX_FADV_WILLNEED) { 999 lockflags = XFS_IOLOCK_SHARED; 1000 xfs_ilock(ip, lockflags); 1001 } 1002 ret = generic_fadvise(file, start, end, advice); 1003 if (lockflags) 1004 xfs_iunlock(ip, lockflags); 1005 return ret; 1006 } 1007 1008 STATIC loff_t 1009 xfs_file_remap_range( 1010 struct file *file_in, 1011 loff_t pos_in, 1012 struct file *file_out, 1013 loff_t pos_out, 1014 loff_t len, 1015 unsigned int remap_flags) 1016 { 1017 struct inode *inode_in = file_inode(file_in); 1018 struct xfs_inode *src = XFS_I(inode_in); 1019 struct inode *inode_out = file_inode(file_out); 1020 struct xfs_inode *dest = XFS_I(inode_out); 1021 struct xfs_mount *mp = src->i_mount; 1022 loff_t remapped = 0; 1023 xfs_extlen_t cowextsize; 1024 int ret; 1025 1026 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1027 return -EINVAL; 1028 1029 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 1030 return -EOPNOTSUPP; 1031 1032 if (XFS_FORCED_SHUTDOWN(mp)) 1033 return -EIO; 1034 1035 /* Prepare and then clone file data. */ 1036 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1037 &len, remap_flags); 1038 if (ret < 0 || len == 0) 1039 return ret; 1040 1041 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1042 1043 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1044 &remapped); 1045 if (ret) 1046 goto out_unlock; 1047 1048 /* 1049 * Carry the cowextsize hint from src to dest if we're sharing the 1050 * entire source file to the entire destination file, the source file 1051 * has a cowextsize hint, and the destination file does not. 1052 */ 1053 cowextsize = 0; 1054 if (pos_in == 0 && len == i_size_read(inode_in) && 1055 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1056 pos_out == 0 && len >= i_size_read(inode_out) && 1057 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1058 cowextsize = src->i_d.di_cowextsize; 1059 1060 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1061 remap_flags); 1062 if (ret) 1063 goto out_unlock; 1064 1065 if (mp->m_flags & XFS_MOUNT_WSYNC) 1066 xfs_log_force_inode(dest); 1067 out_unlock: 1068 xfs_reflink_remap_unlock(file_in, file_out); 1069 if (ret) 1070 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1071 return remapped > 0 ? remapped : ret; 1072 } 1073 1074 STATIC int 1075 xfs_file_open( 1076 struct inode *inode, 1077 struct file *file) 1078 { 1079 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1080 return -EFBIG; 1081 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1082 return -EIO; 1083 file->f_mode |= FMODE_NOWAIT; 1084 return 0; 1085 } 1086 1087 STATIC int 1088 xfs_dir_open( 1089 struct inode *inode, 1090 struct file *file) 1091 { 1092 struct xfs_inode *ip = XFS_I(inode); 1093 int mode; 1094 int error; 1095 1096 error = xfs_file_open(inode, file); 1097 if (error) 1098 return error; 1099 1100 /* 1101 * If there are any blocks, read-ahead block 0 as we're almost 1102 * certain to have the next operation be a read there. 1103 */ 1104 mode = xfs_ilock_data_map_shared(ip); 1105 if (ip->i_df.if_nextents > 0) 1106 error = xfs_dir3_data_readahead(ip, 0, 0); 1107 xfs_iunlock(ip, mode); 1108 return error; 1109 } 1110 1111 STATIC int 1112 xfs_file_release( 1113 struct inode *inode, 1114 struct file *filp) 1115 { 1116 return xfs_release(XFS_I(inode)); 1117 } 1118 1119 STATIC int 1120 xfs_file_readdir( 1121 struct file *file, 1122 struct dir_context *ctx) 1123 { 1124 struct inode *inode = file_inode(file); 1125 xfs_inode_t *ip = XFS_I(inode); 1126 size_t bufsize; 1127 1128 /* 1129 * The Linux API doesn't pass down the total size of the buffer 1130 * we read into down to the filesystem. With the filldir concept 1131 * it's not needed for correct information, but the XFS dir2 leaf 1132 * code wants an estimate of the buffer size to calculate it's 1133 * readahead window and size the buffers used for mapping to 1134 * physical blocks. 1135 * 1136 * Try to give it an estimate that's good enough, maybe at some 1137 * point we can change the ->readdir prototype to include the 1138 * buffer size. For now we use the current glibc buffer size. 1139 */ 1140 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1141 1142 return xfs_readdir(NULL, ip, ctx, bufsize); 1143 } 1144 1145 STATIC loff_t 1146 xfs_file_llseek( 1147 struct file *file, 1148 loff_t offset, 1149 int whence) 1150 { 1151 struct inode *inode = file->f_mapping->host; 1152 1153 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1154 return -EIO; 1155 1156 switch (whence) { 1157 default: 1158 return generic_file_llseek(file, offset, whence); 1159 case SEEK_HOLE: 1160 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1161 break; 1162 case SEEK_DATA: 1163 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1164 break; 1165 } 1166 1167 if (offset < 0) 