1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 #include <linux/mman.h> 48 49 static const struct vm_operations_struct xfs_file_vm_ops; 50 51 int 52 xfs_update_prealloc_flags( 53 struct xfs_inode *ip, 54 enum xfs_prealloc_flags flags) 55 { 56 struct xfs_trans *tp; 57 int error; 58 59 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 60 0, 0, 0, &tp); 61 if (error) 62 return error; 63 64 xfs_ilock(ip, XFS_ILOCK_EXCL); 65 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 66 67 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 68 VFS_I(ip)->i_mode &= ~S_ISUID; 69 if (VFS_I(ip)->i_mode & S_IXGRP) 70 VFS_I(ip)->i_mode &= ~S_ISGID; 71 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 72 } 73 74 if (flags & XFS_PREALLOC_SET) 75 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 76 if (flags & XFS_PREALLOC_CLEAR) 77 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 78 79 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 80 if (flags & XFS_PREALLOC_SYNC) 81 xfs_trans_set_sync(tp); 82 return xfs_trans_commit(tp); 83 } 84 85 /* 86 * Fsync operations on directories are much simpler than on regular files, 87 * as there is no file data to flush, and thus also no need for explicit 88 * cache flush operations, and there are no non-transaction metadata updates 89 * on directories either. 90 */ 91 STATIC int 92 xfs_dir_fsync( 93 struct file *file, 94 loff_t start, 95 loff_t end, 96 int datasync) 97 { 98 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 99 struct xfs_mount *mp = ip->i_mount; 100 xfs_lsn_t lsn = 0; 101 102 trace_xfs_dir_fsync(ip); 103 104 xfs_ilock(ip, XFS_ILOCK_SHARED); 105 if (xfs_ipincount(ip)) 106 lsn = ip->i_itemp->ili_last_lsn; 107 xfs_iunlock(ip, XFS_ILOCK_SHARED); 108 109 if (!lsn) 110 return 0; 111 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 112 } 113 114 STATIC int 115 xfs_file_fsync( 116 struct file *file, 117 loff_t start, 118 loff_t end, 119 int datasync) 120 { 121 struct inode *inode = file->f_mapping->host; 122 struct xfs_inode *ip = XFS_I(inode); 123 struct xfs_mount *mp = ip->i_mount; 124 int error = 0; 125 int log_flushed = 0; 126 xfs_lsn_t lsn = 0; 127 128 trace_xfs_file_fsync(ip); 129 130 error = file_write_and_wait_range(file, start, end); 131 if (error) 132 return error; 133 134 if (XFS_FORCED_SHUTDOWN(mp)) 135 return -EIO; 136 137 xfs_iflags_clear(ip, XFS_ITRUNCATED); 138 139 /* 140 * If we have an RT and/or log subvolume we need to make sure to flush 141 * the write cache the device used for file data first. This is to 142 * ensure newly written file data make it to disk before logging the new 143 * inode size in case of an extending write. 144 */ 145 if (XFS_IS_REALTIME_INODE(ip)) 146 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 147 else if (mp->m_logdev_targp != mp->m_ddev_targp) 148 xfs_blkdev_issue_flush(mp->m_ddev_targp); 149 150 /* 151 * All metadata updates are logged, which means that we just have to 152 * flush the log up to the latest LSN that touched the inode. If we have 153 * concurrent fsync/fdatasync() calls, we need them to all block on the 154 * log force before we clear the ili_fsync_fields field. This ensures 155 * that we don't get a racing sync operation that does not wait for the 156 * metadata to hit the journal before returning. If we race with 157 * clearing the ili_fsync_fields, then all that will happen is the log 158 * force will do nothing as the lsn will already be on disk. We can't 159 * race with setting ili_fsync_fields because that is done under 160 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 161 * until after the ili_fsync_fields is cleared. 162 */ 163 xfs_ilock(ip, XFS_ILOCK_SHARED); 164 if (xfs_ipincount(ip)) { 165 if (!datasync || 166 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 167 lsn = ip->i_itemp->ili_last_lsn; 168 } 169 170 if (lsn) { 171 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 172 ip->i_itemp->ili_fsync_fields = 0; 173 } 174 xfs_iunlock(ip, XFS_ILOCK_SHARED); 175 176 /* 177 * If we only have a single device, and the log force about was 178 * a no-op we might have to flush the data device cache here. 179 * This can only happen for fdatasync/O_DSYNC if we were overwriting 180 * an already allocated file and thus do not have any metadata to 181 * commit. 