1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 mutex_lock(&VFS_I(ip)->i_mutex); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 mutex_unlock(&VFS_I(ip)->i_mutex); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 mutex_unlock(&VFS_I(ip)->i_mutex); 80 } 81 82 /* 83 * xfs_iozero clears the specified range supplied via the page cache (except in 84 * the DAX case). Writes through the page cache will allocate blocks over holes, 85 * though the callers usually map the holes first and avoid them. If a block is 86 * not completely zeroed, then it will be read from disk before being partially 87 * zeroed. 88 * 89 * In the DAX case, we can just directly write to the underlying pages. This 90 * will not allocate blocks, but will avoid holes and unwritten extents and so 91 * not do unnecessary work. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status = 0; 102 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 110 bytes = PAGE_CACHE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 if (IS_DAX(VFS_I(ip))) { 115 status = dax_zero_page_range(VFS_I(ip), pos, bytes, 116 xfs_get_blocks_direct); 117 if (status) 118 break; 119 } else { 120 status = pagecache_write_begin(NULL, mapping, pos, bytes, 121 AOP_FLAG_UNINTERRUPTIBLE, 122 &page, &fsdata); 123 if (status) 124 break; 125 126 zero_user(page, offset, bytes); 127 128 status = pagecache_write_end(NULL, mapping, pos, bytes, 129 bytes, page, fsdata); 130 WARN_ON(status <= 0); /* can't return less than zero! */ 131 status = 0; 132 } 133 pos += bytes; 134 count -= bytes; 135 } while (count); 136 137 return status; 138 } 139 140 int 141 xfs_update_prealloc_flags( 142 struct xfs_inode *ip, 143 enum xfs_prealloc_flags flags) 144 { 145 struct xfs_trans *tp; 146 int error; 147 148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 150 if (error) { 151 xfs_trans_cancel(tp); 152 return error; 153 } 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 158 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 159 ip->i_d.di_mode &= ~S_ISUID; 160 if (ip->i_d.di_mode & S_IXGRP) 161 ip->i_d.di_mode &= ~S_ISGID; 162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 163 } 164 165 if (flags & XFS_PREALLOC_SET) 166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 167 if (flags & XFS_PREALLOC_CLEAR) 168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 169 170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 171 if (flags & XFS_PREALLOC_SYNC) 172 xfs_trans_set_sync(tp); 173 return xfs_trans_commit(tp); 174 } 175 176 /* 177 * Fsync operations on directories are much simpler than on regular files, 178 * as there is no file data to flush, and thus also no need for explicit 179 * cache flush operations, and there are no non-transaction metadata updates 180 * on directories either. 181 */ 182 STATIC int 183 xfs_dir_fsync( 184 struct file *file, 185 loff_t start, 186 loff_t end, 187 int datasync) 188 { 189 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 190 struct xfs_mount *mp = ip->i_mount; 191 xfs_lsn_t lsn = 0; 192 193 trace_xfs_dir_fsync(ip); 194 195 xfs_ilock(ip, XFS_ILOCK_SHARED); 196 if (xfs_ipincount(ip)) 197 lsn = ip->i_itemp->ili_last_lsn; 198 xfs_iunlock(ip, XFS_ILOCK_SHARED); 199 200 if (!lsn) 201 return 0; 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 203 } 204 205 STATIC int 206 xfs_file_fsync( 207 struct file *file, 208 loff_t start, 209 loff_t end, 210 int datasync) 211 { 212 struct inode *inode = file->f_mapping->host; 213 struct xfs_inode *ip = XFS_I(inode); 214 struct xfs_mount *mp = ip->i_mount; 215 int error = 0; 216 int log_flushed = 0; 217 xfs_lsn_t lsn = 0; 218 219 trace_xfs_file_fsync(ip); 220 221 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 222 if (error) 223 return error; 224 225 if (XFS_FORCED_SHUTDOWN(mp)) 226 return -EIO; 227 228 xfs_iflags_clear(ip, XFS_ITRUNCATED); 229 230 if (mp->m_flags & XFS_MOUNT_BARRIER) { 231 /* 232 * If we have an RT and/or log subvolume we need to make sure 233 * to flush the write cache the device used for file data 234 * first. This is to ensure newly written file data make 235 * it to disk before logging the new inode size in case of 236 * an extending write. 237 */ 238 if (XFS_IS_REALTIME_INODE(ip)) 239 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 240 else if (mp->m_logdev_targp != mp->m_ddev_targp) 241 xfs_blkdev_issue_flush(mp->m_ddev_targp); 242 } 243 244 /* 245 * All metadata updates are logged, which means that we just have 246 * to flush the log up to the latest LSN that touched the inode. 