1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 84 trace_xfs_dir_fsync(ip); 85 return xfs_log_force_inode(ip); 86 } 87 88 STATIC int 89 xfs_file_fsync( 90 struct file *file, 91 loff_t start, 92 loff_t end, 93 int datasync) 94 { 95 struct inode *inode = file->f_mapping->host; 96 struct xfs_inode *ip = XFS_I(inode); 97 struct xfs_inode_log_item *iip = ip->i_itemp; 98 struct xfs_mount *mp = ip->i_mount; 99 int error = 0; 100 int log_flushed = 0; 101 xfs_lsn_t lsn = 0; 102 103 trace_xfs_file_fsync(ip); 104 105 error = file_write_and_wait_range(file, start, end); 106 if (error) 107 return error; 108 109 if (XFS_FORCED_SHUTDOWN(mp)) 110 return -EIO; 111 112 xfs_iflags_clear(ip, XFS_ITRUNCATED); 113 114 /* 115 * If we have an RT and/or log subvolume we need to make sure to flush 116 * the write cache the device used for file data first. This is to 117 * ensure newly written file data make it to disk before logging the new 118 * inode size in case of an extending write. 119 */ 120 if (XFS_IS_REALTIME_INODE(ip)) 121 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 122 else if (mp->m_logdev_targp != mp->m_ddev_targp) 123 xfs_blkdev_issue_flush(mp->m_ddev_targp); 124 125 /* 126 * All metadata updates are logged, which means that we just have to 127 * flush the log up to the latest LSN that touched the inode. If we have 128 * concurrent fsync/fdatasync() calls, we need them to all block on the 129 * log force before we clear the ili_fsync_fields field. This ensures 130 * that we don't get a racing sync operation that does not wait for the 131 * metadata to hit the journal before returning. If we race with 132 * clearing the ili_fsync_fields, then all that will happen is the log 133 * force will do nothing as the lsn will already be on disk. We can't 134 * race with setting ili_fsync_fields because that is done under 135 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 136 * until after the ili_fsync_fields is cleared. 137 */ 138 xfs_ilock(ip, XFS_ILOCK_SHARED); 139 if (xfs_ipincount(ip)) { 140 if (!datasync || 141 (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 142 lsn = iip->ili_last_lsn; 143 } 144 145 if (lsn) { 146 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 147 spin_lock(&iip->ili_lock); 148 iip->ili_fsync_fields = 0; 149 spin_unlock(&iip->ili_lock); 150 } 151 xfs_iunlock(ip, XFS_ILOCK_SHARED); 152 153 /* 154 * If we only have a single device, and the log force about was 155 * a no-op we might have to flush the data device cache here. 156 * This can only happen for fdatasync/O_DSYNC if we were overwriting 157 * an already allocated file and thus do not have any metadata to 158 * commit. 159 */ 160 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 161 mp->m_logdev_targp == mp->m_ddev_targp) 162 xfs_blkdev_issue_flush(mp->m_ddev_targp); 163 164 return error; 165 } 166 167 STATIC ssize_t 168 xfs_file_dio_aio_read( 169 struct kiocb *iocb, 170 struct iov_iter *to) 171 { 172 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 173 size_t count = iov_iter_count(to); 174 ssize_t ret; 175 176 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 177 178 if (!count) 179 return 0; /* skip atime */ 180 181 file_accessed(iocb->ki_filp); 182 183 if (iocb->ki_flags & IOCB_NOWAIT) { 184 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 185 return -EAGAIN; 186 } else { 187 xfs_ilock(ip, XFS_IOLOCK_SHARED); 188 } 189 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 190 is_sync_kiocb(iocb)); 191 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 192 193 return ret; 194 } 195 196 static noinline ssize_t 197 xfs_file_dax_read( 198 struct kiocb *iocb, 199 struct iov_iter *to) 200 { 201 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 202 size_t count = iov_iter_count(to); 203 ssize_t ret = 0; 204 205 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 206 207 if (!count) 208 return 0; /* skip atime */ 209 210 if (iocb->ki_flags & IOCB_NOWAIT) { 211 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 212 return -EAGAIN; 213 } else { 214 xfs_ilock(ip, XFS_IOLOCK_SHARED); 215 } 216 217 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 218 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 219 220 file_accessed(iocb->ki_filp); 221 return ret; 222 } 223 224 STATIC ssize_t 225 xfs_file_buffered_aio_read( 226 struct kiocb *iocb, 227 struct iov_iter *to) 228 { 229 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 230 ssize_t ret; 231 232 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 233 234 if (iocb->ki_flags & IOCB_NOWAIT) { 235 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 