xref: /openbmc/linux/fs/xfs/xfs_file.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 	struct xfs_mount	*mp = ip->i_mount;
84 	xfs_lsn_t		lsn = 0;
85 
86 	trace_xfs_dir_fsync(ip);
87 
88 	xfs_ilock(ip, XFS_ILOCK_SHARED);
89 	if (xfs_ipincount(ip))
90 		lsn = ip->i_itemp->ili_last_lsn;
91 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
92 
93 	if (!lsn)
94 		return 0;
95 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96 }
97 
98 STATIC int
99 xfs_file_fsync(
100 	struct file		*file,
101 	loff_t			start,
102 	loff_t			end,
103 	int			datasync)
104 {
105 	struct inode		*inode = file->f_mapping->host;
106 	struct xfs_inode	*ip = XFS_I(inode);
107 	struct xfs_mount	*mp = ip->i_mount;
108 	int			error = 0;
109 	int			log_flushed = 0;
110 	xfs_lsn_t		lsn = 0;
111 
112 	trace_xfs_file_fsync(ip);
113 
114 	error = file_write_and_wait_range(file, start, end);
115 	if (error)
116 		return error;
117 
118 	if (XFS_FORCED_SHUTDOWN(mp))
119 		return -EIO;
120 
121 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
122 
123 	/*
124 	 * If we have an RT and/or log subvolume we need to make sure to flush
125 	 * the write cache the device used for file data first.  This is to
126 	 * ensure newly written file data make it to disk before logging the new
127 	 * inode size in case of an extending write.
128 	 */
129 	if (XFS_IS_REALTIME_INODE(ip))
130 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
133 
134 	/*
135 	 * All metadata updates are logged, which means that we just have to
136 	 * flush the log up to the latest LSN that touched the inode. If we have
137 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 	 * log force before we clear the ili_fsync_fields field. This ensures
139 	 * that we don't get a racing sync operation that does not wait for the
140 	 * metadata to hit the journal before returning. If we race with
141 	 * clearing the ili_fsync_fields, then all that will happen is the log
142 	 * force will do nothing as the lsn will already be on disk. We can't
143 	 * race with setting ili_fsync_fields because that is done under
144 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 	 * until after the ili_fsync_fields is cleared.
146 	 */
147 	xfs_ilock(ip, XFS_ILOCK_SHARED);
148 	if (xfs_ipincount(ip)) {
149 		if (!datasync ||
150 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 			lsn = ip->i_itemp->ili_last_lsn;
152 	}
153 
154 	if (lsn) {
155 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 		ip->i_itemp->ili_fsync_fields = 0;
157 	}
158 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
159 
160 	/*
161 	 * If we only have a single device, and the log force about was
162 	 * a no-op we might have to flush the data device cache here.
163 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 	 * an already allocated file and thus do not have any metadata to
165 	 * commit.
166 	 */
167 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 	    mp->m_logdev_targp == mp->m_ddev_targp)
169 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
170 
171 	return error;
172 }
173 
174 STATIC ssize_t
175 xfs_file_dio_aio_read(
176 	struct kiocb		*iocb,
177 	struct iov_iter		*to)
178 {
179 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
180 	size_t			count = iov_iter_count(to);
181 	ssize_t			ret;
182 
183 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184 
185 	if (!count)
186 		return 0; /* skip atime */
187 
188 	file_accessed(iocb->ki_filp);
189 
190 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
192 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
193 
194 	return ret;
195 }
196 
197 static noinline ssize_t
198 xfs_file_dax_read(
199 	struct kiocb		*iocb,
200 	struct iov_iter		*to)
201 {
202 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
203 	size_t			count = iov_iter_count(to);
204 	ssize_t			ret = 0;
205 
206 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
207 
208 	if (!count)
209 		return 0; /* skip atime */
210 
211 	if (iocb->ki_flags & IOCB_NOWAIT) {
212 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
213 			return -EAGAIN;
214 	} else {
215 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
216 	}
217 
218 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
219 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
220 
221 	file_accessed(iocb->ki_filp);
222 	return ret;
223 }
224 
225 STATIC ssize_t
226 xfs_file_buffered_aio_read(
227 	struct kiocb		*iocb,
228 	struct iov_iter		*to)
229 {
230 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
231 	ssize_t			ret;
232 
233 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
234 
235 	if (iocb->ki_flags & IOCB_NOWAIT) {
236 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
237 			return -EAGAIN;
238 	} else {
239 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 	}
241 	ret = generic_file_read_iter(iocb, to);
242 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243 
244 	return ret;
245 }
246 
247 STATIC ssize_t
248 xfs_file_read_iter(
249 	struct kiocb		*iocb,
250 	struct iov_iter		*to)
251 {
252 	struct inode		*inode = file_inode(iocb->ki_filp);
253 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
254 	ssize_t			ret = 0;
255 
256 	XFS_STATS_INC(mp, xs_read_calls);
257 
258 	if (XFS_FORCED_SHUTDOWN(mp))
259 		return -EIO;
260 
261 	if (IS_DAX(inode))
262 		ret = xfs_file_dax_read(iocb, to);
263 	else if (iocb->ki_flags & IOCB_DIRECT)
264 		ret = xfs_file_dio_aio_read(iocb, to);
265 	else
266 		ret = xfs_file_buffered_aio_read(iocb, to);
267 
268 	if (ret > 0)
269 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
270 	return ret;
271 }
272 
273 /*
274  * Common pre-write limit and setup checks.
