1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 struct xfs_mount *mp = ip->i_mount; 84 xfs_lsn_t lsn = 0; 85 86 trace_xfs_dir_fsync(ip); 87 88 xfs_ilock(ip, XFS_ILOCK_SHARED); 89 if (xfs_ipincount(ip)) 90 lsn = ip->i_itemp->ili_last_lsn; 91 xfs_iunlock(ip, XFS_ILOCK_SHARED); 92 93 if (!lsn) 94 return 0; 95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 96 } 97 98 STATIC int 99 xfs_file_fsync( 100 struct file *file, 101 loff_t start, 102 loff_t end, 103 int datasync) 104 { 105 struct inode *inode = file->f_mapping->host; 106 struct xfs_inode *ip = XFS_I(inode); 107 struct xfs_mount *mp = ip->i_mount; 108 int error = 0; 109 int log_flushed = 0; 110 xfs_lsn_t lsn = 0; 111 112 trace_xfs_file_fsync(ip); 113 114 error = file_write_and_wait_range(file, start, end); 115 if (error) 116 return error; 117 118 if (XFS_FORCED_SHUTDOWN(mp)) 119 return -EIO; 120 121 xfs_iflags_clear(ip, XFS_ITRUNCATED); 122 123 /* 124 * If we have an RT and/or log subvolume we need to make sure to flush 125 * the write cache the device used for file data first. This is to 126 * ensure newly written file data make it to disk before logging the new 127 * inode size in case of an extending write. 128 */ 129 if (XFS_IS_REALTIME_INODE(ip)) 130 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 131 else if (mp->m_logdev_targp != mp->m_ddev_targp) 132 xfs_blkdev_issue_flush(mp->m_ddev_targp); 133 134 /* 135 * All metadata updates are logged, which means that we just have to 136 * flush the log up to the latest LSN that touched the inode. If we have 137 * concurrent fsync/fdatasync() calls, we need them to all block on the 138 * log force before we clear the ili_fsync_fields field. This ensures 139 * that we don't get a racing sync operation that does not wait for the 140 * metadata to hit the journal before returning. If we race with 141 * clearing the ili_fsync_fields, then all that will happen is the log 142 * force will do nothing as the lsn will already be on disk. We can't 143 * race with setting ili_fsync_fields because that is done under 144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 145 * until after the ili_fsync_fields is cleared. 146 */ 147 xfs_ilock(ip, XFS_ILOCK_SHARED); 148 if (xfs_ipincount(ip)) { 149 if (!datasync || 150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 151 lsn = ip->i_itemp->ili_last_lsn; 152 } 153 154 if (lsn) { 155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 156 ip->i_itemp->ili_fsync_fields = 0; 157 } 158 xfs_iunlock(ip, XFS_ILOCK_SHARED); 159 160 /* 161 * If we only have a single device, and the log force about was 162 * a no-op we might have to flush the data device cache here. 163 * This can only happen for fdatasync/O_DSYNC if we were overwriting 164 * an already allocated file and thus do not have any metadata to 165 * commit. 166 */ 167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 168 mp->m_logdev_targp == mp->m_ddev_targp) 169 xfs_blkdev_issue_flush(mp->m_ddev_targp); 170 171 return error; 172 } 173 174 STATIC ssize_t 175 xfs_file_dio_aio_read( 176 struct kiocb *iocb, 177 struct iov_iter *to) 178 { 179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 180 size_t count = iov_iter_count(to); 181 ssize_t ret; 182 183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 184 185 if (!count) 186 return 0; /* skip atime */ 187 188 file_accessed(iocb->ki_filp); 189 190 xfs_ilock(ip, XFS_IOLOCK_SHARED); 191 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 192 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 193 194 return ret; 195 } 196 197 static noinline ssize_t 198 xfs_file_dax_read( 199 struct kiocb *iocb, 200 struct iov_iter *to) 201 { 202 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 203 size_t count = iov_iter_count(to); 204 ssize_t ret = 0; 205 206 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 207 208 if (!count) 209 return 0; /* skip atime */ 210 211 if (iocb->ki_flags & IOCB_NOWAIT) { 212 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 213 return -EAGAIN; 214 } else { 215 xfs_ilock(ip, XFS_IOLOCK_SHARED); 216 } 217 218 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 219 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 220 221 file_accessed(iocb->ki_filp); 222 return ret; 223 } 224 225 STATIC ssize_t 226 