247 */ 248 xfs_ilock(ip, XFS_ILOCK_SHARED); 249 if (xfs_ipincount(ip)) { 250 if (!datasync || 251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 252 lsn = ip->i_itemp->ili_last_lsn; 253 } 254 xfs_iunlock(ip, XFS_ILOCK_SHARED); 255 256 if (lsn) 257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 258 259 /* 260 * If we only have a single device, and the log force about was 261 * a no-op we might have to flush the data device cache here. 262 * This can only happen for fdatasync/O_DSYNC if we were overwriting 263 * an already allocated file and thus do not have any metadata to 264 * commit. 265 */ 266 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 267 mp->m_logdev_targp == mp->m_ddev_targp && 268 !XFS_IS_REALTIME_INODE(ip) && 269 !log_flushed) 270 xfs_blkdev_issue_flush(mp->m_ddev_targp); 271 272 return error; 273 } 274 275 STATIC ssize_t 276 xfs_file_read_iter( 277 struct kiocb *iocb, 278 struct iov_iter *to) 279 { 280 struct file *file = iocb->ki_filp; 281 struct inode *inode = file->f_mapping->host; 282 struct xfs_inode *ip = XFS_I(inode); 283 struct xfs_mount *mp = ip->i_mount; 284 size_t size = iov_iter_count(to); 285 ssize_t ret = 0; 286 int ioflags = 0; 287 xfs_fsize_t n; 288 loff_t pos = iocb->ki_pos; 289 290 XFS_STATS_INC(xs_read_calls); 291 292 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 293 ioflags |= XFS_IO_ISDIRECT; 294 if (file->f_mode & FMODE_NOCMTIME) 295 ioflags |= XFS_IO_INVIS; 296 297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) { 298 xfs_buftarg_t *target = 299 XFS_IS_REALTIME_INODE(ip) ? 300 mp->m_rtdev_targp : mp->m_ddev_targp; 301 /* DIO must be aligned to device logical sector size */ 302 if ((pos | size) & target->bt_logical_sectormask) { 303 if (pos == i_size_read(inode)) 304 return 0; 305 return -EINVAL; 306 } 307 } 308 309 n = mp->m_super->s_maxbytes - pos; 310 if (n <= 0 || size == 0) 311 return 0; 312 313 if (n < size) 314 size = n; 315 316 if (XFS_FORCED_SHUTDOWN(mp)) 317 return -EIO; 318 319 /* 320 * Locking is a bit tricky here. If we take an exclusive lock 321 * for direct IO, we effectively serialise all new concurrent 322 * read IO to this file and block it behind IO that is currently in 323 * progress because IO in progress holds the IO lock shared. We only 324 * need to hold the lock exclusive to blow away the page cache, so 325 * only take lock exclusively if the page cache needs invalidation. 326 * This allows the normal direct IO case of no page cache pages to 327 * proceeed concurrently without serialisation. 328 */ 329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 333 334 if (inode->i_mapping->nrpages) { 335 ret = filemap_write_and_wait_range( 336 VFS_I(ip)->i_mapping, 337 pos, pos + size - 1); 338 if (ret) { 339 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 340 return ret; 341 } 342 343 /* 344 * Invalidate whole pages. This can return an error if 345 * we fail to invalidate a page, but this should never 346 * happen on XFS. Warn if it does fail. 347 */ 348 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 349 pos >> PAGE_CACHE_SHIFT, 350 (pos + size - 1) >> PAGE_CACHE_SHIFT); 351 WARN_ON_ONCE(ret); 352 ret = 0; 353 } 354 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 355 } 356 357 trace_xfs_file_read(ip, size, pos, ioflags); 358 359 ret = generic_file_read_iter(iocb, to); 360 if (ret > 0) 361 XFS_STATS_ADD(xs_read_bytes, ret); 362 363 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 364 return ret; 365 } 366 367 STATIC ssize_t 368 xfs_file_splice_read( 369 struct file *infilp, 370 loff_t *ppos, 371 struct pipe_inode_info *pipe, 372 size_t count, 373 unsigned int flags) 374 { 375 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 376 int ioflags = 0; 377 ssize_t ret; 378 379 XFS_STATS_INC(xs_read_calls); 380 381 if (infilp->f_mode & FMODE_NOCMTIME) 382 ioflags |= XFS_IO_INVIS; 383 384 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 385 return -EIO; 386 387 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 388 389 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 390 391 /* for dax, we need to avoid the page cache */ 392 if (IS_DAX(VFS_I(ip))) 393 ret = default_file_splice_read(infilp, ppos, pipe, count, flags); 394 else 395 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 396 if (ret > 0) 397 XFS_STATS_ADD(xs_read_bytes, ret); 398 399 