182 */ 183 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 184 mp->m_logdev_targp == mp->m_ddev_targp) 185 xfs_blkdev_issue_flush(mp->m_ddev_targp); 186 187 return error; 188 } 189 190 STATIC ssize_t 191 xfs_file_dio_aio_read( 192 struct kiocb *iocb, 193 struct iov_iter *to) 194 { 195 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 196 size_t count = iov_iter_count(to); 197 ssize_t ret; 198 199 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 200 201 if (!count) 202 return 0; /* skip atime */ 203 204 file_accessed(iocb->ki_filp); 205 206 xfs_ilock(ip, XFS_IOLOCK_SHARED); 207 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 208 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 209 210 return ret; 211 } 212 213 static noinline ssize_t 214 xfs_file_dax_read( 215 struct kiocb *iocb, 216 struct iov_iter *to) 217 { 218 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 219 size_t count = iov_iter_count(to); 220 ssize_t ret = 0; 221 222 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 223 224 if (!count) 225 return 0; /* skip atime */ 226 227 if (iocb->ki_flags & IOCB_NOWAIT) { 228 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 229 return -EAGAIN; 230 } else { 231 xfs_ilock(ip, XFS_IOLOCK_SHARED); 232 } 233 234 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 235 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 236 237 file_accessed(iocb->ki_filp); 238 return ret; 239 } 240 241 STATIC ssize_t 242 xfs_file_buffered_aio_read( 243 struct kiocb *iocb, 244 struct iov_iter *to) 245 { 246 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 247 ssize_t ret; 248 249 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 250 251 if (iocb->ki_flags & IOCB_NOWAIT) { 252 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 253 return -EAGAIN; 254 } else { 255 xfs_ilock(ip, XFS_IOLOCK_SHARED); 256 } 257 ret = generic_file_read_iter(iocb, to); 258 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 259 260 return ret; 261 } 262 263 STATIC ssize_t 264 xfs_file_read_iter( 265 struct kiocb *iocb, 266 struct iov_iter *to) 267 { 268 struct inode *inode = file_inode(iocb->ki_filp); 269 struct xfs_mount *mp = XFS_I(inode)->i_mount; 270 ssize_t ret = 0; 271 272 XFS_STATS_INC(mp, xs_read_calls); 273 274 if (XFS_FORCED_SHUTDOWN(mp)) 275 return -EIO; 276 277 if (IS_DAX(inode)) 278 ret = xfs_file_dax_read(iocb, to); 279 else if (iocb->ki_flags & IOCB_DIRECT) 280 ret = xfs_file_dio_aio_read(iocb, to); 281 else 282 ret = xfs_file_buffered_aio_read(iocb, to); 283 284 if (ret > 0) 285 XFS_STATS_ADD(mp, xs_read_bytes, ret); 286 return ret; 287 } 288 289 /* 290 * Common pre-write limit and setup checks. 291 * 292 * Called with the iolocked held either shared and exclusive according to 293 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 294 * if called for a direct write beyond i_size. 295 */ 296 STATIC ssize_t 297 xfs_file_aio_write_checks( 298 struct kiocb *iocb, 299 struct iov_iter *from, 300 int *iolock) 301 { 302 struct file *file = iocb->ki_filp; 303 struct inode *inode = file->f_mapping->host; 304 struct xfs_inode *ip = XFS_I(inode); 305 ssize_t error = 0; 306 size_t count = iov_iter_count(from); 307 bool drained_dio = false; 308 loff_t isize; 309 310 restart: 311 error = generic_write_checks(iocb, from); 312 if (error <= 0) 313 return error; 314 315 error = xfs_break_layouts(inode, iolock); 316 if (error) 317 return error; 318 319 /* 320 * For changing security info in file_remove_privs() we need i_rwsem 321 * exclusively. 