xref: /openbmc/linux/fs/xfs/xfs_file.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 	struct xfs_mount	*mp = ip->i_mount;
84 	xfs_lsn_t		lsn = 0;
85 
86 	trace_xfs_dir_fsync(ip);
87 
88 	xfs_ilock(ip, XFS_ILOCK_SHARED);
89 	if (xfs_ipincount(ip))
90 		lsn = ip->i_itemp->ili_last_lsn;
91 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
92 
93 	if (!lsn)
94 		return 0;
95 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96 }
97 
98 STATIC int
99 xfs_file_fsync(
100 	struct file		*file,
101 	loff_t			start,
102 	loff_t			end,
103 	int			datasync)
104 {
105 	struct inode		*inode = file->f_mapping->host;
106 	struct xfs_inode	*ip = XFS_I(inode);
107 	struct xfs_mount	*mp = ip->i_mount;
108 	int			error = 0;
109 	int			log_flushed = 0;
110 	xfs_lsn_t		lsn = 0;
111 
112 	trace_xfs_file_fsync(ip);
113 
114 	error = file_write_and_wait_range(file, start, end);
115 	if (error)
116 		return error;
117 
118 	if (XFS_FORCED_SHUTDOWN(mp))
119 		return -EIO;
120 
121 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
122 
123 	/*
124 	 * If we have an RT and/or log subvolume we need to make sure to flush
125 	 * the write cache the device used for file data first.  This is to
126 	 * ensure newly written file data make it to disk before logging the new
127 	 * inode size in case of an extending write.
128 	 */
129 	if (XFS_IS_REALTIME_INODE(ip))
130 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
133 
134 	/*
135 	 * All metadata updates are logged, which means that we just have to
136 	 * flush the log up to the latest LSN that touched the inode. If we have
137 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 	 * log force before we clear the ili_fsync_fields field. This ensures
139 	 * that we don't get a racing sync operation that does not wait for the
140 	 * metadata to hit the journal before returning. If we race with
141 	 * clearing the ili_fsync_fields, then all that will happen is the log
142 	 * force will do nothing as the lsn will already be on disk. We can't
143 	 * race with setting ili_fsync_fields because that is done under
144 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 	 * until after the ili_fsync_fields is cleared.
146 	 */
147 	xfs_ilock(ip, XFS_ILOCK_SHARED);
148 	if (xfs_ipincount(ip)) {
149 		if (!datasync ||
150 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 			lsn = ip->i_itemp->ili_last_lsn;
152 	}
153 
154 	if (lsn) {
155 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 		ip->i_itemp->ili_fsync_fields = 0;
157 	}
158 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
159 
160 	/*
161 	 * If we only have a single device, and the log force about was
162 	 * a no-op we might have to flush the data device cache here.
163 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 	 * an already allocated file and thus do not have any metadata to
165 	 * commit.
166 	 */
167 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 	    mp->m_logdev_targp == mp->m_ddev_targp)
169 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
170 
171 	return error;
172 }
173 
174 STATIC ssize_t
175 xfs_file_dio_aio_read(
176 	struct kiocb		*iocb,
177 	struct iov_iter		*to)
178 {
179 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
180 	size_t			count = iov_iter_count(to);
181 	ssize_t			ret;
182 
183 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184 
185 	if (!count)
186 		return 0; /* skip atime */
187 
188 	file_accessed(iocb->ki_filp);
189 
190 	if (iocb->ki_flags & IOCB_NOWAIT) {
191 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
192 			return -EAGAIN;
193 	} else {
194 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
195 	}
196 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
197 			is_sync_kiocb(iocb));
198 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
199 
200 	return ret;
201 }
202 
203 static noinline ssize_t
204 xfs_file_dax_read(
205 	struct kiocb		*iocb,
206 	struct iov_iter		*to)
207 {
208 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
209 	size_t			count = iov_iter_count(to);
210 	ssize_t			ret = 0;
211 
212 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
213 
214 	if (!count)
215 		return 0; /* skip atime */
216 
217 	if (iocb->ki_flags & IOCB_NOWAIT) {
218 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
219 			return -EAGAIN;
220 	} else {
221 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
222 	}
223 
224 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
225 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
226 
227 	file_accessed(iocb->ki_filp);
228 	return ret;
229 }
230 
231 STATIC ssize_t
232 xfs_file_buffered_aio_read(
233 	struct kiocb		*iocb,
234 	struct iov_iter		*to)
235 {
236 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
237 	ssize_t			ret;
238 
239 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
240 
241 	if (iocb->ki_flags & IOCB_NOWAIT) {
242 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
243 			return -EAGAIN;
244 	} else {
245 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
246 	}
247 	ret = generic_file_read_iter(iocb, to);
248 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
249 
250 	return ret;
251 }
252 
253 STATIC ssize_t
254 xfs_file_read_iter(
255 	struct kiocb		*iocb,
256 	struct iov_iter		*to)
257 {
258 	struct inode		*inode = file_inode(iocb->ki_filp);
259 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
260 	ssize_t			ret = 0;
261 
262 	XFS_STATS_INC(mp, xs_read_calls);
263 
264 	if (XFS_FORCED_SHUTDOWN(mp))
265 		return -EIO;
266 
267 	if (IS_DAX(inode))
268 		ret = xfs_file_dax_read(iocb, to);
269 	else if (iocb->ki_flags & IOCB_DIRECT)
270 		ret = xfs_file_dio_aio_read(iocb, to);
271 	else
272 		ret = xfs_file_buffered_aio_read(iocb, to);
273 
274 	if (ret > 0)
275 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
276 	return ret;
277 }
278 
279 /*
280  * Common pre-write limit and setup checks.