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 400 return ret; 401 } 402 403 /* 404 * This routine is called to handle zeroing any space in the last block of the 405 * file that is beyond the EOF. We do this since the size is being increased 406 * without writing anything to that block and we don't want to read the 407 * garbage on the disk. 408 */ 409 STATIC int /* error (positive) */ 410 xfs_zero_last_block( 411 struct xfs_inode *ip, 412 xfs_fsize_t offset, 413 xfs_fsize_t isize, 414 bool *did_zeroing) 415 { 416 struct xfs_mount *mp = ip->i_mount; 417 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 418 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 419 int zero_len; 420 int nimaps = 1; 421 int error = 0; 422 struct xfs_bmbt_irec imap; 423 424 xfs_ilock(ip, XFS_ILOCK_EXCL); 425 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 426 xfs_iunlock(ip, XFS_ILOCK_EXCL); 427 if (error) 428 return error; 429 430 ASSERT(nimaps > 0); 431 432 /* 433 * If the block underlying isize is just a hole, then there 434 * is nothing to zero. 435 */ 436 if (imap.br_startblock == HOLESTARTBLOCK) 437 return 0; 438 439 zero_len = mp->m_sb.sb_blocksize - zero_offset; 440 if (isize + zero_len > offset) 441 zero_len = offset - isize; 442 *did_zeroing = true; 443 return xfs_iozero(ip, isize, zero_len); 444 } 445 446 /* 447 * Zero any on disk space between the current EOF and the new, larger EOF. 448 * 449 * This handles the normal case of zeroing the remainder of the last block in 450 * the file and the unusual case of zeroing blocks out beyond the size of the 451 * file. This second case only happens with fixed size extents and when the 452 * system crashes before the inode size was updated but after blocks were 453 * allocated. 454 * 455 * Expects the iolock to be held exclusive, and will take the ilock internally. 456 */ 457 int /* error (positive) */ 458 xfs_zero_eof( 459 struct xfs_inode *ip, 460 xfs_off_t offset, /* starting I/O offset */ 461 xfs_fsize_t isize, /* current inode size */ 462 bool *did_zeroing) 463 { 464 struct xfs_mount *mp = ip->i_mount; 465 xfs_fileoff_t start_zero_fsb; 466 xfs_fileoff_t end_zero_fsb; 467 xfs_fileoff_t zero_count_fsb; 468 xfs_fileoff_t last_fsb; 469 xfs_fileoff_t zero_off; 470 xfs_fsize_t zero_len; 471 int nimaps; 472 int error = 0; 473 struct xfs_bmbt_irec imap; 474 475 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 476 ASSERT(offset > isize); 477 478 /* 479 * First handle zeroing the block on which isize resides. 480 * 481 * We only zero a part of that block so it is handled specially. 482 */ 483 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 484 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 485 if (error) 486 return error; 487 } 488 489 /* 490 * Calculate the range between the new size and the old where blocks 491 * needing to be zeroed may exist. 492 * 493 * To get the block where the last byte in the file currently resides, 494 * we need to subtract one from the size and truncate back to a block 495 * boundary. We subtract 1 in case the size is exactly on a block 496 * boundary. 497 */ 498 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 499 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 500 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 501 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 502 if (last_fsb == end_zero_fsb) { 503 /* 504 * The size was only incremented on its last block. 505 * We took care of that above, so just return. 506 */ 507 return 0; 508 } 509 510 ASSERT(start_zero_fsb <= end_zero_fsb); 511 while (start_zero_fsb <= end_zero_fsb) { 512 nimaps = 1; 513 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 514 515 xfs_ilock(ip, XFS_ILOCK_EXCL); 516 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 517 &imap, &nimaps, 0); 518 xfs_iunlock(ip, XFS_ILOCK_EXCL); 519 if (error) 520 return error; 521 522 ASSERT(nimaps > 0); 523 524 if (imap.br_state == XFS_EXT_UNWRITTEN || 525 imap.br_startblock == HOLESTARTBLOCK) { 526 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 528 continue; 529 } 530 531 /* 532 * There are blocks we need to zero. 533 */ 534 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 535 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 536 537 if ((zero_off + zero_len) > offset) 538 zero_len = offset - zero_off; 539 540 error = xfs_iozero(ip, zero_off, zero_len); 541 if (error) 542 return error; 543 544 *did_zeroing = true; 545 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 546 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 547 } 548 549 return 0; 550 } 551 552 /* 553 * Common pre-write limit and setup checks. 