322 */ 323 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 324 xfs_iunlock(ip, *iolock); 325 *iolock = XFS_IOLOCK_EXCL; 326 xfs_ilock(ip, *iolock); 327 goto restart; 328 } 329 /* 330 * If the offset is beyond the size of the file, we need to zero any 331 * blocks that fall between the existing EOF and the start of this 332 * write. If zeroing is needed and we are currently holding the 333 * iolock shared, we need to update it to exclusive which implies 334 * having to redo all checks before. 335 * 336 * We need to serialise against EOF updates that occur in IO 337 * completions here. We want to make sure that nobody is changing the 338 * size while we do this check until we have placed an IO barrier (i.e. 339 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 340 * The spinlock effectively forms a memory barrier once we have the 341 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 342 * and hence be able to correctly determine if we need to run zeroing. 343 */ 344 spin_lock(&ip->i_flags_lock); 345 isize = i_size_read(inode); 346 if (iocb->ki_pos > isize) { 347 spin_unlock(&ip->i_flags_lock); 348 if (!drained_dio) { 349 if (*iolock == XFS_IOLOCK_SHARED) { 350 xfs_iunlock(ip, *iolock); 351 *iolock = XFS_IOLOCK_EXCL; 352 xfs_ilock(ip, *iolock); 353 iov_iter_reexpand(from, count); 354 } 355 /* 356 * We now have an IO submission barrier in place, but 357 * AIO can do EOF updates during IO completion and hence 358 * we now need to wait for all of them to drain. Non-AIO 359 * DIO will have drained before we are given the 360 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 361 * no-op. 362 */ 363 inode_dio_wait(inode); 364 drained_dio = true; 365 goto restart; 366 } 367 368 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 369 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 370 NULL, &xfs_iomap_ops); 371 if (error) 372 return error; 373 } else 374 spin_unlock(&ip->i_flags_lock); 375 376 /* 377 * Updating the timestamps will grab the ilock again from 378 * xfs_fs_dirty_inode, so we have to call it after dropping the 379 * lock above. Eventually we should look into a way to avoid 380 * the pointless lock roundtrip. 381 */ 382 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 383 error = file_update_time(file); 384 if (error) 385 return error; 386 } 387 388 /* 389 * If we're writing the file then make sure to clear the setuid and 390 * setgid bits if the process is not being run by root. This keeps 391 * people from modifying setuid and setgid binaries. 392 */ 393 if (!IS_NOSEC(inode)) 394 return file_remove_privs(file); 395 return 0; 396 } 397 398 static int 399 xfs_dio_write_end_io( 400 struct kiocb *iocb, 401 ssize_t size, 402 unsigned flags) 403 { 404 struct inode *inode = file_inode(iocb->ki_filp); 405 struct xfs_inode *ip = XFS_I(inode); 406 loff_t offset = iocb->ki_pos; 407 int error = 0; 408 409 trace_xfs_end_io_direct_write(ip, offset, size); 410 411 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 412 return -EIO; 413 414 if (size <= 0) 415 return size; 416 417 if (flags & IOMAP_DIO_COW) { 418 error = xfs_reflink_end_cow(ip, offset, size); 419 if (error) 420 return error; 421 } 422 423 /* 424 * Unwritten conversion updates the in-core isize after extent 425 * conversion but before updating the on-disk size. Updating isize any 426 * earlier allows a racing dio read to find unwritten extents before 427 * they are converted. 428 */ 429 if (flags & IOMAP_DIO_UNWRITTEN) 430 return xfs_iomap_write_unwritten(ip, offset, size, true); 431 432 /* 433 * We need to update the in-core inode size here so that we don't end up 434 * with the on-disk inode size being outside the in-core inode size. We 435 * have no other method of updating EOF for AIO, so always do it here 436 * if necessary. 437 * 438 * We need to lock the test/set EOF update as we can be racing with 439 * other IO completions here to update the EOF. Failing to serialise 440 * here can result in EOF moving backwards and Bad Things Happen when 441 * that occurs. 