xfs_file_buffered_aio_read( 227 struct kiocb *iocb, 228 struct iov_iter *to) 229 { 230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 231 ssize_t ret; 232 233 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 234 235 if (iocb->ki_flags & IOCB_NOWAIT) { 236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 237 return -EAGAIN; 238 } else { 239 xfs_ilock(ip, XFS_IOLOCK_SHARED); 240 } 241 ret = generic_file_read_iter(iocb, to); 242 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 243 244 return ret; 245 } 246 247 STATIC ssize_t 248 xfs_file_read_iter( 249 struct kiocb *iocb, 250 struct iov_iter *to) 251 { 252 struct inode *inode = file_inode(iocb->ki_filp); 253 struct xfs_mount *mp = XFS_I(inode)->i_mount; 254 ssize_t ret = 0; 255 256 XFS_STATS_INC(mp, xs_read_calls); 257 258 if (XFS_FORCED_SHUTDOWN(mp)) 259 return -EIO; 260 261 if (IS_DAX(inode)) 262 ret = xfs_file_dax_read(iocb, to); 263 else if (iocb->ki_flags & IOCB_DIRECT) 264 ret = xfs_file_dio_aio_read(iocb, to); 265 else 266 ret = xfs_file_buffered_aio_read(iocb, to); 267 268 if (ret > 0) 269 XFS_STATS_ADD(mp, xs_read_bytes, ret); 270 return ret; 271 } 272 273 /* 274 * Common pre-write limit and setup checks. 275 * 276 * Called with the iolocked held either shared and exclusive according to 277 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 278 * if called for a direct write beyond i_size. 279 */ 280 STATIC ssize_t 281 xfs_file_aio_write_checks( 282 struct kiocb *iocb, 283 struct iov_iter *from, 284 int *iolock) 285 { 286 struct file *file = iocb->ki_filp; 287 struct inode *inode = file->f_mapping->host; 288 struct xfs_inode *ip = XFS_I(inode); 289 ssize_t error = 0; 290 size_t count = iov_iter_count(from); 291 bool drained_dio = false; 292 loff_t isize; 293 294 restart: 295 error = generic_write_checks(iocb, from); 296 if (error <= 0) 297 return error; 298 299 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 300 if (error) 301 return error; 302 303 /* 304 * For changing security info in file_remove_privs() we need i_rwsem 305 * exclusively. 306 */ 307 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 308 xfs_iunlock(ip, *iolock); 309 *iolock = XFS_IOLOCK_EXCL; 310 xfs_ilock(ip, *iolock); 311 goto restart; 312 } 313 /* 314 * If the offset is beyond the size of the file, we need to zero any 315 * blocks that fall between the existing EOF and the start of this 316 * write. If zeroing is needed and we are currently holding the 317 * iolock shared, we need to update it to exclusive which implies 318 * having to redo all checks before. 319 * 320 * We need to serialise against EOF updates that occur in IO 321 * completions here. We want to make sure that nobody is changing the 322 * size while we do this check until we have placed an IO barrier (i.e. 323 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 324 * The spinlock effectively forms a memory barrier once we have the 325 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 326 * and hence be able to correctly determine if we need to run zeroing. 327 */ 328 spin_lock(&ip->i_flags_lock); 329 isize = i_size_read(inode); 330 if (iocb->ki_pos > isize) { 331 spin_unlock(&ip->i_flags_lock); 332 if (!drained_dio) { 333 if (*iolock == XFS_IOLOCK_SHARED) { 334 xfs_iunlock(ip, *iolock); 335 *iolock = XFS_IOLOCK_EXCL; 336 xfs_ilock(ip, *iolock); 337 iov_iter_reexpand(from, count); 338 } 339 /* 340 * We now have an IO submission barrier in place, but 341 * AIO can do EOF updates during IO completion and hence 342 * we now need to wait for all of them to drain. Non-AIO 343 * DIO will have drained before we are given the 344 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 345 * no-op. 346 */ 347 inode_dio_wait(inode); 348 drained_dio = true; 349 goto restart; 350 } 351 352 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 353 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 354 NULL, &xfs_iomap_ops); 355 if (error) 356 return error; 357 } else 358 spin_unlock(&ip->i_flags_lock); 359 360 /* 361 * Updating the timestamps will grab the ilock again from 362 * xfs_fs_dirty_inode, so we have to call it after dropping the 363 * lock above. Eventually we should look into a way to avoid 364 * the pointless lock roundtrip. 