236 return -EAGAIN; 237 } else { 238 xfs_ilock(ip, XFS_IOLOCK_SHARED); 239 } 240 ret = generic_file_read_iter(iocb, to); 241 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 242 243 return ret; 244 } 245 246 STATIC ssize_t 247 xfs_file_read_iter( 248 struct kiocb *iocb, 249 struct iov_iter *to) 250 { 251 struct inode *inode = file_inode(iocb->ki_filp); 252 struct xfs_mount *mp = XFS_I(inode)->i_mount; 253 ssize_t ret = 0; 254 255 XFS_STATS_INC(mp, xs_read_calls); 256 257 if (XFS_FORCED_SHUTDOWN(mp)) 258 return -EIO; 259 260 if (IS_DAX(inode)) 261 ret = xfs_file_dax_read(iocb, to); 262 else if (iocb->ki_flags & IOCB_DIRECT) 263 ret = xfs_file_dio_aio_read(iocb, to); 264 else 265 ret = xfs_file_buffered_aio_read(iocb, to); 266 267 if (ret > 0) 268 XFS_STATS_ADD(mp, xs_read_bytes, ret); 269 return ret; 270 } 271 272 /* 273 * Common pre-write limit and setup checks. 274 * 275 * Called with the iolocked held either shared and exclusive according to 276 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 277 * if called for a direct write beyond i_size. 278 */ 279 STATIC ssize_t 280 xfs_file_aio_write_checks( 281 struct kiocb *iocb, 282 struct iov_iter *from, 283 int *iolock) 284 { 285 struct file *file = iocb->ki_filp; 286 struct inode *inode = file->f_mapping->host; 287 struct xfs_inode *ip = XFS_I(inode); 288 ssize_t error = 0; 289 size_t count = iov_iter_count(from); 290 bool drained_dio = false; 291 loff_t isize; 292 293 restart: 294 error = generic_write_checks(iocb, from); 295 if (error <= 0) 296 return error; 297 298 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 299 if (error) 300 return error; 301 302 /* 303 * For changing security info in file_remove_privs() we need i_rwsem 304 * exclusively. 305 */ 306 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 307 xfs_iunlock(ip, *iolock); 308 *iolock = XFS_IOLOCK_EXCL; 309 xfs_ilock(ip, *iolock); 310 goto restart; 311 } 312 /* 313 * If the offset is beyond the size of the file, we need to zero any 314 * blocks that fall between the existing EOF and the start of this 315 * write. If zeroing is needed and we are currently holding the 316 * iolock shared, we need to update it to exclusive which implies 317 * having to redo all checks before. 318 * 319 * We need to serialise against EOF updates that occur in IO 320 * completions here. We want to make sure that nobody is changing the 321 * size while we do this check until we have placed an IO barrier (i.e. 322 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 323 * The spinlock effectively forms a memory barrier once we have the 324 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 325 * and hence be able to correctly determine if we need to run zeroing. 326 */ 327 spin_lock(&ip->i_flags_lock); 328 isize = i_size_read(inode); 329 if (iocb->ki_pos > isize) { 330 spin_unlock(&ip->i_flags_lock); 331 if (!drained_dio) { 332 if (*iolock == XFS_IOLOCK_SHARED) { 333 xfs_iunlock(ip, *iolock); 334 *iolock = XFS_IOLOCK_EXCL; 335 xfs_ilock(ip, *iolock); 336 iov_iter_reexpand(from, count); 337 } 338 /* 339 * We now have an IO submission barrier in place, but 340 * AIO can do EOF updates during IO completion and hence 341 * we now need to wait for all of them to drain. Non-AIO 342 * DIO will have drained before we are given the 343 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 344 * no-op. 345 */ 346 inode_dio_wait(inode); 347 drained_dio = true; 348 goto restart; 349 } 350 351 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 352 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 353 NULL, &xfs_buffered_write_iomap_ops); 354 if (error) 355 return error; 356 } else 357 spin_unlock(&ip->i_flags_lock); 358 359 /* 360 * Updating the timestamps will grab the ilock again from 361 * xfs_fs_dirty_inode, so we have to call it after dropping the 362 * lock above. Eventually we should look into a way to avoid 363 * the pointless lock roundtrip. 364 */ 365 return file_modified(file); 366 } 367 368 static int 369 xfs_dio_write_end_io( 370 struct kiocb *iocb, 371 ssize_t size, 372 int error, 373 unsigned flags) 374 { 375 struct inode *inode = file_inode(iocb->ki_filp); 376 struct xfs_inode *ip = XFS_I(inode); 377 loff_t offset = iocb->ki_pos; 378 unsigned int nofs_flag; 379 380 trace_xfs_end_io_direct_write(ip, offset, size); 381 382 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 383 return -EIO; 384 385 if (error) 386 return error; 387 if (!size) 388 return 0; 389 390 /* 391 * Capture amount written on completion as we can't reliably account 392 * for it on submission. 