281  *
282  * Called with the iolocked held either shared and exclusive according to
283  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
284  * if called for a direct write beyond i_size.
285  */
286 STATIC ssize_t
287 xfs_file_aio_write_checks(
288 	struct kiocb		*iocb,
289 	struct iov_iter		*from,
290 	int			*iolock)
291 {
292 	struct file		*file = iocb->ki_filp;
293 	struct inode		*inode = file->f_mapping->host;
294 	struct xfs_inode	*ip = XFS_I(inode);
295 	ssize_t			error = 0;
296 	size_t			count = iov_iter_count(from);
297 	bool			drained_dio = false;
298 	loff_t			isize;
299 
300 restart:
301 	error = generic_write_checks(iocb, from);
302 	if (error <= 0)
303 		return error;
304 
305 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
306 	if (error)
307 		return error;
308 
309 	/*
310 	 * For changing security info in file_remove_privs() we need i_rwsem
311 	 * exclusively.
312 	 */
313 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
314 		xfs_iunlock(ip, *iolock);
315 		*iolock = XFS_IOLOCK_EXCL;
316 		xfs_ilock(ip, *iolock);
317 		goto restart;
318 	}
319 	/*
320 	 * If the offset is beyond the size of the file, we need to zero any
321 	 * blocks that fall between the existing EOF and the start of this
322 	 * write.  If zeroing is needed and we are currently holding the
323 	 * iolock shared, we need to update it to exclusive which implies
324 	 * having to redo all checks before.
325 	 *
326 	 * We need to serialise against EOF updates that occur in IO
327 	 * completions here. We want to make sure that nobody is changing the
328 	 * size while we do this check until we have placed an IO barrier (i.e.
329 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
330 	 * The spinlock effectively forms a memory barrier once we have the
331 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
332 	 * and hence be able to correctly determine if we need to run zeroing.
333 	 */
334 	spin_lock(&ip->i_flags_lock);
335 	isize = i_size_read(inode);
336 	if (iocb->ki_pos > isize) {
337 		spin_unlock(&ip->i_flags_lock);
338 		if (!drained_dio) {
339 			if (*iolock == XFS_IOLOCK_SHARED) {
340 				xfs_iunlock(ip, *iolock);
341 				*iolock = XFS_IOLOCK_EXCL;
342 				xfs_ilock(ip, *iolock);
343 				iov_iter_reexpand(from, count);
344 			}
345 			/*
346 			 * We now have an IO submission barrier in place, but
347 			 * AIO can do EOF updates during IO completion and hence
348 			 * we now need to wait for all of them to drain. Non-AIO
349 			 * DIO will have drained before we are given the
350 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
351 			 * no-op.
352 			 */
353 			inode_dio_wait(inode);
354 			drained_dio = true;
355 			goto restart;
356 		}
357 
358 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
359 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
360 				NULL, &xfs_buffered_write_iomap_ops);
361 		if (error)
362 			return error;
363 	} else
364 		spin_unlock(&ip->i_flags_lock);
365 
366 	/*
367 	 * Updating the timestamps will grab the ilock again from
368 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
369 	 * lock above.  Eventually we should look into a way to avoid
370 	 * the pointless lock roundtrip.
371 	 */
372 	return file_modified(file);
373 }
374 
375 static int
376 xfs_dio_write_end_io(
377 	struct kiocb		*iocb,
378 	ssize_t			size,
379 	int			error,
380 	unsigned		flags)
381 {
382 	struct inode		*inode = file_inode(iocb->ki_filp);
383 	struct xfs_inode	*ip = XFS_I(inode);
384 	loff_t			offset = iocb->ki_pos;
385 	unsigned int		nofs_flag;
386 
387 	trace_xfs_end_io_direct_write(ip, offset, size);
388 
389 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
390 		return -EIO;
391 
392 	if (error)
393 		return error;
394 	if (!size)
395 		return 0;
396 
397 	/*
398 	 * Capture amount written on completion as we can't reliably account
399 	 * for it on submission.
400 	 */
401 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
402 
403 	/*
404 	 * We can allocate memory here while doing writeback on behalf of
405 	 * memory reclaim.  To avoid memory allocation deadlocks set the
406 	 * task-wide nofs context for the following operations.