365 */ 366 return file_modified(file); 367 } 368 369 static int 370 xfs_dio_write_end_io( 371 struct kiocb *iocb, 372 ssize_t size, 373 unsigned flags) 374 { 375 struct inode *inode = file_inode(iocb->ki_filp); 376 struct xfs_inode *ip = XFS_I(inode); 377 loff_t offset = iocb->ki_pos; 378 unsigned int nofs_flag; 379 int error = 0; 380 381 trace_xfs_end_io_direct_write(ip, offset, size); 382 383 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 384 return -EIO; 385 386 if (size <= 0) 387 return size; 388 389 /* 390 * Capture amount written on completion as we can't reliably account 391 * for it on submission. 392 */ 393 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 394 395 /* 396 * We can allocate memory here while doing writeback on behalf of 397 * memory reclaim. To avoid memory allocation deadlocks set the 398 * task-wide nofs context for the following operations. 399 */ 400 nofs_flag = memalloc_nofs_save(); 401 402 if (flags & IOMAP_DIO_COW) { 403 error = xfs_reflink_end_cow(ip, offset, size); 404 if (error) 405 goto out; 406 } 407 408 /* 409 * Unwritten conversion updates the in-core isize after extent 410 * conversion but before updating the on-disk size. Updating isize any 411 * earlier allows a racing dio read to find unwritten extents before 412 * they are converted. 413 */ 414 if (flags & IOMAP_DIO_UNWRITTEN) { 415 error = xfs_iomap_write_unwritten(ip, offset, size, true); 416 goto out; 417 } 418 419 /* 420 * We need to update the in-core inode size here so that we don't end up 421 * with the on-disk inode size being outside the in-core inode size. We 422 * have no other method of updating EOF for AIO, so always do it here 423 * if necessary. 424 * 425 * We need to lock the test/set EOF update as we can be racing with 426 * other IO completions here to update the EOF. Failing to serialise 427 * here can result in EOF moving backwards and Bad Things Happen when 428 * that occurs. 429 */ 430 spin_lock(&ip->i_flags_lock); 431 if (offset + size > i_size_read(inode)) { 432 i_size_write(inode, offset + size); 433 spin_unlock(&ip->i_flags_lock); 434 error = xfs_setfilesize(ip, offset, size); 435 } else { 436 spin_unlock(&ip->i_flags_lock); 437 } 438 439 out: 440 memalloc_nofs_restore(nofs_flag); 441 return error; 442 } 443 444 /* 445 * xfs_file_dio_aio_write - handle direct IO writes 446 * 447 * Lock the inode appropriately to prepare for and issue a direct IO write. 448 * By separating it from the buffered write path we remove all the tricky to 449 * follow locking changes and looping. 450 * 451 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 452 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 453 * pages are flushed out. 454 * 455 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 456 * allowing them to be done in parallel with reads and other direct IO writes. 457 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 458 * needs to do sub-block zeroing and that requires serialisation against other 459 * direct IOs to the same block. In this case we need to serialise the 460 * submission of the unaligned IOs so that we don't get racing block zeroing in 461 * the dio layer. To avoid the problem with aio, we also need to wait for 462 * outstanding IOs to complete so that unwritten extent conversion is completed 463 * before we try to map the overlapping block. This is currently implemented by 464 * hitting it with a big hammer (i.e. inode_dio_wait()). 465 * 466 * Returns with locks held indicated by @iolock and errors indicated by 467 * negative return values. 468 */ 469 STATIC ssize_t 470 xfs_file_dio_aio_write( 471 struct kiocb *iocb, 472 struct iov_iter *from) 473 { 474 struct file *file = iocb->ki_filp; 475 struct address_space *mapping = file->f_mapping; 476 struct inode *inode = mapping->host; 477 struct xfs_inode *ip = XFS_I(inode); 478 struct xfs_mount *mp = ip->i_mount; 479 ssize_t ret = 0; 480 int unaligned_io = 0; 481 int iolock; 482 size_t count = iov_iter_count(from); 483 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 484 mp->m_rtdev_targp : mp->m_ddev_targp; 485 486 /* DIO must be aligned to device logical sector size */ 487 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 488 return -EINVAL; 489 490 /* 491 * Don't take the exclusive iolock here unless the I/O is unaligned to 492 * the file system block size. We don't need to consider the EOF 493 * extension case here because xfs_file_aio_write_checks() will relock 494 * the inode as necessary for EOF zeroing cases and fill out the new 495 * inode size as appropriate. 