442 */ 443 spin_lock(&ip->i_flags_lock); 444 if (offset + size > i_size_read(inode)) { 445 i_size_write(inode, offset + size); 446 spin_unlock(&ip->i_flags_lock); 447 error = xfs_setfilesize(ip, offset, size); 448 } else { 449 spin_unlock(&ip->i_flags_lock); 450 } 451 452 return error; 453 } 454 455 /* 456 * xfs_file_dio_aio_write - handle direct IO writes 457 * 458 * Lock the inode appropriately to prepare for and issue a direct IO write. 459 * By separating it from the buffered write path we remove all the tricky to 460 * follow locking changes and looping. 461 * 462 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 463 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 464 * pages are flushed out. 465 * 466 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 467 * allowing them to be done in parallel with reads and other direct IO writes. 468 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 469 * needs to do sub-block zeroing and that requires serialisation against other 470 * direct IOs to the same block. In this case we need to serialise the 471 * submission of the unaligned IOs so that we don't get racing block zeroing in 472 * the dio layer. To avoid the problem with aio, we also need to wait for 473 * outstanding IOs to complete so that unwritten extent conversion is completed 474 * before we try to map the overlapping block. This is currently implemented by 475 * hitting it with a big hammer (i.e. inode_dio_wait()). 476 * 477 * Returns with locks held indicated by @iolock and errors indicated by 478 * negative return values. 479 */ 480 STATIC ssize_t 481 xfs_file_dio_aio_write( 482 struct kiocb *iocb, 483 struct iov_iter *from) 484 { 485 struct file *file = iocb->ki_filp; 486 struct address_space *mapping = file->f_mapping; 487 struct inode *inode = mapping->host; 488 struct xfs_inode *ip = XFS_I(inode); 489 struct xfs_mount *mp = ip->i_mount; 490 ssize_t ret = 0; 491 int unaligned_io = 0; 492 int iolock; 493 size_t count = iov_iter_count(from); 494 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 495 mp->m_rtdev_targp : mp->m_ddev_targp; 496 497 /* DIO must be aligned to device logical sector size */ 498 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 499 return -EINVAL; 500 501 /* 502 * Don't take the exclusive iolock here unless the I/O is unaligned to 503 * the file system block size. We don't need to consider the EOF 504 * extension case here because xfs_file_aio_write_checks() will relock 505 * the inode as necessary for EOF zeroing cases and fill out the new 506 * inode size as appropriate. 507 */ 508 if ((iocb->ki_pos & mp->m_blockmask) || 509 ((iocb->ki_pos + count) & mp->m_blockmask)) { 510 unaligned_io = 1; 511 512 /* 513 * We can't properly handle unaligned direct I/O to reflink 514 * files yet, as we can't unshare a partial block. 515 */ 516 if (xfs_is_reflink_inode(ip)) { 517 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 518 return -EREMCHG; 519 } 520 iolock = XFS_IOLOCK_EXCL; 521 } else { 522 iolock = XFS_IOLOCK_SHARED; 523 } 524 525 if (iocb->ki_flags & IOCB_NOWAIT) { 526 if (!xfs_ilock_nowait(ip, iolock)) 527 return -EAGAIN; 528 } else { 529 xfs_ilock(ip, iolock); 530 } 531 532 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 533 if (ret) 534 goto out; 535 count = iov_iter_count(from); 536 537 /* 538 * If we are doing unaligned IO, wait for all other IO to drain, 539 * otherwise demote the lock if we had to take the exclusive lock 540 * for other reasons in xfs_file_aio_write_checks. 