275  *
276  * Called with the iolocked held either shared and exclusive according to
277  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
278  * if called for a direct write beyond i_size.
279  */
280 STATIC ssize_t
281 xfs_file_aio_write_checks(
282 	struct kiocb		*iocb,
283 	struct iov_iter		*from,
284 	int			*iolock)
285 {
286 	struct file		*file = iocb->ki_filp;
287 	struct inode		*inode = file->f_mapping->host;
288 	struct xfs_inode	*ip = XFS_I(inode);
289 	ssize_t			error = 0;
290 	size_t			count = iov_iter_count(from);
291 	bool			drained_dio = false;
292 	loff_t			isize;
293 
294 restart:
295 	error = generic_write_checks(iocb, from);
296 	if (error <= 0)
297 		return error;
298 
299 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
300 	if (error)
301 		return error;
302 
303 	/*
304 	 * For changing security info in file_remove_privs() we need i_rwsem
305 	 * exclusively.
306 	 */
307 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
308 		xfs_iunlock(ip, *iolock);
309 		*iolock = XFS_IOLOCK_EXCL;
310 		xfs_ilock(ip, *iolock);
311 		goto restart;
312 	}
313 	/*
314 	 * If the offset is beyond the size of the file, we need to zero any
315 	 * blocks that fall between the existing EOF and the start of this
316 	 * write.  If zeroing is needed and we are currently holding the
317 	 * iolock shared, we need to update it to exclusive which implies
318 	 * having to redo all checks before.
319 	 *
320 	 * We need to serialise against EOF updates that occur in IO
321 	 * completions here. We want to make sure that nobody is changing the
322 	 * size while we do this check until we have placed an IO barrier (i.e.
323 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
324 	 * The spinlock effectively forms a memory barrier once we have the
325 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
326 	 * and hence be able to correctly determine if we need to run zeroing.
327 	 */
328 	spin_lock(&ip->i_flags_lock);
329 	isize = i_size_read(inode);
330 	if (iocb->ki_pos > isize) {
331 		spin_unlock(&ip->i_flags_lock);
332 		if (!drained_dio) {
333 			if (*iolock == XFS_IOLOCK_SHARED) {
334 				xfs_iunlock(ip, *iolock);
335 				*iolock = XFS_IOLOCK_EXCL;
336 				xfs_ilock(ip, *iolock);
337 				iov_iter_reexpand(from, count);
338 			}
339 			/*
340 			 * We now have an IO submission barrier in place, but
341 			 * AIO can do EOF updates during IO completion and hence
342 			 * we now need to wait for all of them to drain. Non-AIO
343 			 * DIO will have drained before we are given the
344 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
345 			 * no-op.
346 			 */
347 			inode_dio_wait(inode);
348 			drained_dio = true;
349 			goto restart;
350 		}
351 
352 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
353 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
354 				NULL, &xfs_iomap_ops);
355 		if (error)
356 			return error;
357 	} else
358 		spin_unlock(&ip->i_flags_lock);
359 
360 	/*
361 	 * Updating the timestamps will grab the ilock again from
362 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
363 	 * lock above.  Eventually we should look into a way to avoid
364 	 * the pointless lock roundtrip.
365 	 */
366 	return file_modified(file);
367 }
368 
369 static int
370 xfs_dio_write_end_io(
371 	struct kiocb		*iocb,
372 	ssize_t			size,
373 	unsigned		flags)
374 {
375 	struct inode		*inode = file_inode(iocb->ki_filp);
376 	struct xfs_inode	*ip = XFS_I(inode);
377 	loff_t			offset = iocb->ki_pos;
378 	unsigned int		nofs_flag;
379 	int			error = 0;
380 
381 	trace_xfs_end_io_direct_write(ip, offset, size);
382 
383 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 		return -EIO;
385 
386 	if (size <= 0)
387 		return size;
388 
389 	/*
390 	 * Capture amount written on completion as we can't reliably account
391 	 * for it on submission.