407 	 */
408 	nofs_flag = memalloc_nofs_save();
409 
410 	if (flags & IOMAP_DIO_COW) {
411 		error = xfs_reflink_end_cow(ip, offset, size);
412 		if (error)
413 			goto out;
414 	}
415 
416 	/*
417 	 * Unwritten conversion updates the in-core isize after extent
418 	 * conversion but before updating the on-disk size. Updating isize any
419 	 * earlier allows a racing dio read to find unwritten extents before
420 	 * they are converted.
421 	 */
422 	if (flags & IOMAP_DIO_UNWRITTEN) {
423 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
424 		goto out;
425 	}
426 
427 	/*
428 	 * We need to update the in-core inode size here so that we don't end up
429 	 * with the on-disk inode size being outside the in-core inode size. We
430 	 * have no other method of updating EOF for AIO, so always do it here
431 	 * if necessary.
432 	 *
433 	 * We need to lock the test/set EOF update as we can be racing with
434 	 * other IO completions here to update the EOF. Failing to serialise
435 	 * here can result in EOF moving backwards and Bad Things Happen when
436 	 * that occurs.
437 	 */
438 	spin_lock(&ip->i_flags_lock);
439 	if (offset + size > i_size_read(inode)) {
440 		i_size_write(inode, offset + size);
441 		spin_unlock(&ip->i_flags_lock);
442 		error = xfs_setfilesize(ip, offset, size);
443 	} else {
444 		spin_unlock(&ip->i_flags_lock);
445 	}
446 
447 out:
448 	memalloc_nofs_restore(nofs_flag);
449 	return error;
450 }
451 
452 static const struct iomap_dio_ops xfs_dio_write_ops = {
453 	.end_io		= xfs_dio_write_end_io,
454 };
455 
456 /*
457  * xfs_file_dio_aio_write - handle direct IO writes
458  *
459  * Lock the inode appropriately to prepare for and issue a direct IO write.
460  * By separating it from the buffered write path we remove all the tricky to
461  * follow locking changes and looping.
462  *
463  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
464  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
465  * pages are flushed out.
466  *
467  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
468  * allowing them to be done in parallel with reads and other direct IO writes.
469  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
470  * needs to do sub-block zeroing and that requires serialisation against other
471  * direct IOs to the same block. In this case we need to serialise the
472  * submission of the unaligned IOs so that we don't get racing block zeroing in
473  * the dio layer.  To avoid the problem with aio, we also need to wait for
474  * outstanding IOs to complete so that unwritten extent conversion is completed
475  * before we try to map the overlapping block. This is currently implemented by
476  * hitting it with a big hammer (i.e. inode_dio_wait()).
477  *
478  * Returns with locks held indicated by @iolock and errors indicated by
479  * negative return values.
480  */
481 STATIC ssize_t
482 xfs_file_dio_aio_write(
483 	struct kiocb		*iocb,
484 	struct iov_iter		*from)
485 {
486 	struct file		*file = iocb->ki_filp;
487 	struct address_space	*mapping = file->f_mapping;
488 	struct inode		*inode = mapping->host;
489 	struct xfs_inode	*ip = XFS_I(inode);
490 	struct xfs_mount	*mp = ip->i_mount;
491 	ssize_t			ret = 0;
492 	int			unaligned_io = 0;
493 	int			iolock;
494 	size_t			count = iov_iter_count(from);
495 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
496 
497 	/* DIO must be aligned to device logical sector size */
498 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
499 		return -EINVAL;
500 
501 	/*
502 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
503 	 * the file system block size.  We don't need to consider the EOF
504 	 * extension case here because xfs_file_aio_write_checks() will relock
505 	 * the inode as necessary for EOF zeroing cases and fill out the new
506 	 * inode size as appropriate.
507 	 */
508 	if ((iocb->ki_pos & mp->m_blockmask) ||
509 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
510 		unaligned_io = 1;
511 
512 		/*
513 		 * We can't properly handle unaligned direct I/O to reflink
514 		 * files yet, as we can't unshare a partial block.
515 		 */
516 		if (xfs_is_cow_inode(ip)) {
517 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
518 			return -EREMCHG;
519 		}
520 		iolock = XFS_IOLOCK_EXCL;
521 	} else {
522 		iolock = XFS_IOLOCK_SHARED;
523 	}
524 
525 	if (iocb->ki_flags & IOCB_NOWAIT) {
526 		/* unaligned dio always waits, bail */
527 		if (unaligned_io)
528 			return -EAGAIN;
529 		if (!xfs_ilock_nowait(ip, iolock))
530 			return -EAGAIN;
531 	} else {
532 		xfs_ilock(ip, iolock);
533 	}
534 
535 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
536 	if (ret)
537 		goto out;
538 	count = iov_iter_count(from);
539 
540 	/*
541 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
542 	 * in-flight at the same time or we risk data corruption. Wait for all
543 	 * other IO to drain before we submit. If the IO is aligned, demote the
544 	 * iolock if we had to take the exclusive lock in
545 	 * xfs_file_aio_write_checks() for other reasons.