1168 return offset; 1169 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1170 } 1171 1172 /* 1173 * Locking for serialisation of IO during page faults. This results in a lock 1174 * ordering of: 1175 * 1176 * mmap_lock (MM) 1177 * sb_start_pagefault(vfs, freeze) 1178 * i_mmaplock (XFS - truncate serialisation) 1179 * page_lock (MM) 1180 * i_lock (XFS - extent map serialisation) 1181 */ 1182 static vm_fault_t 1183 __xfs_filemap_fault( 1184 struct vm_fault *vmf, 1185 enum page_entry_size pe_size, 1186 bool write_fault) 1187 { 1188 struct inode *inode = file_inode(vmf->vma->vm_file); 1189 struct xfs_inode *ip = XFS_I(inode); 1190 vm_fault_t ret; 1191 1192 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1193 1194 if (write_fault) { 1195 sb_start_pagefault(inode->i_sb); 1196 file_update_time(vmf->vma->vm_file); 1197 } 1198 1199 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1200 if (IS_DAX(inode)) { 1201 pfn_t pfn; 1202 1203 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, 1204 (write_fault && !vmf->cow_page) ? 1205 &xfs_direct_write_iomap_ops : 1206 &xfs_read_iomap_ops); 1207 if (ret & VM_FAULT_NEEDDSYNC) 1208 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1209 } else { 1210 if (write_fault) 1211 ret = iomap_page_mkwrite(vmf, 1212 &xfs_buffered_write_iomap_ops); 1213 else 1214 ret = filemap_fault(vmf); 1215 } 1216 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1217 1218 if (write_fault) 1219 sb_end_pagefault(inode->i_sb); 1220 return ret; 1221 } 1222 1223 static vm_fault_t 1224 xfs_filemap_fault( 1225 struct vm_fault *vmf) 1226 { 1227 /* DAX can shortcut the normal fault path on write faults! */ 1228 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1229 IS_DAX(file_inode(vmf->vma->vm_file)) && 1230 (vmf->flags & FAULT_FLAG_WRITE)); 1231 } 1232 1233 static vm_fault_t 1234 xfs_filemap_huge_fault( 1235 struct vm_fault *vmf, 1236 enum page_entry_size pe_size) 1237 { 1238 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1239 return VM_FAULT_FALLBACK; 1240 1241 /* DAX can shortcut the normal fault path on write faults! */ 1242 return __xfs_filemap_fault(vmf, pe_size, 1243 (vmf->flags & FAULT_FLAG_WRITE)); 1244 } 1245 1246 static vm_fault_t 1247 xfs_filemap_page_mkwrite( 1248 struct vm_fault *vmf) 1249 { 1250 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1251 } 1252 1253 /* 1254 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1255 * on write faults. In reality, it needs to serialise against truncate and 1256 * prepare memory for writing so handle is as standard write fault. 1257 */ 1258 static vm_fault_t 1259 xfs_filemap_pfn_mkwrite( 1260 struct vm_fault *vmf) 1261 { 1262 1263 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1264 } 1265 1266 static const struct vm_operations_struct xfs_file_vm_ops = { 1267 .fault = xfs_filemap_fault, 1268 .huge_fault = xfs_filemap_huge_fault, 1269 .map_pages = filemap_map_pages, 1270 .page_mkwrite = xfs_filemap_page_mkwrite, 1271 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1272 }; 1273 1274 STATIC int 1275 xfs_file_mmap( 1276 struct file *file, 1277 struct vm_area_struct *vma) 1278 { 1279 struct inode *inode = file_inode(file); 1280 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1281 1282 /* 1283 * We don't support synchronous mappings for non-DAX files and 1284 * for DAX files if underneath dax_device is not synchronous. 1285 */ 1286 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1287 return -EOPNOTSUPP; 1288 1289 file_accessed(file); 1290 vma->vm_ops = &xfs_file_vm_ops; 1291 if (IS_DAX(inode)) 1292 vma->vm_flags |= VM_HUGEPAGE; 1293 return 0; 1294 } 1295 1296 const struct file_operations xfs_file_operations = { 1297 .llseek = xfs_file_llseek, 1298 .read_iter = xfs_file_read_iter, 1299 .write_iter = xfs_file_write_iter, 1300 .splice_read = generic_file_splice_read, 1301 .splice_write = iter_file_splice_write, 1302 .iopoll = iomap_dio_iopoll, 1303 .unlocked_ioctl = xfs_file_ioctl, 1304 #ifdef CONFIG_COMPAT 1305 .compat_ioctl = xfs_file_compat_ioctl, 1306 #endif 1307 .mmap = xfs_file_mmap, 1308 .mmap_supported_flags = MAP_SYNC, 1309 .open = xfs_file_open, 1310 .release = xfs_file_release, 1311 .fsync = xfs_file_fsync, 1312 .get_unmapped_area = thp_get_unmapped_area, 1313 .fallocate = xfs_file_fallocate, 1314 .fadvise = xfs_file_fadvise, 1315 .remap_file_range = xfs_file_remap_range, 1316 }; 1317 1318 const struct file_operations xfs_dir_file_operations = { 1319 .open = xfs_dir_open, 1320 .read = generic_read_dir, 1321 .iterate_shared = xfs_file_readdir, 1322 .llseek = generic_file_llseek, 1323 .unlocked_ioctl = xfs_file_ioctl, 1324 #ifdef CONFIG_COMPAT 1325 .compat_ioctl = xfs_file_compat_ioctl, 1326 #endif 1327 .fsync = xfs_dir_fsync, 1328 }; 1329