393 */ 394 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 395 396 /* 397 * We can allocate memory here while doing writeback on behalf of 398 * memory reclaim. To avoid memory allocation deadlocks set the 399 * task-wide nofs context for the following operations. 400 */ 401 nofs_flag = memalloc_nofs_save(); 402 403 if (flags & IOMAP_DIO_COW) { 404 error = xfs_reflink_end_cow(ip, offset, size); 405 if (error) 406 goto out; 407 } 408 409 /* 410 * Unwritten conversion updates the in-core isize after extent 411 * conversion but before updating the on-disk size. Updating isize any 412 * earlier allows a racing dio read to find unwritten extents before 413 * they are converted. 414 */ 415 if (flags & IOMAP_DIO_UNWRITTEN) { 416 error = xfs_iomap_write_unwritten(ip, offset, size, true); 417 goto out; 418 } 419 420 /* 421 * We need to update the in-core inode size here so that we don't end up 422 * with the on-disk inode size being outside the in-core inode size. We 423 * have no other method of updating EOF for AIO, so always do it here 424 * if necessary. 425 * 426 * We need to lock the test/set EOF update as we can be racing with 427 * other IO completions here to update the EOF. Failing to serialise 428 * here can result in EOF moving backwards and Bad Things Happen when 429 * that occurs. 430 */ 431 spin_lock(&ip->i_flags_lock); 432 if (offset + size > i_size_read(inode)) { 433 i_size_write(inode, offset + size); 434 spin_unlock(&ip->i_flags_lock); 435 error = xfs_setfilesize(ip, offset, size); 436 } else { 437 spin_unlock(&ip->i_flags_lock); 438 } 439 440 out: 441 memalloc_nofs_restore(nofs_flag); 442 return error; 443 } 444 445 static const struct iomap_dio_ops xfs_dio_write_ops = { 446 .end_io = xfs_dio_write_end_io, 447 }; 448 449 /* 450 * xfs_file_dio_aio_write - handle direct IO writes 451 * 452 * Lock the inode appropriately to prepare for and issue a direct IO write. 453 * By separating it from the buffered write path we remove all the tricky to 454 * follow locking changes and looping. 455 * 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 458 * pages are flushed out. 459 * 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 461 * allowing them to be done in parallel with reads and other direct IO writes. 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 463 * needs to do sub-block zeroing and that requires serialisation against other 464 * direct IOs to the same block. In this case we need to serialise the 465 * submission of the unaligned IOs so that we don't get racing block zeroing in 466 * the dio layer. To avoid the problem with aio, we also need to wait for 467 * outstanding IOs to complete so that unwritten extent conversion is completed 468 * before we try to map the overlapping block. This is currently implemented by 469 * hitting it with a big hammer (i.e. inode_dio_wait()). 470 * 471 * Returns with locks held indicated by @iolock and errors indicated by 472 * negative return values. 473 */ 474 STATIC ssize_t 475 xfs_file_dio_aio_write( 476 struct kiocb *iocb, 477 struct iov_iter *from) 478 { 479 struct file *file = iocb->ki_filp; 480 struct address_space *mapping = file->f_mapping; 481 struct inode *inode = mapping->host; 482 struct xfs_inode *ip = XFS_I(inode); 483 struct xfs_mount *mp = ip->i_mount; 484 ssize_t ret = 0; 485 int unaligned_io = 0; 486 int iolock; 487 size_t count = iov_iter_count(from); 488 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 489 490 /* DIO must be aligned to device logical sector size */ 491 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 492 return -EINVAL; 493 494 /* 495 * Don't take the exclusive iolock here unless the I/O is unaligned to 496 * the file system block size. We don't need to consider the EOF 497 * extension case here because xfs_file_aio_write_checks() will relock 498 * the inode as necessary for EOF zeroing cases and fill out the new 499 * inode size as appropriate. 500 */ 501 if ((iocb->ki_pos & mp->m_blockmask) || 502 ((iocb->ki_pos + count) & mp->m_blockmask)) { 503 unaligned_io = 1; 504 505 /* 506 * We can't properly handle unaligned direct I/O to reflink 507 * files yet, as we can't unshare a partial block. 