546 	 */
547 	if (unaligned_io) {
548 		inode_dio_wait(inode);
549 	} else if (iolock == XFS_IOLOCK_EXCL) {
550 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
551 		iolock = XFS_IOLOCK_SHARED;
552 	}
553 
554 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
555 	/*
556 	 * If unaligned, this is the only IO in-flight. Wait on it before we
557 	 * release the iolock to prevent subsequent overlapping IO.
558 	 */
559 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
560 			   &xfs_dio_write_ops,
561 			   is_sync_kiocb(iocb) || unaligned_io);
562 out:
563 	xfs_iunlock(ip, iolock);
564 
565 	/*
566 	 * No fallback to buffered IO on errors for XFS, direct IO will either
567 	 * complete fully or fail.
568 	 */
569 	ASSERT(ret < 0 || ret == count);
570 	return ret;
571 }
572 
573 static noinline ssize_t
574 xfs_file_dax_write(
575 	struct kiocb		*iocb,
576 	struct iov_iter		*from)
577 {
578 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
579 	struct xfs_inode	*ip = XFS_I(inode);
580 	int			iolock = XFS_IOLOCK_EXCL;
581 	ssize_t			ret, error = 0;
582 	size_t			count;
583 	loff_t			pos;
584 
585 	if (iocb->ki_flags & IOCB_NOWAIT) {
586 		if (!xfs_ilock_nowait(ip, iolock))
587 			return -EAGAIN;
588 	} else {
589 		xfs_ilock(ip, iolock);
590 	}
591 
592 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
593 	if (ret)
594 		goto out;
595 
596 	pos = iocb->ki_pos;
597 	count = iov_iter_count(from);
598 
599 	trace_xfs_file_dax_write(ip, count, pos);
600 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
601 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
602 		i_size_write(inode, iocb->ki_pos);
603 		error = xfs_setfilesize(ip, pos, ret);
604 	}
605 out:
606 	xfs_iunlock(ip, iolock);
607 	if (error)
608 		return error;
609 
610 	if (ret > 0) {
611 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
612 
613 		/* Handle various SYNC-type writes */
614 		ret = generic_write_sync(iocb, ret);
615 	}
616 	return ret;
617 }
618 
619 STATIC ssize_t
620 xfs_file_buffered_aio_write(
621 	struct kiocb		*iocb,
622 	struct iov_iter		*from)
623 {
624 	struct file		*file = iocb->ki_filp;
625 	struct address_space	*mapping = file->f_mapping;
626 	struct inode		*inode = mapping->host;
627 	struct xfs_inode	*ip = XFS_I(inode);
628 	ssize_t			ret;
629 	int			enospc = 0;
630 	int			iolock;
631 
632 	if (iocb->ki_flags & IOCB_NOWAIT)
633 		return -EOPNOTSUPP;
634 
635 write_retry:
636 	iolock = XFS_IOLOCK_EXCL;
637 	xfs_ilock(ip, iolock);
638 
639 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
640 	if (ret)
641 		goto out;
642 
643 	/* We can write back this queue in page reclaim */
644 	current->backing_dev_info = inode_to_bdi(inode);
645 
646 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
647 	ret = iomap_file_buffered_write(iocb, from,
648 			&xfs_buffered_write_iomap_ops);
649 	if (likely(ret >= 0))
650 		iocb->ki_pos += ret;
651 
652 	/*
653 	 * If we hit a space limit, try to free up some lingering preallocated
654 	 * space before returning an error. In the case of ENOSPC, first try to
655 	 * write back all dirty inodes to free up some of the excess reserved
656 	 * metadata space. This reduces the chances that the eofblocks scan
657 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
658 	 * also behaves as a filter to prevent too many eofblocks scans from
659 	 * running at the same time.
660 	 */
661 	if (ret == -EDQUOT && !enospc) {
662 		xfs_iunlock(ip, iolock);
663 		enospc = xfs_inode_free_quota_eofblocks(ip);
664 		if (enospc)
665 			goto write_retry;
666 		enospc = xfs_inode_free_quota_cowblocks(ip);
667 		if (enospc)
668 			goto write_retry;
669 		iolock = 0;
670 	} else if (ret == -ENOSPC && !enospc) {
671 		struct xfs_eofblocks eofb = {0};
672 
673 		enospc = 1;
674 		xfs_flush_inodes(ip->i_mount);
675 
676 		xfs_iunlock(ip, iolock);
677 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
678 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
679 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
680 		goto write_retry;
681 	}
682 
683 	current->backing_dev_info = NULL;
684 out:
685 	if (iolock)
686 		xfs_iunlock(ip, iolock);
687 
688 	if (ret > 0) {
689 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
690 		/* Handle various SYNC-type writes */
691 		ret = generic_write_sync(iocb, ret);
692 	}
693 	return ret;
694 }
695 
696 STATIC ssize_t
697 xfs_file_write_iter(
698 	struct kiocb		*iocb,
699 	struct iov_iter		*from)
700 {
701 	struct file		*file = iocb->ki_filp;
702 	struct address_space	*mapping = file->f_mapping;
703 	struct inode		*inode = mapping->host;
704 	struct xfs_inode	*ip = XFS_I(inode);
705 	ssize_t			ret;
706 	size_t			ocount = iov_iter_count(from);
707 
708 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
709 
710 	if (ocount == 0)
711 		return 0;
712 
713 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
714 		return -EIO;
715 
716 	if (IS_DAX(inode))
717 		return xfs_file_dax_write(iocb, from);
718 
719 	if (iocb->ki_flags & IOCB_DIRECT) {
720 		/*
721 		 * Allow a directio write to fall back to a buffered
722 		 * write *only* in the case that we're doing a reflink
723 		 * CoW.  In all other directio scenarios we do not
724 		 * allow an operation to fall back to buffered mode.