496 */ 497 if ((iocb->ki_pos & mp->m_blockmask) || 498 ((iocb->ki_pos + count) & mp->m_blockmask)) { 499 unaligned_io = 1; 500 501 /* 502 * We can't properly handle unaligned direct I/O to reflink 503 * files yet, as we can't unshare a partial block. 504 */ 505 if (xfs_is_cow_inode(ip)) { 506 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 507 return -EREMCHG; 508 } 509 iolock = XFS_IOLOCK_EXCL; 510 } else { 511 iolock = XFS_IOLOCK_SHARED; 512 } 513 514 if (iocb->ki_flags & IOCB_NOWAIT) { 515 /* unaligned dio always waits, bail */ 516 if (unaligned_io) 517 return -EAGAIN; 518 if (!xfs_ilock_nowait(ip, iolock)) 519 return -EAGAIN; 520 } else { 521 xfs_ilock(ip, iolock); 522 } 523 524 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 525 if (ret) 526 goto out; 527 count = iov_iter_count(from); 528 529 /* 530 * If we are doing unaligned IO, we can't allow any other overlapping IO 531 * in-flight at the same time or we risk data corruption. Wait for all 532 * other IO to drain before we submit. If the IO is aligned, demote the 533 * iolock if we had to take the exclusive lock in 534 * xfs_file_aio_write_checks() for other reasons. 535 */ 536 if (unaligned_io) { 537 inode_dio_wait(inode); 538 } else if (iolock == XFS_IOLOCK_EXCL) { 539 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 540 iolock = XFS_IOLOCK_SHARED; 541 } 542 543 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 544 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 545 546 /* 547 * If unaligned, this is the only IO in-flight. If it has not yet 548 * completed, wait on it before we release the iolock to prevent 549 * subsequent overlapping IO. 550 */ 551 if (ret == -EIOCBQUEUED && unaligned_io) 552 inode_dio_wait(inode); 553 out: 554 xfs_iunlock(ip, iolock); 555 556 /* 557 * No fallback to buffered IO on errors for XFS, direct IO will either 558 * complete fully or fail. 559 */ 560 ASSERT(ret < 0 || ret == count); 561 return ret; 562 } 563 564 static noinline ssize_t 565 xfs_file_dax_write( 566 struct kiocb *iocb, 567 struct iov_iter *from) 568 { 569 struct inode *inode = iocb->ki_filp->f_mapping->host; 570 struct xfs_inode *ip = XFS_I(inode); 571 int iolock = XFS_IOLOCK_EXCL; 572 ssize_t ret, error = 0; 573 size_t count; 574 loff_t pos; 575 576 if (iocb->ki_flags & IOCB_NOWAIT) { 577 if (!xfs_ilock_nowait(ip, iolock)) 578 return -EAGAIN; 579 } else { 580 xfs_ilock(ip, iolock); 581 } 582 583 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 584 if (ret) 585 goto out; 586 587 pos = iocb->ki_pos; 588 count = iov_iter_count(from); 589 590 trace_xfs_file_dax_write(ip, count, pos); 591 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 592 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 593 i_size_write(inode, iocb->ki_pos); 594 error = xfs_setfilesize(ip, pos, ret); 595 } 596 out: 597 xfs_iunlock(ip, iolock); 598 if (error) 599 return error; 600 601 if (ret > 0) { 602 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 603 604 /* Handle various SYNC-type writes */ 605 ret = generic_write_sync(iocb, ret); 606 } 607 return ret; 608 } 609 610 STATIC ssize_t 611 xfs_file_buffered_aio_write( 612 struct kiocb *iocb, 613 struct iov_iter *from) 614 { 615 struct file *file = iocb->ki_filp; 616 struct address_space *mapping = file->f_mapping; 617 struct inode *inode = mapping->host; 618 struct xfs_inode *ip = XFS_I(inode); 619 ssize_t ret; 620 int enospc = 0; 621 int iolock; 622 623 if (iocb->ki_flags & IOCB_NOWAIT) 624 return -EOPNOTSUPP; 625 626 write_retry: 627 iolock = XFS_IOLOCK_EXCL; 628 xfs_ilock(ip, iolock); 629 630 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 631 if (ret) 632 goto out; 633 634 /* We can write back this queue in page reclaim */ 635 current->backing_dev_info = inode_to_bdi(inode); 636 637 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 638 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 639 if (likely(ret >= 0)) 640 iocb->ki_pos += ret; 641 642 /* 643 * If we hit a space limit, try to free up some lingering preallocated 644 * space before returning