541 */ 542 if (unaligned_io) { 543 /* If we are going to wait for other DIO to finish, bail */ 544 if (iocb->ki_flags & IOCB_NOWAIT) { 545 if (atomic_read(&inode->i_dio_count)) 546 return -EAGAIN; 547 } else { 548 inode_dio_wait(inode); 549 } 550 } else if (iolock == XFS_IOLOCK_EXCL) { 551 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 552 iolock = XFS_IOLOCK_SHARED; 553 } 554 555 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 556 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 557 out: 558 xfs_iunlock(ip, iolock); 559 560 /* 561 * No fallback to buffered IO on errors for XFS, direct IO will either 562 * complete fully or fail. 563 */ 564 ASSERT(ret < 0 || ret == count); 565 return ret; 566 } 567 568 static noinline ssize_t 569 xfs_file_dax_write( 570 struct kiocb *iocb, 571 struct iov_iter *from) 572 { 573 struct inode *inode = iocb->ki_filp->f_mapping->host; 574 struct xfs_inode *ip = XFS_I(inode); 575 int iolock = XFS_IOLOCK_EXCL; 576 ssize_t ret, error = 0; 577 size_t count; 578 loff_t pos; 579 580 if (iocb->ki_flags & IOCB_NOWAIT) { 581 if (!xfs_ilock_nowait(ip, iolock)) 582 return -EAGAIN; 583 } else { 584 xfs_ilock(ip, iolock); 585 } 586 587 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 588 if (ret) 589 goto out; 590 591 pos = iocb->ki_pos; 592 count = iov_iter_count(from); 593 594 trace_xfs_file_dax_write(ip, count, pos); 595 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 596 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 597 i_size_write(inode, iocb->ki_pos); 598 error = xfs_setfilesize(ip, pos, ret); 599 } 600 out: 601 xfs_iunlock(ip, iolock); 602 return error ? error : ret; 603 } 604 605 STATIC ssize_t 606 xfs_file_buffered_aio_write( 607 struct kiocb *iocb, 608 struct iov_iter *from) 609 { 610 struct file *file = iocb->ki_filp; 611 struct address_space *mapping = file->f_mapping; 612 struct inode *inode = mapping->host; 613 struct xfs_inode *ip = XFS_I(inode); 614 ssize_t ret; 615 int enospc = 0; 616 int iolock; 617 618 if (iocb->ki_flags & IOCB_NOWAIT) 619 return -EOPNOTSUPP; 620 621 write_retry: 622 iolock = XFS_IOLOCK_EXCL; 623 xfs_ilock(ip, iolock); 624 625 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 626 if (ret) 627 goto out; 628 629 /* We can write back this queue in page reclaim */ 630 current->backing_dev_info = inode_to_bdi(inode); 631 632 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 633 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 634 if (likely(ret >= 0)) 635 iocb->ki_pos += ret; 636 637 /* 638 * If we hit a space limit, try to free up some lingering preallocated 639 * space before returning an error. In the case of ENOSPC, first try to 640 * write back all dirty inodes to free up some of the excess reserved 641 * metadata space. This reduces the chances that the eofblocks scan 642 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 643 * also behaves as a filter to prevent too many eofblocks scans from 644 * running at the same time. 645 */ 646 if (ret == -EDQUOT && !enospc) { 647 xfs_iunlock(ip, iolock); 648 enospc = xfs_inode_free_quota_eofblocks(ip); 649 if (enospc) 650 goto write_retry; 651 enospc = xfs_inode_free_quota_cowblocks(ip); 652 if (enospc) 653 goto write_retry; 654 iolock = 0; 655 } else if (ret == -ENOSPC && !enospc) { 656 struct xfs_eofblocks eofb = {0}; 657 658 enospc = 1; 659 xfs_flush_inodes(ip->i_mount); 660 661 xfs_iunlock(ip, iolock); 662 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 663 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 664 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 665 goto write_retry; 666 } 667 668 current->backing_dev_info = NULL; 669 out: 670 if (iolock) 671 xfs_iunlock(ip, iolock); 672 return ret; 673 } 674 675 STATIC ssize_t 676 xfs_file_write_iter( 677 struct kiocb *iocb, 678 struct iov_iter *from) 679 { 680 struct file *file = iocb->ki_filp; 681 struct address_space *mapping = file->f_mapping; 682 struct inode *inode = mapping->host; 683 struct xfs_inode *ip = XFS_I(inode); 684 ssize_t ret; 685 size_t ocount = iov_iter_count(from); 686 687 XFS_STATS_INC(ip->i_mount, xs_write_calls); 688 689 if (ocount == 0) 690 return 0; 691 692 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 693 return -EIO; 694 695 if (IS_DAX(inode)) 696 ret = xfs_file_dax_write(iocb, from); 697 else if (iocb->ki_flags & IOCB_DIRECT) { 698 /* 699 * Allow a directio write to fall back to a buffered 700 * write *only* in the case that we're doing a reflink 701 * CoW. In all other directio scenarios we do not 702 * allow an operation