725 		 */
726 		ret = xfs_file_dio_aio_write(iocb, from);
727 		if (ret != -EREMCHG)
728 			return ret;
729 	}
730 
731 	return xfs_file_buffered_aio_write(iocb, from);
732 }
733 
734 static void
735 xfs_wait_dax_page(
736 	struct inode		*inode)
737 {
738 	struct xfs_inode        *ip = XFS_I(inode);
739 
740 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
741 	schedule();
742 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
743 }
744 
745 static int
746 xfs_break_dax_layouts(
747 	struct inode		*inode,
748 	bool			*retry)
749 {
750 	struct page		*page;
751 
752 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
753 
754 	page = dax_layout_busy_page(inode->i_mapping);
755 	if (!page)
756 		return 0;
757 
758 	*retry = true;
759 	return ___wait_var_event(&page->_refcount,
760 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
761 			0, 0, xfs_wait_dax_page(inode));
762 }
763 
764 int
765 xfs_break_layouts(
766 	struct inode		*inode,
767 	uint			*iolock,
768 	enum layout_break_reason reason)
769 {
770 	bool			retry;
771 	int			error;
772 
773 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
774 
775 	do {
776 		retry = false;
777 		switch (reason) {
778 		case BREAK_UNMAP:
779 			error = xfs_break_dax_layouts(inode, &retry);
780 			if (error || retry)
781 				break;
782 			/* fall through */
783 		case BREAK_WRITE:
784 			error = xfs_break_leased_layouts(inode, iolock, &retry);
785 			break;
786 		default:
787 			WARN_ON_ONCE(1);
788 			error = -EINVAL;
789 		}
790 	} while (error == 0 && retry);
791 
792 	return error;
793 }
794 
795 #define	XFS_FALLOC_FL_SUPPORTED						\
796 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
797 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
798 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
799 
800 STATIC long
801 xfs_file_fallocate(
802 	struct file		*file,
803 	int			mode,
804 	loff_t			offset,
805 	loff_t			len)
806 {
807 	struct inode		*inode = file_inode(file);
808 	struct xfs_inode	*ip = XFS_I(inode);
809 	long			error;
810 	enum xfs_prealloc_flags	flags = 0;
811 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
812 	loff_t			new_size = 0;
813 	bool			do_file_insert = false;
814 
815 	if (!S_ISREG(inode->i_mode))
816 		return -EINVAL;
817 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
818 		return -EOPNOTSUPP;
819 
820 	xfs_ilock(ip, iolock);
821 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
822 	if (error)
823 		goto out_unlock;
824 
825 	/*
826 	 * Must wait for all AIO to complete before we continue as AIO can
827 	 * change the file size on completion without holding any locks we
828 	 * currently hold. We must do this first because AIO can update both
829 	 * the on disk and in memory inode sizes, and the operations that follow
830 	 * require the in-memory size to be fully up-to-date.
831 	 */
832 	inode_dio_wait(inode);
833 
834 	/*
835 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
836 	 * the cached range over the first operation we are about to run.
837 	 *
838 	 * We care about zero and collapse here because they both run a hole
839 	 * punch over the range first. Because that can zero data, and the range
840 	 * of invalidation for the shift operations is much larger, we still do
841 	 * the required flush for collapse in xfs_prepare_shift().
842 	 *
843 	 * Insert has the same range requirements as collapse, and we extend the
844 	 * file first which can zero data. Hence insert has the same
845 	 * flush/invalidate requirements as collapse and so they are both
846 	 * handled at the right time by xfs_prepare_shift().
847 	 */
848 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
849 		    FALLOC_FL_COLLAPSE_RANGE)) {
850 		error = xfs_flush_unmap_range(ip, offset, len);
851 		if (error)
852 			goto out_unlock;
853 	}
854 
855 	if (mode & FALLOC_FL_PUNCH_HOLE) {
856 		error = xfs_free_file_space(ip, offset, len);
857 		if (error)
858 			goto out_unlock;
859 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
860 		unsigned int blksize_mask = i_blocksize(inode) - 1;
861 
862 		if (offset & blksize_mask || len & blksize_mask) {
863 			error = -EINVAL;
864 			goto out_unlock;
865 		}
866 
867 		/*
868 		 * There is no need to overlap collapse range with EOF,
869 		 * in which case it is effectively a truncate operation
870 		 */
871 		if (offset + len >= i_size_read(inode)) {
872 			error = -EINVAL;
873 			goto out_unlock;
874 		}
875 
876 		new_size = i_size_read(inode) - len;
877 
878 		error = xfs_collapse_file_space(ip, offset, len);
879 		if (error)
880 			goto out_unlock;
881 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
882 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
883 		loff_t		isize = i_size_read(inode);
884 
885 		if (offset & blksize_mask || len & blksize_mask) {
886 			error = -EINVAL;
887 			goto out_unlock;
888 		}
889 
890 		/*
891 		 * New inode size must not exceed ->s_maxbytes, accounting for
892 		 * possible signed overflow.