392 	 */
393 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
394 
395 	/*
396 	 * We can allocate memory here while doing writeback on behalf of
397 	 * memory reclaim.  To avoid memory allocation deadlocks set the
398 	 * task-wide nofs context for the following operations.
399 	 */
400 	nofs_flag = memalloc_nofs_save();
401 
402 	if (flags & IOMAP_DIO_COW) {
403 		error = xfs_reflink_end_cow(ip, offset, size);
404 		if (error)
405 			goto out;
406 	}
407 
408 	/*
409 	 * Unwritten conversion updates the in-core isize after extent
410 	 * conversion but before updating the on-disk size. Updating isize any
411 	 * earlier allows a racing dio read to find unwritten extents before
412 	 * they are converted.
413 	 */
414 	if (flags & IOMAP_DIO_UNWRITTEN) {
415 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
416 		goto out;
417 	}
418 
419 	/*
420 	 * We need to update the in-core inode size here so that we don't end up
421 	 * with the on-disk inode size being outside the in-core inode size. We
422 	 * have no other method of updating EOF for AIO, so always do it here
423 	 * if necessary.
424 	 *
425 	 * We need to lock the test/set EOF update as we can be racing with
426 	 * other IO completions here to update the EOF. Failing to serialise
427 	 * here can result in EOF moving backwards and Bad Things Happen when
428 	 * that occurs.
429 	 */
430 	spin_lock(&ip->i_flags_lock);
431 	if (offset + size > i_size_read(inode)) {
432 		i_size_write(inode, offset + size);
433 		spin_unlock(&ip->i_flags_lock);
434 		error = xfs_setfilesize(ip, offset, size);
435 	} else {
436 		spin_unlock(&ip->i_flags_lock);
437 	}
438 
439 out:
440 	memalloc_nofs_restore(nofs_flag);
441 	return error;
442 }
443 
444 /*
445  * xfs_file_dio_aio_write - handle direct IO writes
446  *
447  * Lock the inode appropriately to prepare for and issue a direct IO write.
448  * By separating it from the buffered write path we remove all the tricky to
449  * follow locking changes and looping.
450  *
451  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
452  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
453  * pages are flushed out.
454  *
455  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
456  * allowing them to be done in parallel with reads and other direct IO writes.
457  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
458  * needs to do sub-block zeroing and that requires serialisation against other
459  * direct IOs to the same block. In this case we need to serialise the
460  * submission of the unaligned IOs so that we don't get racing block zeroing in
461  * the dio layer.  To avoid the problem with aio, we also need to wait for
462  * outstanding IOs to complete so that unwritten extent conversion is completed
463  * before we try to map the overlapping block. This is currently implemented by
464  * hitting it with a big hammer (i.e. inode_dio_wait()).
465  *
466  * Returns with locks held indicated by @iolock and errors indicated by
467  * negative return values.
468  */
469 STATIC ssize_t
470 xfs_file_dio_aio_write(
471 	struct kiocb		*iocb,
472 	struct iov_iter		*from)
473 {
474 	struct file		*file = iocb->ki_filp;
475 	struct address_space	*mapping = file->f_mapping;
476 	struct inode		*inode = mapping->host;
477 	struct xfs_inode	*ip = XFS_I(inode);
478 	struct xfs_mount	*mp = ip->i_mount;
479 	ssize_t			ret = 0;
480 	int			unaligned_io = 0;
481 	int			iolock;
482 	size_t			count = iov_iter_count(from);
483 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
484 					mp->m_rtdev_targp : mp->m_ddev_targp;
485 
486 	/* DIO must be aligned to device logical sector size */
487 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
488 		return -EINVAL;
489 
490 	/*
491 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
492 	 * the file system block size.  We don't need to consider the EOF
493 	 * extension case here because xfs_file_aio_write_checks() will relock
494 	 * the inode as necessary for EOF zeroing cases and fill out the new
495 	 * inode size as appropriate.
496 	 */
497 	if ((iocb->ki_pos & mp->m_blockmask) ||
498 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
499 		unaligned_io = 1;
500 
501 		/*
502 		 * We can't properly handle unaligned direct I/O to reflink
503 		 * files yet, as we can't unshare a partial block.
504 		 */
505 		if (xfs_is_cow_inode(ip)) {
506 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
507 			return -EREMCHG;
508 		}
509 		iolock = XFS_IOLOCK_EXCL;
510 	} else {
511 		iolock = XFS_IOLOCK_SHARED;
512 	}
513 
514 	if (iocb->ki_flags & IOCB_NOWAIT) {
515 		/* unaligned dio always waits, bail */
516 		if (unaligned_io)
517 			return -EAGAIN;
518 		if (!xfs_ilock_nowait(ip, iolock))
519 			return -EAGAIN;
520 	} else {
521 		xfs_ilock(ip, iolock);
522 	}
523 
524 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
525 	if (ret)
526 		goto out;
527 	count = iov_iter_count(from);
528 
529 	/*
530 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
531 	 * in-flight at the same time or we risk data corruption. Wait for all
532 	 * other IO to drain before we submit. If the IO is aligned, demote the
533 	 * iolock if we had to take the exclusive lock in
534 	 * xfs_file_aio_write_checks() for other reasons.