to fall back to buffered mode. 703 */ 704 ret = xfs_file_dio_aio_write(iocb, from); 705 if (ret == -EREMCHG) 706 goto buffered; 707 } else { 708 buffered: 709 ret = xfs_file_buffered_aio_write(iocb, from); 710 } 711 712 if (ret > 0) { 713 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 714 715 /* Handle various SYNC-type writes */ 716 ret = generic_write_sync(iocb, ret); 717 } 718 return ret; 719 } 720 721 #define XFS_FALLOC_FL_SUPPORTED \ 722 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 723 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 724 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 725 726 STATIC long 727 xfs_file_fallocate( 728 struct file *file, 729 int mode, 730 loff_t offset, 731 loff_t len) 732 { 733 struct inode *inode = file_inode(file); 734 struct xfs_inode *ip = XFS_I(inode); 735 long error; 736 enum xfs_prealloc_flags flags = 0; 737 uint iolock = XFS_IOLOCK_EXCL; 738 loff_t new_size = 0; 739 bool do_file_insert = false; 740 741 if (!S_ISREG(inode->i_mode)) 742 return -EINVAL; 743 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 744 return -EOPNOTSUPP; 745 746 xfs_ilock(ip, iolock); 747 error = xfs_break_layouts(inode, &iolock); 748 if (error) 749 goto out_unlock; 750 751 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 752 iolock |= XFS_MMAPLOCK_EXCL; 753 754 if (mode & FALLOC_FL_PUNCH_HOLE) { 755 error = xfs_free_file_space(ip, offset, len); 756 if (error) 757 goto out_unlock; 758 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 759 unsigned int blksize_mask = i_blocksize(inode) - 1; 760 761 if (offset & blksize_mask || len & blksize_mask) { 762 error = -EINVAL; 763 goto out_unlock; 764 } 765 766 /* 767 * There is no need to overlap collapse range with EOF, 768 * in which case it is effectively a truncate operation 769 */ 770 if (offset + len >= i_size_read(inode)) { 771 error = -EINVAL; 772 goto out_unlock; 773 } 774 775 new_size = i_size_read(inode) - len; 776 777 error = xfs_collapse_file_space(ip, offset, len); 778 if (error) 779 goto out_unlock; 780 } else if (mode & FALLOC_FL_INSERT_RANGE) { 781 unsigned int blksize_mask = i_blocksize(inode) - 1; 782 loff_t isize = i_size_read(inode); 783 784 if (offset & blksize_mask || len & blksize_mask) { 785 error = -EINVAL; 786 goto out_unlock; 787 } 788 789 /* 790 * New inode size must not exceed ->s_maxbytes, accounting for 791 * possible signed overflow. 792 */ 793 if (inode->i_sb->s_maxbytes - isize < len) { 794 error = -EFBIG; 795 goto out_unlock; 796 } 797 new_size = isize + len; 798 799 /* Offset should be less than i_size */ 800 if (offset >= isize) { 801 error = -EINVAL; 802 goto out_unlock; 803 } 804 do_file_insert = true; 805 } else { 806 flags |= XFS_PREALLOC_SET; 807 808 if (!(mode & FALLOC_FL_KEEP_SIZE) && 809 offset + len > i_size_read(inode)) { 810 new_size = offset + len; 811 error = inode_newsize_ok(inode, new_size); 812 if (error) 813 goto out_unlock; 814 } 815 816 if (mode & FALLOC_FL_ZERO_RANGE) 817 error = xfs_zero_file_space(ip, offset, len); 818 else { 819 if (mode & FALLOC_FL_UNSHARE_RANGE) { 820 error = xfs_reflink_unshare(ip, offset, len); 821 if (error) 822 goto out_unlock; 823 } 824 error = xfs_alloc_file_space(ip, offset, len, 825 XFS_BMAPI_PREALLOC); 826 } 827 if (error) 828 goto out_unlock; 829 } 830 831 if (file->f_flags & O_DSYNC) 832 flags |= XFS_PREALLOC_SYNC; 833 834 error = xfs_update_prealloc_flags(ip, flags); 835 if (error) 836 goto out_unlock; 837 838 /* Change file size if needed */ 839 if (new_size) { 840 struct iattr iattr; 841 842 iattr.ia_valid = ATTR_SIZE; 843 iattr.ia_size = new_size; 844 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 845 if (error) 846 goto out_unlock; 847 } 848 849 /* 850 * Perform hole insertion now that the file size has been 851 * updated so that if we crash during the operation we don't 852 * leave shifted extents past EOF and hence losing access to 853 * the data that is contained within them. 854 */ 855 if (do_file_insert) 