508 */ 509 if (xfs_is_cow_inode(ip)) { 510 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 511 return -ENOTBLK; 512 } 513 iolock = XFS_IOLOCK_EXCL; 514 } else { 515 iolock = XFS_IOLOCK_SHARED; 516 } 517 518 if (iocb->ki_flags & IOCB_NOWAIT) { 519 /* unaligned dio always waits, bail */ 520 if (unaligned_io) 521 return -EAGAIN; 522 if (!xfs_ilock_nowait(ip, iolock)) 523 return -EAGAIN; 524 } else { 525 xfs_ilock(ip, iolock); 526 } 527 528 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 529 if (ret) 530 goto out; 531 count = iov_iter_count(from); 532 533 /* 534 * If we are doing unaligned IO, we can't allow any other overlapping IO 535 * in-flight at the same time or we risk data corruption. Wait for all 536 * other IO to drain before we submit. If the IO is aligned, demote the 537 * iolock if we had to take the exclusive lock in 538 * xfs_file_aio_write_checks() for other reasons. 539 */ 540 if (unaligned_io) { 541 inode_dio_wait(inode); 542 } else if (iolock == XFS_IOLOCK_EXCL) { 543 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 544 iolock = XFS_IOLOCK_SHARED; 545 } 546 547 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 548 /* 549 * If unaligned, this is the only IO in-flight. Wait on it before we 550 * release the iolock to prevent subsequent overlapping IO. 551 */ 552 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 553 &xfs_dio_write_ops, 554 is_sync_kiocb(iocb) || unaligned_io); 555 out: 556 xfs_iunlock(ip, iolock); 557 558 /* 559 * No fallback to buffered IO after short writes for XFS, direct I/O 560 * will either complete fully or return an error. 561 */ 562 ASSERT(ret < 0 || ret == count); 563 return ret; 564 } 565 566 static noinline ssize_t 567 xfs_file_dax_write( 568 struct kiocb *iocb, 569 struct iov_iter *from) 570 { 571 struct inode *inode = iocb->ki_filp->f_mapping->host; 572 struct xfs_inode *ip = XFS_I(inode); 573 int iolock = XFS_IOLOCK_EXCL; 574 ssize_t ret, error = 0; 575 size_t count; 576 loff_t pos; 577 578 if (iocb->ki_flags & IOCB_NOWAIT) { 579 if (!xfs_ilock_nowait(ip, iolock)) 580 return -EAGAIN; 581 } else { 582 xfs_ilock(ip, iolock); 583 } 584 585 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 586 if (ret) 587 goto out; 588 589 pos = iocb->ki_pos; 590 count = iov_iter_count(from); 591 592 trace_xfs_file_dax_write(ip, count, pos); 593 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); 594 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 595 i_size_write(inode, iocb->ki_pos); 596 error = xfs_setfilesize(ip, pos, ret); 597 } 598 out: 599 xfs_iunlock(ip, iolock); 600 if (error) 601 return error; 602 603 if (ret > 0) { 604 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 605 606 /* Handle various SYNC-type writes */ 607 ret = generic_write_sync(iocb, ret); 608 } 609 return ret; 610 } 611 612 STATIC ssize_t 613 xfs_file_buffered_aio_write( 614 struct kiocb *iocb, 615 struct iov_iter *from) 616 { 617 struct file *file = iocb->ki_filp; 618 struct address_space *mapping = file->f_mapping; 619 struct inode *inode = mapping->host; 620 struct xfs_inode *ip = XFS_I(inode); 621 ssize_t ret; 622 int enospc = 0; 623 int iolock; 624 625 if (iocb->ki_flags & IOCB_NOWAIT) 626 return -EOPNOTSUPP; 627 628 write_retry: 629 iolock = XFS_IOLOCK_EXCL; 630 xfs_ilock(ip, iolock); 631 632 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 633 if (ret) 634 goto out; 635 636 /* We can write back this queue in page reclaim */ 637 current->backing_dev_info = inode_to_bdi(inode); 638 639 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 640 ret = iomap_file_buffered_write(iocb, from, 641 &xfs_buffered_write_iomap_ops); 642 if (likely(ret >= 0)) 643 iocb->ki_pos += ret; 644 645 /* 646 * If we hit a space limit, try to free up some lingering preallocated 647 * space before returning an error. In the case of ENOSPC, first try to 648 * write back all dirty inodes to free up some of the excess reserved 649 * metadata space. This reduces the chances that the eofblocks scan 650 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 651 * also behaves as a filter to prevent too many eofblocks scans from 652 * running at the same time. 653 */ 654 if (ret == -EDQUOT && !enospc) { 655 xfs_iunlock(ip, iolock); 656 enospc = xfs_inode_free_quota_eofblocks(ip); 657 if (enospc) 658 goto write_retry; 659 enospc = xfs_inode_free_quota_cowblocks(ip); 660 if (enospc) 661 goto write_retry; 662 iolock = 0; 663 } else if (ret == -ENOSPC && !enospc) { 664 struct xfs_eofblocks eofb = {0}; 665 666 enospc = 1; 667 xfs_flush_inodes(ip->i_mount); 668 669 xfs_iunlock(ip, iolock); 670 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 671 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 672 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 673 goto write_retry; 674 } 675 676 current->backing_dev_info = NULL; 677 out: 678 if (iolock) 679 xfs_iunlock(ip, iolock); 680 681 if (ret > 0) { 682 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 683 /* Handle various SYNC-type writes */ 684 ret = generic_write_sync(iocb, ret); 685 } 686 return ret; 687 } 688 689 STATIC ssize_t 690 xfs_file_write_iter( 691 struct kiocb *iocb, 692 struct iov_iter *from) 693 { 694 struct file *file = iocb->ki_filp; 695 struct address_space *mapping = file->f_mapping; 696 struct inode *inode = mapping->host; 697 struct xfs_inode *ip = XFS_I(inode); 698 ssize_t ret; 699 size_t ocount = iov_iter_count(from); 700 701 XFS_STATS_INC(ip->i_mount, xs_write_calls); 702 703 if (ocount == 0) 704 return 0; 705 706 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 707 return -EIO; 708 709 if (IS_DAX(inode)) 710 return xfs_file_dax_write(iocb, from); 711 712 if (iocb->ki_flags & IOCB_DIRECT) { 713 /* 714 * Allow a directio write to fall back to a buffered 715 * write *only* in the case that we're doing a reflink 716 * CoW. In all other directio scenarios we do not 717 * allow an operation to fall back to buffered mode. 718 */ 719 ret = xfs_file_dio_aio_write(iocb, from); 720 if (ret != -ENOTBLK) 721 return ret; 722 } 723 724 return xfs_file_buffered_aio_write(iocb, from); 725 } 726 727 static void 728 xfs_wait_dax_page( 729 struct inode *inode) 730 { 731 struct xfs_inode *ip = XFS_I(inode); 732 733 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 734 schedule(); 735 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 736 } 737 738 static int 739 xfs_break_dax_layouts( 740 struct inode *inode, 741 bool *retry) 742 { 743 struct page *page; 744 745 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 746 747 page = dax_layout_busy_page(inode->i_mapping); 748 if (!page) 749 return 0; 750 751 *retry = true; 752 return ___wait_var_event(&page->_refcount, 753 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 754 0, 0, xfs_wait_dax_page(inode)); 755 } 756 757 int 758 xfs_break_layouts( 759 struct inode *inode, 760 uint *iolock, 761 enum layout_break_reason reason) 762 { 763 bool retry; 764 int error; 765 766 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 767 768 do { 769 retry = false; 770 switch (reason) { 771 case BREAK_UNMAP: 772 error = xfs_break_dax_layouts(inode, &retry); 773 if (error || retry) 774 break; 775 /* fall through */ 776 case BREAK_WRITE: 777 error = xfs_break_leased_layouts(inode, iolock, &retry); 778 break; 779 default: 780 WARN_ON_ONCE(1); 781 error = -EINVAL; 782 } 783 } while (error == 0 && retry); 784 785 return error; 786 } 787 788 #define XFS_FALLOC_FL_SUPPORTED \ 789 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 790 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 791 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 792 793 STATIC long 794 xfs_file_fallocate( 795 struct file *file, 796 int mode, 797 loff_t offset, 798 loff_t len) 799 { 800 struct inode *inode = file_inode(file); 801 struct xfs_inode *ip = XFS_I(inode); 802 long error; 803 enum xfs_prealloc_flags flags = 0; 804 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 805 loff_t new_size = 0; 806 bool do_file_insert = false; 807 808 if (!S_ISREG(inode->i_mode)) 809 return -EINVAL; 810 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 811 return -EOPNOTSUPP; 812 813 xfs_ilock(ip, iolock); 814 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 815 if (error) 816 goto out_unlock; 817 818 /* 819 * Must wait for all AIO to complete before we continue as AIO can 820 * change the file size on completion without holding any locks we 821 * currently hold. We must do this first because AIO can update both 822 * the on disk and in memory inode sizes, and the operations that follow 823 * require the in-memory size to be fully up-to-date. 824 */ 825 inode_dio_wait(inode); 826 827 /* 828 * Now AIO and DIO has drained we flush and (if necessary) invalidate 829 * the cached range over the first operation we are about to run. 830 * 831 * We care about zero and collapse here because they both run a hole 832 * punch over the range first. Because that can zero data, and the range 833 * of invalidation for the shift operations is much larger, we still do 834 * the required flush for collapse in xfs_prepare_shift(). 835 * 836 * Insert has the same range requirements as collapse, and we extend the 837 * file first which can zero data. Hence insert has the same 838 * flush/invalidate requirements as collapse and so they are both 839 * handled at the right time by xfs_prepare_shift(). 