535 	 */
536 	if (unaligned_io) {
537 		inode_dio_wait(inode);
538 	} else if (iolock == XFS_IOLOCK_EXCL) {
539 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
540 		iolock = XFS_IOLOCK_SHARED;
541 	}
542 
543 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
544 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
545 
546 	/*
547 	 * If unaligned, this is the only IO in-flight. If it has not yet
548 	 * completed, wait on it before we release the iolock to prevent
549 	 * subsequent overlapping IO.
550 	 */
551 	if (ret == -EIOCBQUEUED && unaligned_io)
552 		inode_dio_wait(inode);
553 out:
554 	xfs_iunlock(ip, iolock);
555 
556 	/*
557 	 * No fallback to buffered IO on errors for XFS, direct IO will either
558 	 * complete fully or fail.
559 	 */
560 	ASSERT(ret < 0 || ret == count);
561 	return ret;
562 }
563 
564 static noinline ssize_t
565 xfs_file_dax_write(
566 	struct kiocb		*iocb,
567 	struct iov_iter		*from)
568 {
569 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
570 	struct xfs_inode	*ip = XFS_I(inode);
571 	int			iolock = XFS_IOLOCK_EXCL;
572 	ssize_t			ret, error = 0;
573 	size_t			count;
574 	loff_t			pos;
575 
576 	if (iocb->ki_flags & IOCB_NOWAIT) {
577 		if (!xfs_ilock_nowait(ip, iolock))
578 			return -EAGAIN;
579 	} else {
580 		xfs_ilock(ip, iolock);
581 	}
582 
583 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
584 	if (ret)
585 		goto out;
586 
587 	pos = iocb->ki_pos;
588 	count = iov_iter_count(from);
589 
590 	trace_xfs_file_dax_write(ip, count, pos);
591 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
592 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
593 		i_size_write(inode, iocb->ki_pos);
594 		error = xfs_setfilesize(ip, pos, ret);
595 	}
596 out:
597 	xfs_iunlock(ip, iolock);
598 	if (error)
599 		return error;
600 
601 	if (ret > 0) {
602 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
603 
604 		/* Handle various SYNC-type writes */
605 		ret = generic_write_sync(iocb, ret);
606 	}
607 	return ret;
608 }
609 
610 STATIC ssize_t
611 xfs_file_buffered_aio_write(
612 	struct kiocb		*iocb,
613 	struct iov_iter		*from)
614 {
615 	struct file		*file = iocb->ki_filp;
616 	struct address_space	*mapping = file->f_mapping;
617 	struct inode		*inode = mapping->host;
618 	struct xfs_inode	*ip = XFS_I(inode);
619 	ssize_t			ret;
620 	int			enospc = 0;
621 	int			iolock;
622 
623 	if (iocb->ki_flags & IOCB_NOWAIT)
624 		return -EOPNOTSUPP;
625 
626 write_retry:
627 	iolock = XFS_IOLOCK_EXCL;
628 	xfs_ilock(ip, iolock);
629 
630 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
631 	if (ret)
632 		goto out;
633 
634 	/* We can write back this queue in page reclaim */
635 	current->backing_dev_info = inode_to_bdi(inode);
636 
637 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
638 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
639 	if (likely(ret >= 0))
640 		iocb->ki_pos += ret;
641 
642 	/*
643 	 * If we hit a space limit, try to free up some lingering preallocated
644 	 * space before returning an error. In the case of ENOSPC, first try to
645 	 * write back all dirty inodes to free up some of the excess reserved
646 	 * metadata space. This reduces the chances that the eofblocks scan
647 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
648 	 * also behaves as a filter to prevent too many eofblocks scans from
649 	 * running at the same time.