856 error = xfs_insert_file_space(ip, offset, len); 857 858 out_unlock: 859 xfs_iunlock(ip, iolock); 860 return error; 861 } 862 863 STATIC int 864 xfs_file_clone_range( 865 struct file *file_in, 866 loff_t pos_in, 867 struct file *file_out, 868 loff_t pos_out, 869 u64 len) 870 { 871 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 872 len, false); 873 } 874 875 STATIC ssize_t 876 xfs_file_dedupe_range( 877 struct file *src_file, 878 u64 loff, 879 u64 len, 880 struct file *dst_file, 881 u64 dst_loff) 882 { 883 struct inode *srci = file_inode(src_file); 884 u64 max_dedupe; 885 int error; 886 887 /* 888 * Since we have to read all these pages in to compare them, cut 889 * it off at MAX_RW_COUNT/2 rounded down to the nearest block. 890 * That means we won't do more than MAX_RW_COUNT IO per request. 891 */ 892 max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1); 893 if (len > max_dedupe) 894 len = max_dedupe; 895 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 896 len, true); 897 if (error) 898 return error; 899 return len; 900 } 901 902 STATIC int 903 xfs_file_open( 904 struct inode *inode, 905 struct file *file) 906 { 907 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 908 return -EFBIG; 909 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 910 return -EIO; 911 file->f_mode |= FMODE_NOWAIT; 912 return 0; 913 } 914 915 STATIC int 916 xfs_dir_open( 917 struct inode *inode, 918 struct file *file) 919 { 920 struct xfs_inode *ip = XFS_I(inode); 921 int mode; 922 int error; 923 924 error = xfs_file_open(inode, file); 925 if (error) 926 return error; 927 928 /* 929 * If there are any blocks, read-ahead block 0 as we're almost 930 * certain to have the next operation be a read there. 931 */ 932 mode = xfs_ilock_data_map_shared(ip); 933 if (ip->i_d.di_nextents > 0) 934 error = xfs_dir3_data_readahead(ip, 0, -1); 935 xfs_iunlock(ip, mode); 936 return error; 937 } 938 939 STATIC int 940 xfs_file_release( 941 struct inode *inode, 942 struct file *filp) 943 { 944 return xfs_release(XFS_I(inode)); 945 } 946 947 STATIC int 948 xfs_file_readdir( 949 struct file *file, 950 struct dir_context *ctx) 951 { 952 struct inode *inode = file_inode(file); 953 xfs_inode_t *ip = XFS_I(inode); 954 size_t bufsize; 955 956 /* 957 * The Linux API doesn't pass down the total size of the buffer 958 * we read into down to the filesystem. With the filldir concept 959 * it's not needed for correct information, but the XFS dir2 leaf 960 * code wants an estimate of the buffer size to calculate it's 961 * readahead window and size the buffers used for mapping to 962 * physical blocks. 963 * 964 * Try to give it an estimate that's good enough, maybe at some 965 * point we can change the ->readdir prototype to include the 966 * buffer size. For now we use the current glibc buffer size. 967 */ 968 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 969 970 return xfs_readdir(NULL, ip, ctx, bufsize); 971 } 972 973 STATIC loff_t 974 xfs_file_llseek( 975 struct file *file, 976 loff_t offset, 977 int whence) 978 { 979 struct inode *inode = file->f_mapping->host; 980 981 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 982 return -EIO; 983 984 switch (whence) { 985 default: 986 return generic_file_llseek(file, offset, whence); 987 case SEEK_HOLE: 988 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 989 break; 990 case SEEK_DATA: 991 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 992 break; 993 } 994 995 if (offset < 0) 996 return offset; 997 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 998 } 999 1000 /* 1001 * Locking for serialisation of IO during page faults. This results in a lock 1002 * ordering of: 1003 * 1004 * mmap_sem (MM) 1005 * sb_start_pagefault(vfs, freeze) 1006 * i_mmaplock (XFS - truncate serialisation) 1007 * page_lock (MM) 1008 * i_lock (XFS - extent map serialisation) 1009 */ 1010 static int 1011 __xfs_filemap_fault( 1012 struct vm_fault *vmf, 1013 enum page_entry_size pe_size, 1014 