an error. In the case of ENOSPC, first try to 645 * write back all dirty inodes to free up some of the excess reserved 646 * metadata space. This reduces the chances that the eofblocks scan 647 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 648 * also behaves as a filter to prevent too many eofblocks scans from 649 * running at the same time. 650 */ 651 if (ret == -EDQUOT && !enospc) { 652 xfs_iunlock(ip, iolock); 653 enospc = xfs_inode_free_quota_eofblocks(ip); 654 if (enospc) 655 goto write_retry; 656 enospc = xfs_inode_free_quota_cowblocks(ip); 657 if (enospc) 658 goto write_retry; 659 iolock = 0; 660 } else if (ret == -ENOSPC && !enospc) { 661 struct xfs_eofblocks eofb = {0}; 662 663 enospc = 1; 664 xfs_flush_inodes(ip->i_mount); 665 666 xfs_iunlock(ip, iolock); 667 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 668 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 669 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 670 goto write_retry; 671 } 672 673 current->backing_dev_info = NULL; 674 out: 675 if (iolock) 676 xfs_iunlock(ip, iolock); 677 678 if (ret > 0) { 679 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 680 /* Handle various SYNC-type writes */ 681 ret = generic_write_sync(iocb, ret); 682 } 683 return ret; 684 } 685 686 STATIC ssize_t 687 xfs_file_write_iter( 688 struct kiocb *iocb, 689 struct iov_iter *from) 690 { 691 struct file *file = iocb->ki_filp; 692 struct address_space *mapping = file->f_mapping; 693 struct inode *inode = mapping->host; 694 struct xfs_inode *ip = XFS_I(inode); 695 ssize_t ret; 696 size_t ocount = iov_iter_count(from); 697 698 XFS_STATS_INC(ip->i_mount, xs_write_calls); 699 700 if (ocount == 0) 701 return 0; 702 703 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 704 return -EIO; 705 706 if (IS_DAX(inode)) 707 return xfs_file_dax_write(iocb, from); 708 709 if (iocb->ki_flags & IOCB_DIRECT) { 710 /* 711 * Allow a directio write to fall back to a buffered 712 * write *only* in the case that we're doing a reflink 713 * CoW. In all other directio scenarios we do not 714 * allow an operation to fall back to buffered mode. 715 */ 716 ret = xfs_file_dio_aio_write(iocb, from); 717 if (ret != -EREMCHG) 718 return ret; 719 } 720 721 return xfs_file_buffered_aio_write(iocb, from); 722 } 723 724 static void 725 xfs_wait_dax_page( 726 struct inode *inode) 727 { 728 struct xfs_inode *ip = XFS_I(inode); 729 730 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 731 schedule(); 732 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 733 } 734 735 static int 736 xfs_break_dax_layouts( 737 struct inode *inode, 738 bool *retry) 739 { 740 struct page *page; 741 742 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 743 744 page = dax_layout_busy_page(inode->i_mapping); 745 if (!page) 746 return 0; 747 748 *retry = true; 749 return ___wait_var_event(&page->_refcount, 750 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 751 0, 0, xfs_wait_dax_page(inode)); 752 } 753 754 int 755 xfs_break_layouts( 756 struct inode *inode, 757 uint *iolock, 758 enum layout_break_reason reason) 759 { 760 bool retry; 761 int error; 762 763 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 764 765 do { 766 retry = false; 767 switch (reason) { 768 case BREAK_UNMAP: 769 error = xfs_break_dax_layouts(inode, &retry); 770 if (error || retry) 771 break; 772 /* fall through */ 773 case BREAK_WRITE: 774 error = xfs_break_leased_layouts(inode, iolock, &retry); 775 break; 776 default: 777 WARN_ON_ONCE(1); 778 error = -EINVAL; 779 } 780 } while (error == 0 && retry); 781 782 return error; 783 } 784 785 #define XFS_FALLOC_FL_SUPPORTED \ 786 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 787 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 788 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 789 790 STATIC long 791 xfs_file_fallocate( 792 struct file *file, 793 int mode, 794 loff_t offset, 795 loff_t len) 796 { 797 struct inode *inode = file_inode(file); 798 struct xfs_inode *ip = XFS_I(inode); 799 long error; 800 enum xfs_prealloc_flags flags = 0; 801 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 802 loff_t new_size = 0; 803 bool do_file_insert = false; 804 805 if (!S_ISREG(inode->i_mode)) 806 return -EINVAL; 807 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 