650 	 */
651 	if (ret == -EDQUOT && !enospc) {
652 		xfs_iunlock(ip, iolock);
653 		enospc = xfs_inode_free_quota_eofblocks(ip);
654 		if (enospc)
655 			goto write_retry;
656 		enospc = xfs_inode_free_quota_cowblocks(ip);
657 		if (enospc)
658 			goto write_retry;
659 		iolock = 0;
660 	} else if (ret == -ENOSPC && !enospc) {
661 		struct xfs_eofblocks eofb = {0};
662 
663 		enospc = 1;
664 		xfs_flush_inodes(ip->i_mount);
665 
666 		xfs_iunlock(ip, iolock);
667 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
668 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
669 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
670 		goto write_retry;
671 	}
672 
673 	current->backing_dev_info = NULL;
674 out:
675 	if (iolock)
676 		xfs_iunlock(ip, iolock);
677 
678 	if (ret > 0) {
679 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
680 		/* Handle various SYNC-type writes */
681 		ret = generic_write_sync(iocb, ret);
682 	}
683 	return ret;
684 }
685 
686 STATIC ssize_t
687 xfs_file_write_iter(
688 	struct kiocb		*iocb,
689 	struct iov_iter		*from)
690 {
691 	struct file		*file = iocb->ki_filp;
692 	struct address_space	*mapping = file->f_mapping;
693 	struct inode		*inode = mapping->host;
694 	struct xfs_inode	*ip = XFS_I(inode);
695 	ssize_t			ret;
696 	size_t			ocount = iov_iter_count(from);
697 
698 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
699 
700 	if (ocount == 0)
701 		return 0;
702 
703 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
704 		return -EIO;
705 
706 	if (IS_DAX(inode))
707 		return xfs_file_dax_write(iocb, from);
708 
709 	if (iocb->ki_flags & IOCB_DIRECT) {
710 		/*
711 		 * Allow a directio write to fall back to a buffered
712 		 * write *only* in the case that we're doing a reflink
713 		 * CoW.  In all other directio scenarios we do not
714 		 * allow an operation to fall back to buffered mode.
715 		 */
716 		ret = xfs_file_dio_aio_write(iocb, from);
717 		if (ret != -EREMCHG)
718 			return ret;
719 	}
720 
721 	return xfs_file_buffered_aio_write(iocb, from);
722 }
723 
724 static void
725 xfs_wait_dax_page(
726 	struct inode		*inode)
727 {
728 	struct xfs_inode        *ip = XFS_I(inode);
729 
730 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
731 	schedule();
732 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
733 }
734 
735 static int
736 xfs_break_dax_layouts(
737 	struct inode		*inode,
738 	bool			*retry)
739 {
740 	struct page		*page;
741 
742 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
743 
744 	page = dax_layout_busy_page(inode->i_mapping);
745 	if (!page)
746 		return 0;
747 
748 	*retry = true;
749 	return ___wait_var_event(&page->_refcount,
750 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
751 			0, 0, xfs_wait_dax_page(inode));
752 }
753 
754 int
755 xfs_break_layouts(
756 	struct inode		*inode,
757 	uint			*iolock,
758 	enum layout_break_reason reason)
759 {
760 	bool			retry;
761 	int			error;
762 
763 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
764 
765 	do {
766 		retry = false;
767 		switch (reason) {
768 		case BREAK_UNMAP:
769 			error = xfs_break_dax_layouts(inode, &retry);
770 			if (error || retry)
771 				break;
772 			/* fall through */
773 		case BREAK_WRITE:
774 			error = xfs_break_leased_layouts(inode, iolock, &retry);
775 			break;
776 		default:
777 			WARN_ON_ONCE(1);
778 			error = -EINVAL;
779 		}
780 	} while (error == 0 && retry);
781 
782 	return error;
783 }
784 
785 #define	XFS_FALLOC_FL_SUPPORTED						\
786 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
787 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
788 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
789 
790 STATIC long
791 xfs_file_fallocate(
792 	struct file		*file,
793 	int			mode,
794 	loff_t			offset,
795 	loff_t			len)
796 {
797 	struct inode		*inode = file_inode(file);
798 	struct xfs_inode	*ip = XFS_I(inode);
799 	long			error;
800 	enum xfs_prealloc_flags	flags = 0;
801 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
802 	loff_t			new_size = 0;
803 	bool			do_file_insert = false;
804 
805 	if (!S_ISREG(inode->i_mode))
806 		return -EINVAL;
807 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
808 		return -EOPNOTSUPP;
809 
810 	xfs_ilock(ip, iolock);
811 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
812 	if (error)
813 		goto out_unlock;
814 
815 	if (mode & FALLOC_FL_PUNCH_HOLE) {
816 		error = xfs_free_file_space(ip, offset, len);
817 		if (error)
818 			goto out_unlock;
819 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
820 		unsigned int blksize_mask = i_blocksize(inode) - 1;
821 
822 		if (offset & blksize_mask || len & blksize_mask) {
823 			error = -EINVAL;
824 			goto out_unlock;
825 		}
826 
827 		/*
828 		 * There is no need to overlap collapse range with EOF,
829 		 * in which case it is effectively a truncate operation
830 		 */
831 		if (offset + len >= i_size_read(inode)) {
832 			error = -EINVAL;
833 			goto out_unlock;
834 		}
835 
836 		new_size = i_size_read(inode) - len;
837 
838 		error = xfs_collapse_file_space(ip, offset, len);
839 		if (error)
840 			goto out_unlock;
841 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
842 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
843 		loff_t		isize = i_size_read(inode);
844 
845 		if (offset & blksize_mask || len & blksize_mask) {
846 			error = -EINVAL;
847 			goto out_unlock;
848 		}
849 
850 		/*
851 		 * New inode size must not exceed ->s_maxbytes, accounting for
852 		 * possible signed overflow.