893 		 */
894 		if (inode->i_sb->s_maxbytes - isize < len) {
895 			error = -EFBIG;
896 			goto out_unlock;
897 		}
898 		new_size = isize + len;
899 
900 		/* Offset should be less than i_size */
901 		if (offset >= isize) {
902 			error = -EINVAL;
903 			goto out_unlock;
904 		}
905 		do_file_insert = true;
906 	} else {
907 		flags |= XFS_PREALLOC_SET;
908 
909 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
910 		    offset + len > i_size_read(inode)) {
911 			new_size = offset + len;
912 			error = inode_newsize_ok(inode, new_size);
913 			if (error)
914 				goto out_unlock;
915 		}
916 
917 		if (mode & FALLOC_FL_ZERO_RANGE) {
918 			/*
919 			 * Punch a hole and prealloc the range.  We use a hole
920 			 * punch rather than unwritten extent conversion for two
921 			 * reasons:
922 			 *
923 			 *   1.) Hole punch handles partial block zeroing for us.
924 			 *   2.) If prealloc returns ENOSPC, the file range is
925 			 *       still zero-valued by virtue of the hole punch.
926 			 */
927 			unsigned int blksize = i_blocksize(inode);
928 
929 			trace_xfs_zero_file_space(ip);
930 
931 			error = xfs_free_file_space(ip, offset, len);
932 			if (error)
933 				goto out_unlock;
934 
935 			len = round_up(offset + len, blksize) -
936 			      round_down(offset, blksize);
937 			offset = round_down(offset, blksize);
938 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
939 			error = xfs_reflink_unshare(ip, offset, len);
940 			if (error)
941 				goto out_unlock;
942 		} else {
943 			/*
944 			 * If always_cow mode we can't use preallocations and
945 			 * thus should not create them.
946 			 */
947 			if (xfs_is_always_cow_inode(ip)) {
948 				error = -EOPNOTSUPP;
949 				goto out_unlock;
950 			}
951 		}
952 
953 		if (!xfs_is_always_cow_inode(ip)) {
954 			error = xfs_alloc_file_space(ip, offset, len,
955 						     XFS_BMAPI_PREALLOC);
956 			if (error)
957 				goto out_unlock;
958 		}
959 	}
960 
961 	if (file->f_flags & O_DSYNC)
962 		flags |= XFS_PREALLOC_SYNC;
963 
964 	error = xfs_update_prealloc_flags(ip, flags);
965 	if (error)
966 		goto out_unlock;
967 
968 	/* Change file size if needed */
969 	if (new_size) {
970 		struct iattr iattr;
971 
972 		iattr.ia_valid = ATTR_SIZE;
973 		iattr.ia_size = new_size;
974 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
975 		if (error)
976 			goto out_unlock;
977 	}
978 
979 	/*
980 	 * Perform hole insertion now that the file size has been
981 	 * updated so that if we crash during the operation we don't
982 	 * leave shifted extents past EOF and hence losing access to
983 	 * the data that is contained within them.
984 	 */
985 	if (do_file_insert)
986 		error = xfs_insert_file_space(ip, offset, len);
987 
988 out_unlock:
989 	xfs_iunlock(ip, iolock);
990 	return error;
991 }
992 
993 STATIC int
994 xfs_file_fadvise(
995 	struct file	*file,
996 	loff_t		start,
997 	loff_t		end,
998 	int		advice)
999 {
1000 	struct xfs_inode *ip = XFS_I(file_inode(file));
1001 	int ret;
1002 	int lockflags = 0;
1003 
1004 	/*
1005 	 * Operations creating pages in page cache need protection from hole
1006 	 * punching and similar ops
1007 	 */
1008 	if (advice == POSIX_FADV_WILLNEED) {
1009 		lockflags = XFS_IOLOCK_SHARED;
1010 		xfs_ilock(ip, lockflags);
1011 	}
1012 	ret = generic_fadvise(file, start, end, advice);
1013 	if (lockflags)
1014 		xfs_iunlock(ip, lockflags);
1015 	return ret;
1016 }
1017 
1018 STATIC loff_t
1019 xfs_file_remap_range(
1020 	struct file		*file_in,
1021 	loff_t			pos_in,
1022 	struct file		*file_out,
1023 	loff_t			pos_out,
1024 	loff_t			len,
1025 	unsigned int		remap_flags)
1026 {
1027 	struct inode		*inode_in = file_inode(file_in);
1028 	struct xfs_inode	*src = XFS_I(inode_in);
1029 	struct inode		*inode_out = file_inode(file_out);
1030 	struct xfs_inode	*dest = XFS_I(inode_out);
1031 	struct xfs_mount	*mp = src->i_mount;
1032 	loff_t			remapped = 0;
1033 	xfs_extlen_t		cowextsize;
1034 	int			ret;
1035 
1036 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1037 		return -EINVAL;
1038 
1039 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1040 		return -EOPNOTSUPP;
1041 
1042 	if (XFS_FORCED_SHUTDOWN(mp))
1043 		return -EIO;
1044 
1045 	/* Prepare and then clone file data. */
1046 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1047 			&len, remap_flags);
1048 	if (ret < 0 || len == 0)
1049 		return ret;
1050 
1051 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1052 
1053 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1054 			&remapped);
1055 	if (ret)
1056 		goto out_unlock;
1057 
1058 	/*
1059 	 * Carry the cowextsize hint from src to dest if we're sharing the
1060 	 * entire source file to the entire destination file, the source file
1061 	 * has a cowextsize hint, and the destination file does not.