840 */ 841 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 842 FALLOC_FL_COLLAPSE_RANGE)) { 843 error = xfs_flush_unmap_range(ip, offset, len); 844 if (error) 845 goto out_unlock; 846 } 847 848 if (mode & FALLOC_FL_PUNCH_HOLE) { 849 error = xfs_free_file_space(ip, offset, len); 850 if (error) 851 goto out_unlock; 852 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 853 unsigned int blksize_mask = i_blocksize(inode) - 1; 854 855 if (offset & blksize_mask || len & blksize_mask) { 856 error = -EINVAL; 857 goto out_unlock; 858 } 859 860 /* 861 * There is no need to overlap collapse range with EOF, 862 * in which case it is effectively a truncate operation 863 */ 864 if (offset + len >= i_size_read(inode)) { 865 error = -EINVAL; 866 goto out_unlock; 867 } 868 869 new_size = i_size_read(inode) - len; 870 871 error = xfs_collapse_file_space(ip, offset, len); 872 if (error) 873 goto out_unlock; 874 } else if (mode & FALLOC_FL_INSERT_RANGE) { 875 unsigned int blksize_mask = i_blocksize(inode) - 1; 876 loff_t isize = i_size_read(inode); 877 878 if (offset & blksize_mask || len & blksize_mask) { 879 error = -EINVAL; 880 goto out_unlock; 881 } 882 883 /* 884 * New inode size must not exceed ->s_maxbytes, accounting for 885 * possible signed overflow. 886 */ 887 if (inode->i_sb->s_maxbytes - isize < len) { 888 error = -EFBIG; 889 goto out_unlock; 890 } 891 new_size = isize + len; 892 893 /* Offset should be less than i_size */ 894 if (offset >= isize) { 895 error = -EINVAL; 896 goto out_unlock; 897 } 898 do_file_insert = true; 899 } else { 900 flags |= XFS_PREALLOC_SET; 901 902 if (!(mode & FALLOC_FL_KEEP_SIZE) && 903 offset + len > i_size_read(inode)) { 904 new_size = offset + len; 905 error = inode_newsize_ok(inode, new_size); 906 if (error) 907 goto out_unlock; 908 } 909 910 if (mode & FALLOC_FL_ZERO_RANGE) { 911 /* 912 * Punch a hole and prealloc the range. We use a hole 913 * punch rather than unwritten extent conversion for two 914 * reasons: 915 * 916 * 1.) Hole punch handles partial block zeroing for us. 917 * 2.) If prealloc returns ENOSPC, the file range is 918 * still zero-valued by virtue of the hole punch. 919 */ 920 unsigned int blksize = i_blocksize(inode); 921 922 trace_xfs_zero_file_space(ip); 923 924 error = xfs_free_file_space(ip, offset, len); 925 if (error) 926 goto out_unlock; 927 928 len = round_up(offset + len, blksize) - 929 round_down(offset, blksize); 930 offset = round_down(offset, blksize); 931 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 932 error = xfs_reflink_unshare(ip, offset, len); 933 if (error) 934 goto out_unlock; 935 } else { 936 /* 937 * If always_cow mode we can't use preallocations and 938 * thus should not create them. 939 */ 940 if (xfs_is_always_cow_inode(ip)) { 941 error = -EOPNOTSUPP; 942 goto out_unlock; 943 } 944 } 945 946 if (!xfs_is_always_cow_inode(ip)) { 947 error = xfs_alloc_file_space(ip, offset, len, 948 XFS_BMAPI_PREALLOC); 949 if (error) 950 goto out_unlock; 951 } 952 } 953 954 if (file->f_flags & O_DSYNC) 955 flags |= XFS_PREALLOC_SYNC; 956 957 error = xfs_update_prealloc_flags(ip, flags); 958 if (error) 959 goto out_unlock; 960 961 /* Change file size if needed */ 962 if (new_size) { 963 struct iattr iattr; 964 965 iattr.ia_valid = ATTR_SIZE; 966 iattr.ia_size = new_size; 967 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 968 if (error) 969 goto out_unlock; 970 } 971 972 /* 973 * Perform hole insertion now that the file size has been 974 * updated so that if we crash during the operation we don't 975 * leave shifted extents past EOF and hence losing access to 976 * the data that is contained within them. 977 */ 978 if (do_file_insert) 979 error = xfs_insert_file_space(ip, offset, len); 980 981 out_unlock: 982 xfs_iunlock(ip, iolock); 983 return error; 984 } 985 986 STATIC int 987 xfs_file_fadvise( 988 struct file *file, 989 loff_t start, 990 loff_t end, 991 int advice) 992 { 993 struct xfs_inode *ip = XFS_I(file_inode(file)); 994 int ret; 995 int lockflags = 0; 996 997 /* 998 * Operations creating pages in page cache need protection from hole 999 * punching and similar ops 1000 */ 1001 if (advice == POSIX_FADV_WILLNEED) { 1002 lockflags = XFS_IOLOCK_SHARED; 1003 xfs_ilock(ip, lockflags); 1004 } 1005 ret = generic_fadvise(file, start, end, advice); 1006 if (lockflags) 1007 xfs_iunlock(ip, lockflags); 1008 return ret; 1009 } 1010 1011 STATIC loff_t 1012 xfs_file_remap_range( 1013 struct file *file_in, 1014 loff_t pos_in, 1015 struct file *file_out, 1016 loff_t pos_out, 1017 loff_t len, 1018 unsigned int remap_flags) 1019 { 1020 struct inode *inode_in = file_inode(file_in); 1021 struct xfs_inode *src = XFS_I(inode_in); 1022 struct inode *inode_out = file_inode(file_out); 1023 struct xfs_inode *dest = XFS_I(inode_out); 1024 struct xfs_mount *mp = src->i_mount; 1025 