853 		 */
854 		if (inode->i_sb->s_maxbytes - isize < len) {
855 			error = -EFBIG;
856 			goto out_unlock;
857 		}
858 		new_size = isize + len;
859 
860 		/* Offset should be less than i_size */
861 		if (offset >= isize) {
862 			error = -EINVAL;
863 			goto out_unlock;
864 		}
865 		do_file_insert = true;
866 	} else {
867 		flags |= XFS_PREALLOC_SET;
868 
869 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
870 		    offset + len > i_size_read(inode)) {
871 			new_size = offset + len;
872 			error = inode_newsize_ok(inode, new_size);
873 			if (error)
874 				goto out_unlock;
875 		}
876 
877 		if (mode & FALLOC_FL_ZERO_RANGE) {
878 			error = xfs_zero_file_space(ip, offset, len);
879 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
880 			error = xfs_reflink_unshare(ip, offset, len);
881 			if (error)
882 				goto out_unlock;
883 
884 			if (!xfs_is_always_cow_inode(ip)) {
885 				error = xfs_alloc_file_space(ip, offset, len,
886 						XFS_BMAPI_PREALLOC);
887 			}
888 		} else {
889 			/*
890 			 * If always_cow mode we can't use preallocations and
891 			 * thus should not create them.
892 			 */
893 			if (xfs_is_always_cow_inode(ip)) {
894 				error = -EOPNOTSUPP;
895 				goto out_unlock;
896 			}
897 
898 			error = xfs_alloc_file_space(ip, offset, len,
899 						     XFS_BMAPI_PREALLOC);
900 		}
901 		if (error)
902 			goto out_unlock;
903 	}
904 
905 	if (file->f_flags & O_DSYNC)
906 		flags |= XFS_PREALLOC_SYNC;
907 
908 	error = xfs_update_prealloc_flags(ip, flags);
909 	if (error)
910 		goto out_unlock;
911 
912 	/* Change file size if needed */
913 	if (new_size) {
914 		struct iattr iattr;
915 
916 		iattr.ia_valid = ATTR_SIZE;
917 		iattr.ia_size = new_size;
918 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
919 		if (error)
920 			goto out_unlock;
921 	}
922 
923 	/*
924 	 * Perform hole insertion now that the file size has been
925 	 * updated so that if we crash during the operation we don't
926 	 * leave shifted extents past EOF and hence losing access to
927 	 * the data that is contained within them.
928 	 */
929 	if (do_file_insert)
930 		error = xfs_insert_file_space(ip, offset, len);
931 
932 out_unlock:
933 	xfs_iunlock(ip, iolock);
934 	return error;
935 }
936 
937 STATIC int
938 xfs_file_fadvise(
939 	struct file	*file,
940 	loff_t		start,
941 	loff_t		end,
942 	int		advice)
943 {
944 	struct xfs_inode *ip = XFS_I(file_inode(file));
945 	int ret;
946 	int lockflags = 0;
947 
948 	/*
949 	 * Operations creating pages in page cache need protection from hole
950 	 * punching and similar ops
951 	 */
952 	if (advice == POSIX_FADV_WILLNEED) {
953 		lockflags = XFS_IOLOCK_SHARED;
954 		xfs_ilock(ip, lockflags);
955 	}
956 	ret = generic_fadvise(file, start, end, advice);
957 	if (lockflags)
958 		xfs_iunlock(ip, lockflags);
959 	return ret;
960 }
961 
962 STATIC loff_t
963 xfs_file_remap_range(
964 	struct file		*file_in,
965 	loff_t			pos_in,
966 	struct file		*file_out,
967 	loff_t			pos_out,
968 	loff_t			len,
969 	unsigned int		remap_flags)
970 {
971 	struct inode		*inode_in = file_inode(file_in);
972 	struct xfs_inode	*src = XFS_I(inode_in);
973 	struct inode		*inode_out = file_inode(file_out);
974 	struct xfs_inode	*dest = XFS_I(inode_out);
975 	struct xfs_mount	*mp = src->i_mount;
976 	loff_t			remapped = 0;
977 	xfs_extlen_t		cowextsize;
978 	int			ret;
979 
980 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
981 		return -EINVAL;
982 
983 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
984 		return -EOPNOTSUPP;
985 
986 	if (XFS_FORCED_SHUTDOWN(mp))
987 		return -EIO;
988 
989 	/* Prepare and then clone file data. */
990 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
991 			&len, remap_flags);
992 	if (ret < 0 || len == 0)
993 		return ret;
994 
995 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
996 
997 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
998 			&remapped);
999 	if (ret)
1000 		goto out_unlock;
1001 
1002 	/*
1003 	 * Carry the cowextsize hint from src to dest if we're sharing the
1004 	 * entire source file to the entire destination file, the source file
1005 	 * has a cowextsize hint, and the destination file does not.