1062 	 */
1063 	cowextsize = 0;
1064 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1065 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1066 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1067 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1068 		cowextsize = src->i_d.di_cowextsize;
1069 
1070 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1071 			remap_flags);
1072 
1073 out_unlock:
1074 	xfs_reflink_remap_unlock(file_in, file_out);
1075 	if (ret)
1076 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1077 	return remapped > 0 ? remapped : ret;
1078 }
1079 
1080 STATIC int
1081 xfs_file_open(
1082 	struct inode	*inode,
1083 	struct file	*file)
1084 {
1085 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1086 		return -EFBIG;
1087 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1088 		return -EIO;
1089 	file->f_mode |= FMODE_NOWAIT;
1090 	return 0;
1091 }
1092 
1093 STATIC int
1094 xfs_dir_open(
1095 	struct inode	*inode,
1096 	struct file	*file)
1097 {
1098 	struct xfs_inode *ip = XFS_I(inode);
1099 	int		mode;
1100 	int		error;
1101 
1102 	error = xfs_file_open(inode, file);
1103 	if (error)
1104 		return error;
1105 
1106 	/*
1107 	 * If there are any blocks, read-ahead block 0 as we're almost
1108 	 * certain to have the next operation be a read there.
1109 	 */
1110 	mode = xfs_ilock_data_map_shared(ip);
1111 	if (ip->i_d.di_nextents > 0)
1112 		error = xfs_dir3_data_readahead(ip, 0, 0);
1113 	xfs_iunlock(ip, mode);
1114 	return error;
1115 }
1116 
1117 STATIC int
1118 xfs_file_release(
1119 	struct inode	*inode,
1120 	struct file	*filp)
1121 {
1122 	return xfs_release(XFS_I(inode));
1123 }
1124 
1125 STATIC int
1126 xfs_file_readdir(
1127 	struct file	*file,
1128 	struct dir_context *ctx)
1129 {
1130 	struct inode	*inode = file_inode(file);
1131 	xfs_inode_t	*ip = XFS_I(inode);
1132 	size_t		bufsize;
1133 
1134 	/*
1135 	 * The Linux API doesn't pass down the total size of the buffer
1136 	 * we read into down to the filesystem.  With the filldir concept
1137 	 * it's not needed for correct information, but the XFS dir2 leaf
1138 	 * code wants an estimate of the buffer size to calculate it's
1139 	 * readahead window and size the buffers used for mapping to
1140 	 * physical blocks.
1141 	 *
1142 	 * Try to give it an estimate that's good enough, maybe at some
1143 	 * point we can change the ->readdir prototype to include the
1144 	 * buffer size.  For now we use the current glibc buffer size.
1145 	 */
1146 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1147 
1148 	return xfs_readdir(NULL, ip, ctx, bufsize);
1149 }
1150 
1151 STATIC loff_t
1152 xfs_file_llseek(
1153 	struct file	*file,
1154 	loff_t		offset,
1155 	int		whence)
1156 {
1157 	struct inode		*inode = file->f_mapping->host;
1158 
1159 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1160 		return -EIO;
1161 
1162 	switch (whence) {
1163 	default:
1164 		return generic_file_llseek(file, offset, whence);
1165 	case SEEK_HOLE:
1166 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1167 		break;
1168 	case SEEK_DATA:
1169 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1170 		break;
1171 	}
1172 
1173 	if (offset < 0)
1174 		return offset;
1175 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1176 }
1177 
1178 /*
1179  * Locking for serialisation of IO during page faults. This results in a lock
1180  * ordering of:
1181  *
1182  * mmap_sem (MM)
1183  *   sb_start_pagefault(vfs, freeze)
1184  *     i_mmaplock (XFS - truncate serialisation)
1185  *       page_lock (MM)
1186  *         i_lock (XFS - extent map serialisation)
1187  */
1188 static vm_fault_t
1189 __xfs_filemap_fault(
1190 	struct vm_fault		*vmf,
1191 	enum page_entry_size	pe_size,
1192 	bool			write_fault)
1193 {
1194 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1195 	struct xfs_inode	*ip = XFS_I(inode);
1196 	vm_fault_t		ret;
1197 
1198 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1199 
1200 	if (write_fault) {
1201 		sb_start_pagefault(inode->i_sb);
1202 		file_update_time(vmf->vma->vm_file);
1203 	}
1204 
1205 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1206 	if (IS_DAX(inode)) {
1207 		pfn_t pfn;
1208 
1209 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1210 				(write_fault && !vmf->cow_page) ?