loff_t remapped = 0; 1026 xfs_extlen_t cowextsize; 1027 int ret; 1028 1029 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1030 return -EINVAL; 1031 1032 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 1033 return -EOPNOTSUPP; 1034 1035 if (XFS_FORCED_SHUTDOWN(mp)) 1036 return -EIO; 1037 1038 /* Prepare and then clone file data. */ 1039 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1040 &len, remap_flags); 1041 if (ret || len == 0) 1042 return ret; 1043 1044 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1045 1046 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1047 &remapped); 1048 if (ret) 1049 goto out_unlock; 1050 1051 /* 1052 * Carry the cowextsize hint from src to dest if we're sharing the 1053 * entire source file to the entire destination file, the source file 1054 * has a cowextsize hint, and the destination file does not. 1055 */ 1056 cowextsize = 0; 1057 if (pos_in == 0 && len == i_size_read(inode_in) && 1058 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1059 pos_out == 0 && len >= i_size_read(inode_out) && 1060 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1061 cowextsize = src->i_d.di_cowextsize; 1062 1063 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1064 remap_flags); 1065 if (ret) 1066 goto out_unlock; 1067 1068 if (mp->m_flags & XFS_MOUNT_WSYNC) 1069 xfs_log_force_inode(dest); 1070 out_unlock: 1071 xfs_iunlock2_io_mmap(src, dest); 1072 if (ret) 1073 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1074 return remapped > 0 ? remapped : ret; 1075 } 1076 1077 STATIC int 1078 xfs_file_open( 1079 struct inode *inode, 1080 struct file *file) 1081 { 1082 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1083 return -EFBIG; 1084 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1085 return -EIO; 1086 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 1087 return 0; 1088 } 1089 1090 STATIC int 1091 xfs_dir_open( 1092 struct inode *inode, 1093 struct file *file) 1094 { 1095 struct xfs_inode *ip = XFS_I(inode); 1096 int mode; 1097 int error; 1098 1099 error = xfs_file_open(inode, file); 1100 if (error) 1101 return error; 1102 1103 /* 1104 * If there are any blocks, read-ahead block 0 as we're almost 1105 * certain to have the next operation be a read there. 1106 */ 1107 mode = xfs_ilock_data_map_shared(ip); 1108 if (ip->i_df.if_nextents > 0) 1109 error = xfs_dir3_data_readahead(ip, 0, 0); 1110 xfs_iunlock(ip, mode); 1111 return error; 1112 } 1113 1114 STATIC int 1115 xfs_file_release( 1116 struct inode *inode, 1117 struct file *filp) 1118 { 1119 return xfs_release(XFS_I(inode)); 1120 } 1121 1122 STATIC int 1123 xfs_file_readdir( 1124 struct file *file, 1125 struct dir_context *ctx) 1126 { 1127 struct inode *inode = file_inode(file); 1128 xfs_inode_t *ip = XFS_I(inode); 1129 size_t bufsize; 1130 1131 /* 1132 * The Linux API doesn't pass down the total size of the buffer 1133 * we read into down to the filesystem. With the filldir concept 1134 * it's not needed for correct information, but the XFS dir2 leaf 1135 * code wants an estimate of the buffer size to calculate it's 1136 * readahead window and size the buffers used for mapping to 1137 * physical blocks. 1138 * 1139 * Try to give it an estimate that's good enough, maybe at some 1140 * point we can change the ->readdir prototype to include the 1141 * buffer size. For now we use the current glibc buffer size. 1142 */ 1143 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1144 1145 return xfs_readdir(NULL, ip, ctx, bufsize); 1146 } 1147 1148 STATIC loff_t 1149 xfs_file_llseek( 1150 struct file *file, 1151 loff_t offset, 1152 int whence) 1153 { 1154 struct inode *inode = file->f_mapping->host; 1155 1156 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1157 return -EIO; 1158 1159 switch (whence) { 1160 default: 1161 return generic_file_llseek(file, offset, whence); 1162 case SEEK_HOLE: 1163 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1164 break; 1165 case SEEK_DATA: 1166 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1167 break; 1168 } 1169 1170 if (offset < 0) 1171 return offset; 1172 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1173 } 1174 1175 /* 1176 * Locking for serialisation of IO during page faults. This results in a lock 1177 * ordering of: 1178 * 1179 * mmap_lock (MM) 1180 * sb_start_pagefault(vfs, freeze) 1181 * i_mmaplock (XFS - truncate serialisation) 1182 * page_lock (MM) 1183 * i_lock (XFS - extent map serialisation) 1184 */ 1185 static vm_fault_t 1186 __xfs_filemap_fault( 1187 struct vm_fault *vmf, 1188 enum page_entry_size pe_size, 1189 bool write_fault) 1190 { 1191 struct inode *inode = file_inode(vmf->vma->vm_file); 1192 struct xfs_inode *ip = XFS_I(inode); 1193 vm_fault_t ret; 1194 1195 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1196 1197 if (write_fault) { 1198 sb_start_pagefault(inode->i_sb); 1199 file_update_time(vmf->vma->vm_file); 1200 } 1201 1202 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1203 if (IS_DAX(inode)) { 1204 pfn_t pfn; 1205 1206 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, 1207 (write_fault && !vmf->cow_page) ? 