1006 	 */
1007 	cowextsize = 0;
1008 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1009 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1010 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1011 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1012 		cowextsize = src->i_d.di_cowextsize;
1013 
1014 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1015 			remap_flags);
1016 
1017 out_unlock:
1018 	xfs_reflink_remap_unlock(file_in, file_out);
1019 	if (ret)
1020 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1021 	return remapped > 0 ? remapped : ret;
1022 }
1023 
1024 STATIC int
1025 xfs_file_open(
1026 	struct inode	*inode,
1027 	struct file	*file)
1028 {
1029 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1030 		return -EFBIG;
1031 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1032 		return -EIO;
1033 	file->f_mode |= FMODE_NOWAIT;
1034 	return 0;
1035 }
1036 
1037 STATIC int
1038 xfs_dir_open(
1039 	struct inode	*inode,
1040 	struct file	*file)
1041 {
1042 	struct xfs_inode *ip = XFS_I(inode);
1043 	int		mode;
1044 	int		error;
1045 
1046 	error = xfs_file_open(inode, file);
1047 	if (error)
1048 		return error;
1049 
1050 	/*
1051 	 * If there are any blocks, read-ahead block 0 as we're almost
1052 	 * certain to have the next operation be a read there.
1053 	 */
1054 	mode = xfs_ilock_data_map_shared(ip);
1055 	if (ip->i_d.di_nextents > 0)
1056 		error = xfs_dir3_data_readahead(ip, 0, -1);
1057 	xfs_iunlock(ip, mode);
1058 	return error;
1059 }
1060 
1061 STATIC int
1062 xfs_file_release(
1063 	struct inode	*inode,
1064 	struct file	*filp)
1065 {
1066 	return xfs_release(XFS_I(inode));
1067 }
1068 
1069 STATIC int
1070 xfs_file_readdir(
1071 	struct file	*file,
1072 	struct dir_context *ctx)
1073 {
1074 	struct inode	*inode = file_inode(file);
1075 	xfs_inode_t	*ip = XFS_I(inode);
1076 	size_t		bufsize;
1077 
1078 	/*
1079 	 * The Linux API doesn't pass down the total size of the buffer
1080 	 * we read into down to the filesystem.  With the filldir concept
1081 	 * it's not needed for correct information, but the XFS dir2 leaf
1082 	 * code wants an estimate of the buffer size to calculate it's
1083 	 * readahead window and size the buffers used for mapping to
1084 	 * physical blocks.
1085 	 *
1086 	 * Try to give it an estimate that's good enough, maybe at some
1087 	 * point we can change the ->readdir prototype to include the
1088 	 * buffer size.  For now we use the current glibc buffer size.
1089 	 */
1090 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1091 
1092 	return xfs_readdir(NULL, ip, ctx, bufsize);
1093 }
1094 
1095 STATIC loff_t
1096 xfs_file_llseek(
1097 	struct file	*file,
1098 	loff_t		offset,
1099 	int		whence)
1100 {
1101 	struct inode		*inode = file->f_mapping->host;
1102 
1103 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1104 		return -EIO;
1105 
1106 	switch (whence) {
1107 	default:
1108 		return generic_file_llseek(file, offset, whence);
1109 	case SEEK_HOLE:
1110 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1111 		break;
1112 	case SEEK_DATA:
1113 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1114 		break;
1115 	}
1116 
1117 	if (offset < 0)
1118 		return offset;
1119 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1120 }
1121 
1122 /*
1123  * Locking for serialisation of IO during page faults. This results in a lock
1124  * ordering of:
1125  *
1126  * mmap_sem (MM)
1127  *   sb_start_pagefault(vfs, freeze)
1128  *     i_mmaplock (XFS - truncate serialisation)
1129  *       page_lock (MM)
1130  *         i_lock (XFS - extent map serialisation)
1131  */
1132 static vm_fault_t
1133 __xfs_filemap_fault(
1134 	struct vm_fault		*vmf,
1135 	enum page_entry_size	pe_size,
1136 	bool			write_fault)
1137 {
1138 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1139 	struct xfs_inode	*ip = XFS_I(inode);
1140 	vm_fault_t		ret;
1141 
1142 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1143 
1144 	if (write_fault) {