1211 				 &xfs_direct_write_iomap_ops :
1212 				 &xfs_read_iomap_ops);
1213 		if (ret & VM_FAULT_NEEDDSYNC)
1214 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1215 	} else {
1216 		if (write_fault)
1217 			ret = iomap_page_mkwrite(vmf,
1218 					&xfs_buffered_write_iomap_ops);
1219 		else
1220 			ret = filemap_fault(vmf);
1221 	}
1222 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1223 
1224 	if (write_fault)
1225 		sb_end_pagefault(inode->i_sb);
1226 	return ret;
1227 }
1228 
1229 static vm_fault_t
1230 xfs_filemap_fault(
1231 	struct vm_fault		*vmf)
1232 {
1233 	/* DAX can shortcut the normal fault path on write faults! */
1234 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1235 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1236 			(vmf->flags & FAULT_FLAG_WRITE));
1237 }
1238 
1239 static vm_fault_t
1240 xfs_filemap_huge_fault(
1241 	struct vm_fault		*vmf,
1242 	enum page_entry_size	pe_size)
1243 {
1244 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1245 		return VM_FAULT_FALLBACK;
1246 
1247 	/* DAX can shortcut the normal fault path on write faults! */
1248 	return __xfs_filemap_fault(vmf, pe_size,
1249 			(vmf->flags & FAULT_FLAG_WRITE));
1250 }
1251 
1252 static vm_fault_t
1253 xfs_filemap_page_mkwrite(
1254 	struct vm_fault		*vmf)
1255 {
1256 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1257 }
1258 
1259 /*
1260  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1261  * on write faults. In reality, it needs to serialise against truncate and
1262  * prepare memory for writing so handle is as standard write fault.
1263  */
1264 static vm_fault_t
1265 xfs_filemap_pfn_mkwrite(
1266 	struct vm_fault		*vmf)
1267 {
1268 
1269 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1270 }
1271 
1272 static const struct vm_operations_struct xfs_file_vm_ops = {
1273 	.fault		= xfs_filemap_fault,
1274 	.huge_fault	= xfs_filemap_huge_fault,
1275 	.map_pages	= filemap_map_pages,
1276 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1277 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1278 };
1279 
1280 STATIC int
1281 xfs_file_mmap(
1282 	struct file		*file,
1283 	struct vm_area_struct	*vma)
1284 {
1285 	struct inode		*inode = file_inode(file);
1286 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1287 
1288 	/*
1289 	 * We don't support synchronous mappings for non-DAX files and
1290 	 * for DAX files if underneath dax_device is not synchronous.
1291 	 */
1292 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1293 		return -EOPNOTSUPP;
1294 
1295 	file_accessed(file);
1296 	vma->vm_ops = &xfs_file_vm_ops;
1297 	if (IS_DAX(inode))
1298 		vma->vm_flags |= VM_HUGEPAGE;
1299 	return 0;
1300 }
1301 
1302 const struct file_operations xfs_file_operations = {
1303 	.llseek		= xfs_file_llseek,
1304 	.read_iter	= xfs_file_read_iter,
1305 	.write_iter	= xfs_file_write_iter,
1306 	.splice_read	= generic_file_splice_read,
1307 	.splice_write	= iter_file_splice_write,
1308 	.iopoll		= iomap_dio_iopoll,
1309 	.unlocked_ioctl	= xfs_file_ioctl,
1310 #ifdef CONFIG_COMPAT
1311 	.compat_ioctl	= xfs_file_compat_ioctl,
1312 #endif
1313 	.mmap		= xfs_file_mmap,
1314 	.mmap_supported_flags = MAP_SYNC,
1315 	.open		= xfs_file_open,
1316 	.release	= xfs_file_release,
1317 	.fsync		= xfs_file_fsync,
1318 	.get_unmapped_area = thp_get_unmapped_area,
1319 	.fallocate	= xfs_file_fallocate,
1320 	.fadvise	= xfs_file_fadvise,
1321 	.remap_file_range = xfs_file_remap_range,
1322 };
1323 
1324 const struct file_operations xfs_dir_file_operations = {
1325 	.open		= xfs_dir_open,
1326 	.read		= generic_read_dir,
1327 	.iterate_shared	= xfs_file_readdir,
1328 	.llseek		= generic_file_llseek,
1329 	.unlocked_ioctl	= xfs_file_ioctl,
1330 #ifdef CONFIG_COMPAT
1331 	.compat_ioctl	= xfs_file_compat_ioctl,
1332 #endif
1333 	.fsync		= xfs_dir_fsync,
1334 };
1335