808 return -EOPNOTSUPP; 809 810 xfs_ilock(ip, iolock); 811 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 812 if (error) 813 goto out_unlock; 814 815 if (mode & FALLOC_FL_PUNCH_HOLE) { 816 error = xfs_free_file_space(ip, offset, len); 817 if (error) 818 goto out_unlock; 819 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 820 unsigned int blksize_mask = i_blocksize(inode) - 1; 821 822 if (offset & blksize_mask || len & blksize_mask) { 823 error = -EINVAL; 824 goto out_unlock; 825 } 826 827 /* 828 * There is no need to overlap collapse range with EOF, 829 * in which case it is effectively a truncate operation 830 */ 831 if (offset + len >= i_size_read(inode)) { 832 error = -EINVAL; 833 goto out_unlock; 834 } 835 836 new_size = i_size_read(inode) - len; 837 838 error = xfs_collapse_file_space(ip, offset, len); 839 if (error) 840 goto out_unlock; 841 } else if (mode & FALLOC_FL_INSERT_RANGE) { 842 unsigned int blksize_mask = i_blocksize(inode) - 1; 843 loff_t isize = i_size_read(inode); 844 845 if (offset & blksize_mask || len & blksize_mask) { 846 error = -EINVAL; 847 goto out_unlock; 848 } 849 850 /* 851 * New inode size must not exceed ->s_maxbytes, accounting for 852 * possible signed overflow. 853 */ 854 if (inode->i_sb->s_maxbytes - isize < len) { 855 error = -EFBIG; 856 goto out_unlock; 857 } 858 new_size = isize + len; 859 860 /* Offset should be less than i_size */ 861 if (offset >= isize) { 862 error = -EINVAL; 863 goto out_unlock; 864 } 865 do_file_insert = true; 866 } else { 867 flags |= XFS_PREALLOC_SET; 868 869 if (!(mode & FALLOC_FL_KEEP_SIZE) && 870 offset + len > i_size_read(inode)) { 871 new_size = offset + len; 872 error = inode_newsize_ok(inode, new_size); 873 if (error) 874 goto out_unlock; 875 } 876 877 if (mode & FALLOC_FL_ZERO_RANGE) { 878 error = xfs_zero_file_space(ip, offset, len); 879 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 880 error = xfs_reflink_unshare(ip, offset, len); 881 if (error) 882 goto out_unlock; 883 884 if (!xfs_is_always_cow_inode(ip)) { 885 error = xfs_alloc_file_space(ip, offset, len, 886 XFS_BMAPI_PREALLOC); 887 } 888 } else { 889 /* 890 * If always_cow mode we can't use preallocations and 891 * thus should not create them. 892 */ 893 if (xfs_is_always_cow_inode(ip)) { 894 error = -EOPNOTSUPP; 895 goto out_unlock; 896 } 897 898 error = xfs_alloc_file_space(ip, offset, len, 899 XFS_BMAPI_PREALLOC); 900 } 901 if (error) 902 goto out_unlock; 903 } 904 905 if (file->f_flags & O_DSYNC) 906 flags |= XFS_PREALLOC_SYNC; 907 908 error = xfs_update_prealloc_flags(ip, flags); 909 if (error) 910 goto out_unlock; 911 912 /* Change file size if needed */ 913 if (new_size) { 914 struct iattr iattr; 915 916 iattr.ia_valid = ATTR_SIZE; 917 iattr.ia_size = new_size; 918 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 919 if (error) 920 goto out_unlock; 921 } 922 923 /* 924 * Perform hole insertion now that the file size has been 925 * updated so that if we crash during the operation we don't 926 * leave shifted extents past EOF and hence losing access to 927 * the data that is contained within them. 928 */ 929 if (do_file_insert) 930 error = xfs_insert_file_space(ip, offset, len); 931 932 out_unlock: 933 xfs_iunlock(ip, iolock); 934 return error; 935 } 936 937 STATIC int 938 xfs_file_fadvise( 939 struct file *file, 940 loff_t start, 941 loff_t end, 942 int advice) 943 { 944 struct xfs_inode *ip = XFS_I(file_inode(file)); 945 int ret; 946 int lockflags = 0; 947 948 /* 949 * Operations creating pages in page cache need protection from hole 950 * punching and similar ops 951 */ 952 if (advice == POSIX_FADV_WILLNEED) { 953 lockflags = XFS_IOLOCK_SHARED; 954 xfs_ilock(ip, lockflags); 955 } 956 ret = generic_fadvise(file, start, end, advice); 957 if (lockflags) 958 xfs_iunlock(ip, lockflags); 959 return ret; 960 } 961 962 STATIC loff_t 963 xfs_file_remap_range( 964 struct file *file_in, 965 loff_t pos_in, 966 struct file *file_out, 967 loff_t pos_out, 968 loff_t len, 969 unsigned int remap_flags) 970 { 971 struct inode *inode_in = file_inode(file_in); 972 struct xfs_inode *src = XFS_I(inode_in); 973 struct inode *inode_out = file_inode(file_out); 974 struct xfs_inode *dest = XFS_I(inode_out); 975 struct xfs_mount *mp = src->i_mount; 