1145 		sb_start_pagefault(inode->i_sb);
1146 		file_update_time(vmf->vma->vm_file);
1147 	}
1148 
1149 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1150 	if (IS_DAX(inode)) {
1151 		pfn_t pfn;
1152 
1153 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1154 		if (ret & VM_FAULT_NEEDDSYNC)
1155 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1156 	} else {
1157 		if (write_fault)
1158 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1159 		else
1160 			ret = filemap_fault(vmf);
1161 	}
1162 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1163 
1164 	if (write_fault)
1165 		sb_end_pagefault(inode->i_sb);
1166 	return ret;
1167 }
1168 
1169 static vm_fault_t
1170 xfs_filemap_fault(
1171 	struct vm_fault		*vmf)
1172 {
1173 	/* DAX can shortcut the normal fault path on write faults! */
1174 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1175 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1176 			(vmf->flags & FAULT_FLAG_WRITE));
1177 }
1178 
1179 static vm_fault_t
1180 xfs_filemap_huge_fault(
1181 	struct vm_fault		*vmf,
1182 	enum page_entry_size	pe_size)
1183 {
1184 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1185 		return VM_FAULT_FALLBACK;
1186 
1187 	/* DAX can shortcut the normal fault path on write faults! */
1188 	return __xfs_filemap_fault(vmf, pe_size,
1189 			(vmf->flags & FAULT_FLAG_WRITE));
1190 }
1191 
1192 static vm_fault_t
1193 xfs_filemap_page_mkwrite(
1194 	struct vm_fault		*vmf)
1195 {
1196 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1197 }
1198 
1199 /*
1200  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1201  * on write faults. In reality, it needs to serialise against truncate and
1202  * prepare memory for writing so handle is as standard write fault.
1203  */
1204 static vm_fault_t
1205 xfs_filemap_pfn_mkwrite(
1206 	struct vm_fault		*vmf)
1207 {
1208 
1209 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1210 }
1211 
1212 static const struct vm_operations_struct xfs_file_vm_ops = {
1213 	.fault		= xfs_filemap_fault,
1214 	.huge_fault	= xfs_filemap_huge_fault,
1215 	.map_pages	= filemap_map_pages,
1216 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1217 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1218 };
1219 
1220 STATIC int
1221 xfs_file_mmap(
1222 	struct file	*filp,
1223 	struct vm_area_struct *vma)
1224 {
1225 	struct dax_device 	*dax_dev;
1226 
1227 	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1228 	/*
1229 	 * We don't support synchronous mappings for non-DAX files and
1230 	 * for DAX files if underneath dax_device is not synchronous.
1231 	 */
1232 	if (!daxdev_mapping_supported(vma, dax_dev))
1233 		return -EOPNOTSUPP;
1234 
1235 	file_accessed(filp);
1236 	vma->vm_ops = &xfs_file_vm_ops;
1237 	if (IS_DAX(file_inode(filp)))
1238 		vma->vm_flags |= VM_HUGEPAGE;
1239 	return 0;
1240 }
1241 
1242 const struct file_operations xfs_file_operations = {
1243 	.llseek		= xfs_file_llseek,
1244 	.read_iter	= xfs_file_read_iter,
1245 	.write_iter	= xfs_file_write_iter,
1246 	.splice_read	= generic_file_splice_read,
1247 	.splice_write	= iter_file_splice_write,
1248 	.iopoll		= iomap_dio_iopoll,
1249 	.unlocked_ioctl	= xfs_file_ioctl,
1250 #ifdef CONFIG_COMPAT
1251 	.compat_ioctl	= xfs_file_compat_ioctl,
1252 #endif
1253 	.mmap		= xfs_file_mmap,
1254 	.mmap_supported_flags = MAP_SYNC,
1255 	.open		= xfs_file_open,
1256 	.release	= xfs_file_release,
1257 	.fsync		= xfs_file_fsync,
1258 	.get_unmapped_area = thp_get_unmapped_area,
1259 	.fallocate	= xfs_file_fallocate,
1260 	.fadvise	= xfs_file_fadvise,
1261 	.remap_file_range = xfs_file_remap_range,
1262 };
1263 
1264 const struct file_operations xfs_dir_file_operations = {
1265 	.open		= xfs_dir_open,
1266 	.read		= generic_read_dir,
1267 	.iterate_shared	= xfs_file_readdir,
1268 	.llseek		= generic_file_llseek,
1269 	.unlocked_ioctl	= xfs_file_ioctl,
1270 #ifdef CONFIG_COMPAT
1271 	.compat_ioctl	= xfs_file_compat_ioctl,
1272 #endif
1273 	.fsync		= xfs_dir_fsync,
1274 };
1275