bool write_fault) 1015 { 1016 struct inode *inode = file_inode(vmf->vma->vm_file); 1017 struct xfs_inode *ip = XFS_I(inode); 1018 int ret; 1019 1020 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1021 1022 if (write_fault) { 1023 sb_start_pagefault(inode->i_sb); 1024 file_update_time(vmf->vma->vm_file); 1025 } 1026 1027 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1028 if (IS_DAX(inode)) { 1029 pfn_t pfn; 1030 1031 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1032 if (ret & VM_FAULT_NEEDDSYNC) 1033 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1034 } else { 1035 if (write_fault) 1036 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1037 else 1038 ret = filemap_fault(vmf); 1039 } 1040 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1041 1042 if (write_fault) 1043 sb_end_pagefault(inode->i_sb); 1044 return ret; 1045 } 1046 1047 static int 1048 xfs_filemap_fault( 1049 struct vm_fault *vmf) 1050 { 1051 /* DAX can shortcut the normal fault path on write faults! */ 1052 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1053 IS_DAX(file_inode(vmf->vma->vm_file)) && 1054 (vmf->flags & FAULT_FLAG_WRITE)); 1055 } 1056 1057 static int 1058 xfs_filemap_huge_fault( 1059 struct vm_fault *vmf, 1060 enum page_entry_size pe_size) 1061 { 1062 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1063 return VM_FAULT_FALLBACK; 1064 1065 /* DAX can shortcut the normal fault path on write faults! */ 1066 return __xfs_filemap_fault(vmf, pe_size, 1067 (vmf->flags & FAULT_FLAG_WRITE)); 1068 } 1069 1070 static int 1071 xfs_filemap_page_mkwrite( 1072 struct vm_fault *vmf) 1073 { 1074 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1075 } 1076 1077 /* 1078 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1079 * on write faults. In reality, it needs to serialise against truncate and 1080 * prepare memory for writing so handle is as standard write fault. 1081 */ 1082 static int 1083 xfs_filemap_pfn_mkwrite( 1084 struct vm_fault *vmf) 1085 { 1086 1087 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1088 } 1089 1090 static const struct vm_operations_struct xfs_file_vm_ops = { 1091 .fault = xfs_filemap_fault, 1092 .huge_fault = xfs_filemap_huge_fault, 1093 .map_pages = filemap_map_pages, 1094 .page_mkwrite = xfs_filemap_page_mkwrite, 1095 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1096 }; 1097 1098 STATIC int 1099 xfs_file_mmap( 1100 struct file *filp, 1101 struct vm_area_struct *vma) 1102 { 1103 /* 1104 * We don't support synchronous mappings for non-DAX files. At least 1105 * until someone comes with a sensible use case. 1106 */ 1107 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) 1108 return -EOPNOTSUPP; 1109 1110 file_accessed(filp); 1111 vma->vm_ops = &xfs_file_vm_ops; 1112 if (IS_DAX(file_inode(filp))) 1113 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1114 return 0; 1115 } 1116 1117 const struct file_operations xfs_file_operations = { 1118 .llseek = xfs_file_llseek, 1119 .read_iter = xfs_file_read_iter, 1120 .write_iter = xfs_file_write_iter, 1121 .splice_read = generic_file_splice_read, 1122 .splice_write = iter_file_splice_write, 1123 .unlocked_ioctl = xfs_file_ioctl, 1124 #ifdef CONFIG_COMPAT 1125 .compat_ioctl = xfs_file_compat_ioctl, 1126 #endif 1127 .mmap = xfs_file_mmap, 1128 .mmap_supported_flags = MAP_SYNC, 1129 .open = xfs_file_open, 1130 .release = xfs_file_release, 1131 .fsync = xfs_file_fsync, 1132 .get_unmapped_area = thp_get_unmapped_area, 1133 .fallocate = xfs_file_fallocate, 1134 .clone_file_range = xfs_file_clone_range, 1135 .dedupe_file_range = xfs_file_dedupe_range, 1136 }; 1137 1138 const struct file_operations xfs_dir_file_operations = { 1139 .open = xfs_dir_open, 1140 .read = generic_read_dir, 1141 .iterate_shared = xfs_file_readdir, 1142 .llseek = generic_file_llseek, 1143 .unlocked_ioctl = xfs_file_ioctl, 1144 #ifdef CONFIG_COMPAT 1145 .compat_ioctl = xfs_file_compat_ioctl, 1146 #endif 1147 .fsync = xfs_dir_fsync, 1148 }; 1149