1208 &xfs_direct_write_iomap_ops : 1209 &xfs_read_iomap_ops); 1210 if (ret & VM_FAULT_NEEDDSYNC) 1211 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1212 } else { 1213 if (write_fault) 1214 ret = iomap_page_mkwrite(vmf, 1215 &xfs_buffered_write_iomap_ops); 1216 else 1217 ret = filemap_fault(vmf); 1218 } 1219 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1220 1221 if (write_fault) 1222 sb_end_pagefault(inode->i_sb); 1223 return ret; 1224 } 1225 1226 static vm_fault_t 1227 xfs_filemap_fault( 1228 struct vm_fault *vmf) 1229 { 1230 /* DAX can shortcut the normal fault path on write faults! */ 1231 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1232 IS_DAX(file_inode(vmf->vma->vm_file)) && 1233 (vmf->flags & FAULT_FLAG_WRITE)); 1234 } 1235 1236 static vm_fault_t 1237 xfs_filemap_huge_fault( 1238 struct vm_fault *vmf, 1239 enum page_entry_size pe_size) 1240 { 1241 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1242 return VM_FAULT_FALLBACK; 1243 1244 /* DAX can shortcut the normal fault path on write faults! */ 1245 return __xfs_filemap_fault(vmf, pe_size, 1246 (vmf->flags & FAULT_FLAG_WRITE)); 1247 } 1248 1249 static vm_fault_t 1250 xfs_filemap_page_mkwrite( 1251 struct vm_fault *vmf) 1252 { 1253 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1254 } 1255 1256 /* 1257 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1258 * on write faults. In reality, it needs to serialise against truncate and 1259 * prepare memory for writing so handle is as standard write fault. 1260 */ 1261 static vm_fault_t 1262 xfs_filemap_pfn_mkwrite( 1263 struct vm_fault *vmf) 1264 { 1265 1266 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1267 } 1268 1269 static void 1270 xfs_filemap_map_pages( 1271 struct vm_fault *vmf, 1272 pgoff_t start_pgoff, 1273 pgoff_t end_pgoff) 1274 { 1275 struct inode *inode = file_inode(vmf->vma->vm_file); 1276 1277 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1278 filemap_map_pages(vmf, start_pgoff, end_pgoff); 1279 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1280 } 1281 1282 static const struct vm_operations_struct xfs_file_vm_ops = { 1283 .fault = xfs_filemap_fault, 1284 .huge_fault = xfs_filemap_huge_fault, 1285 .map_pages = xfs_filemap_map_pages, 1286 .page_mkwrite = xfs_filemap_page_mkwrite, 1287 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1288 }; 1289 1290 STATIC int 1291 xfs_file_mmap( 1292 struct file *file, 1293 struct vm_area_struct *vma) 1294 { 1295 struct inode *inode = file_inode(file); 1296 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1297 1298 /* 1299 * We don't support synchronous mappings for non-DAX files and 1300 * for DAX files if underneath dax_device is not synchronous. 1301 */ 1302 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1303 return -EOPNOTSUPP; 1304 1305 file_accessed(file); 1306 vma->vm_ops = &xfs_file_vm_ops; 1307 if (IS_DAX(inode)) 1308 vma->vm_flags |= VM_HUGEPAGE; 1309 return 0; 1310 } 1311 1312 const struct file_operations xfs_file_operations = { 1313 .llseek = xfs_file_llseek, 1314 .read_iter = xfs_file_read_iter, 1315 .write_iter = xfs_file_write_iter, 1316 .splice_read = generic_file_splice_read, 1317 .splice_write = iter_file_splice_write, 1318 .iopoll = iomap_dio_iopoll, 1319 .unlocked_ioctl = xfs_file_ioctl, 1320 #ifdef CONFIG_COMPAT 1321 .compat_ioctl = xfs_file_compat_ioctl, 1322 #endif 1323 .mmap = xfs_file_mmap, 1324 .mmap_supported_flags = MAP_SYNC, 1325 .open = xfs_file_open, 1326 .release = xfs_file_release, 1327 .fsync = xfs_file_fsync, 1328 .get_unmapped_area = thp_get_unmapped_area, 1329 .fallocate = xfs_file_fallocate, 1330 .fadvise = xfs_file_fadvise, 1331 .remap_file_range = xfs_file_remap_range, 1332 }; 1333 1334 const struct file_operations xfs_dir_file_operations = { 1335 .open = xfs_dir_open, 1336 .read = generic_read_dir, 1337 .iterate_shared = xfs_file_readdir, 1338 .llseek = generic_file_llseek, 1339 .unlocked_ioctl = xfs_file_ioctl, 1340 #ifdef CONFIG_COMPAT 1341 .compat_ioctl = xfs_file_compat_ioctl, 1342 #endif 1343 .fsync = xfs_dir_fsync, 1344 }; 1345