976 loff_t remapped = 0; 977 xfs_extlen_t cowextsize; 978 int ret; 979 980 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 981 return -EINVAL; 982 983 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 984 return -EOPNOTSUPP; 985 986 if (XFS_FORCED_SHUTDOWN(mp)) 987 return -EIO; 988 989 /* Prepare and then clone file data. */ 990 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 991 &len, remap_flags); 992 if (ret < 0 || len == 0) 993 return ret; 994 995 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 996 997 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 998 &remapped); 999 if (ret) 1000 goto out_unlock; 1001 1002 /* 1003 * Carry the cowextsize hint from src to dest if we're sharing the 1004 * entire source file to the entire destination file, the source file 1005 * has a cowextsize hint, and the destination file does not. 1006 */ 1007 cowextsize = 0; 1008 if (pos_in == 0 && len == i_size_read(inode_in) && 1009 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1010 pos_out == 0 && len >= i_size_read(inode_out) && 1011 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1012 cowextsize = src->i_d.di_cowextsize; 1013 1014 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1015 remap_flags); 1016 1017 out_unlock: 1018 xfs_reflink_remap_unlock(file_in, file_out); 1019 if (ret) 1020 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1021 return remapped > 0 ? remapped : ret; 1022 } 1023 1024 STATIC int 1025 xfs_file_open( 1026 struct inode *inode, 1027 struct file *file) 1028 { 1029 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1030 return -EFBIG; 1031 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1032 return -EIO; 1033 file->f_mode |= FMODE_NOWAIT; 1034 return 0; 1035 } 1036 1037 STATIC int 1038 xfs_dir_open( 1039 struct inode *inode, 1040 struct file *file) 1041 { 1042 struct xfs_inode *ip = XFS_I(inode); 1043 int mode; 1044 int error; 1045 1046 error = xfs_file_open(inode, file); 1047 if (error) 1048 return error; 1049 1050 /* 1051 * If there are any blocks, read-ahead block 0 as we're almost 1052 * certain to have the next operation be a read there. 1053 */ 1054 mode = xfs_ilock_data_map_shared(ip); 1055 if (ip->i_d.di_nextents > 0) 1056 error = xfs_dir3_data_readahead(ip, 0, -1); 1057 xfs_iunlock(ip, mode); 1058 return error; 1059 } 1060 1061 STATIC int 1062 xfs_file_release( 1063 struct inode *inode, 1064 struct file *filp) 1065 { 1066 return xfs_release(XFS_I(inode)); 1067 } 1068 1069 STATIC int 1070 xfs_file_readdir( 1071 struct file *file, 1072 struct dir_context *ctx) 1073 { 1074 struct inode *inode = file_inode(file); 1075 xfs_inode_t *ip = XFS_I(inode); 1076 size_t bufsize; 1077 1078 /* 1079 * The Linux API doesn't pass down the total size of the buffer 1080 * we read into down to the filesystem. With the filldir concept 1081 * it's not needed for correct information, but the XFS dir2 leaf 1082 * code wants an estimate of the buffer size to calculate it's 1083 * readahead window and size the buffers used for mapping to 1084 * physical blocks. 1085 * 1086 * Try to give it an estimate that's good enough, maybe at some 1087 * point we can change the ->readdir prototype to include the 1088 * buffer size. For now we use the current glibc buffer size. 1089 */ 1090 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1091 1092 return xfs_readdir(NULL, ip, ctx, bufsize); 1093 } 1094 1095 STATIC loff_t 1096 xfs_file_llseek( 1097 struct file *file, 1098 loff_t offset, 1099 int whence) 1100 { 1101 struct inode *inode = file->f_mapping->host; 1102 1103 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1104 return -EIO; 1105 1106 switch (whence) { 1107 default: 1108 return generic_file_llseek(file, offset, whence); 1109 case SEEK_HOLE: 1110 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1111 break; 1112 case SEEK_DATA: 1113 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1114 break; 1115 } 1116 1117 if (offset < 0) 1118 return offset; 1119 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1120 } 1121 1122 /* 1123 * Locking for serialisation of IO during page faults. This results in a lock 1124 * ordering of: 1125 * 1126 * mmap_sem (MM) 1127 * sb_start_pagefault(vfs, freeze) 1128 * i_mmaplock (XFS - truncate serialisation) 1129 * page_lock (MM) 1130 * i_lock (XFS - extent map serialisation) 1131 */ 1132 static vm_fault_t 1133 __xfs_filemap_fault( 1134 struct vm_fault *vmf, 1135 enum page_entry_size pe_size, 1136 bool write_fault) 1137 { 1138 struct inode *inode = file_inode(vmf->vma->vm_file); 1139 struct xfs_inode *ip = XFS_I(inode); 1140 vm_fault_t ret; 1141 1142 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1143 1144 if (write_fault) { 1145 sb_start_pagefault(inode->i_sb); 1146 file_update_time(vmf->vma->vm_file); 1147 } 1148 1149 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1150 if (IS_DAX(inode)) { 1151 pfn_t pfn; 1152 1153 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1154 if (ret & VM_FAULT_NEEDDSYNC) 1155 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1156 } else { 1157 if (write_fault) 1158 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1159 else 1160 ret = filemap_fault(vmf); 1161 } 1162 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1163 1164 if (write_fault) 1165 sb_end_pagefault(inode->i_sb); 1166 return ret; 1167 } 1168 1169 static vm_fault_t 1170 xfs_filemap_fault( 1171 struct vm_fault *vmf) 1172 { 1173 /* DAX can shortcut the normal fault path on write faults! */ 1174 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1175 IS_DAX(file_inode(vmf->vma->vm_file)) && 1176 (vmf->flags & FAULT_FLAG_WRITE)); 1177 } 1178 1179 static vm_fault_t 1180 xfs_filemap_huge_fault( 1181 struct vm_fault *vmf, 1182 enum page_entry_size pe_size) 1183 { 1184 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1185 return VM_FAULT_FALLBACK; 1186 1187 /* DAX can shortcut the normal fault path on write faults! */ 1188 return __xfs_filemap_fault(vmf, pe_size, 1189 (vmf->flags & FAULT_FLAG_WRITE)); 1190 } 1191 1192 static vm_fault_t 1193 xfs_filemap_page_mkwrite( 1194 struct vm_fault *vmf) 1195 { 1196 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1197 } 1198 1199 /* 1200 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1201 * on write faults. In reality, it needs to serialise against truncate and 1202 * prepare memory for writing so handle is as standard write fault. 1203 */ 1204 static vm_fault_t 1205 xfs_filemap_pfn_mkwrite( 1206 struct vm_fault *vmf) 1207 { 1208 1209 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1210 } 1211 1212 static const struct vm_operations_struct xfs_file_vm_ops = { 1213 .fault = xfs_filemap_fault, 1214 .huge_fault = xfs_filemap_huge_fault, 1215 .map_pages = filemap_map_pages, 1216 .page_mkwrite = xfs_filemap_page_mkwrite, 1217 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1218 }; 1219 1220 STATIC int 1221 xfs_file_mmap( 1222 struct file *filp, 1223 struct vm_area_struct *vma) 1224 { 1225 struct dax_device *dax_dev; 1226 1227 dax_dev = xfs_find_daxdev_for_inode(file_inode(filp)); 1228 /* 1229 * We don't support synchronous mappings for non-DAX files and 1230 * for DAX files if underneath dax_device is not synchronous. 1231 */ 1232 if (!daxdev_mapping_supported(vma, dax_dev)) 1233 return -EOPNOTSUPP; 1234 1235 file_accessed(filp); 1236 vma->vm_ops = &xfs_file_vm_ops; 1237 if (IS_DAX(file_inode(filp))) 1238 vma->vm_flags |= VM_HUGEPAGE; 1239 return 0; 1240 } 1241 1242 const struct file_operations xfs_file_operations = { 1243 .llseek = xfs_file_llseek, 1244 .read_iter = xfs_file_read_iter, 1245 .write_iter = xfs_file_write_iter, 1246 .splice_read = generic_file_splice_read, 1247 .splice_write = iter_file_splice_write, 1248 .iopoll = iomap_dio_iopoll, 1249 .unlocked_ioctl = xfs_file_ioctl, 1250 #ifdef CONFIG_COMPAT 1251 .compat_ioctl = xfs_file_compat_ioctl, 1252 #endif 1253 .mmap = xfs_file_mmap, 1254 .mmap_supported_flags = MAP_SYNC, 1255 .open = xfs_file_open, 1256 .release = xfs_file_release, 1257 .fsync = xfs_file_fsync, 1258 .get_unmapped_area = thp_get_unmapped_area, 1259 .fallocate = xfs_file_fallocate, 1260 .fadvise = xfs_file_fadvise, 1261 .remap_file_range = xfs_file_remap_range, 1262 }; 1263 1264 const struct file_operations xfs_dir_file_operations = { 1265 .open = xfs_dir_open, 1266 .read = generic_read_dir, 1267 .iterate_shared = xfs_file_readdir, 1268 .llseek = generic_file_llseek, 1269 .unlocked_ioctl = xfs_file_ioctl, 1270 #ifdef CONFIG_COMPAT 1271 .compat_ioctl = xfs_file_compat_ioctl, 1272 #endif 1273 .fsync = xfs_dir_fsync, 1274 }; 1275