554 * 555 * Called with the iolocked held either shared and exclusive according to 556 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 557 * if called for a direct write beyond i_size. 558 */ 559 STATIC ssize_t 560 xfs_file_aio_write_checks( 561 struct kiocb *iocb, 562 struct iov_iter *from, 563 int *iolock) 564 { 565 struct file *file = iocb->ki_filp; 566 struct inode *inode = file->f_mapping->host; 567 struct xfs_inode *ip = XFS_I(inode); 568 ssize_t error = 0; 569 size_t count = iov_iter_count(from); 570 571 restart: 572 error = generic_write_checks(iocb, from); 573 if (error <= 0) 574 return error; 575 576 error = xfs_break_layouts(inode, iolock, true); 577 if (error) 578 return error; 579 580 /* 581 * If the offset is beyond the size of the file, we need to zero any 582 * blocks that fall between the existing EOF and the start of this 583 * write. If zeroing is needed and we are currently holding the 584 * iolock shared, we need to update it to exclusive which implies 585 * having to redo all checks before. 586 * 587 * We need to serialise against EOF updates that occur in IO 588 * completions here. We want to make sure that nobody is changing the 589 * size while we do this check until we have placed an IO barrier (i.e. 590 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 591 * The spinlock effectively forms a memory barrier once we have the 592 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 593 * and hence be able to correctly determine if we need to run zeroing. 594 */ 595 spin_lock(&ip->i_flags_lock); 596 if (iocb->ki_pos > i_size_read(inode)) { 597 bool zero = false; 598 599 spin_unlock(&ip->i_flags_lock); 600 if (*iolock == XFS_IOLOCK_SHARED) { 601 xfs_rw_iunlock(ip, *iolock); 602 *iolock = XFS_IOLOCK_EXCL; 603 xfs_rw_ilock(ip, *iolock); 604 iov_iter_reexpand(from, count); 605 606 /* 607 * We now have an IO submission barrier in place, but 608 * AIO can do EOF updates during IO completion and hence 609 * we now need to wait for all of them to drain. Non-AIO 610 * DIO will have drained before we are given the 611 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 612 * no-op. 613 */ 614 inode_dio_wait(inode); 615 goto restart; 616 } 617 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 618 if (error) 619 return error; 620 } else 621 spin_unlock(&ip->i_flags_lock); 622 623 /* 624 * Updating the timestamps will grab the ilock again from 625 * xfs_fs_dirty_inode, so we have to call it after dropping the 626 * lock above. Eventually we should look into a way to avoid 627 * the pointless lock roundtrip. 628 */ 629 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 630 error = file_update_time(file); 631 if (error) 632 return error; 633 } 634 635 /* 636 * If we're writing the file then make sure to clear the setuid and 637 * setgid bits if the process is not being run by root. This keeps 638 * people from modifying setuid and setgid binaries. 639 */ 640 return file_remove_suid(file); 641 } 642 643 /* 644 * xfs_file_dio_aio_write - handle direct IO writes 645 * 646 * Lock the inode appropriately to prepare for and issue a direct IO write. 647 * By separating it from the buffered write path we remove all the tricky to 648 * follow locking changes and looping. 649 * 650 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 651 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 652 * pages are flushed out. 653 * 654 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 655 * allowing them to be done in parallel with reads and other direct IO writes. 656 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 657 * needs to do sub-block zeroing and that requires serialisation against other 658 * direct IOs to the same block. In this case we need to serialise the 659 * submission of the unaligned IOs so that we don't get racing block zeroing in 660 * the dio layer. To avoid the problem with aio, we also need to wait for 661 * outstanding IOs to complete so that unwritten extent conversion is completed 662 * before we try to map the overlapping block. This is currently implemented by 663 * hitting it with a big hammer (i.e. inode_dio_wait()). 664 * 665 * Returns with locks held indicated by @iolock and errors indicated by 666 * negative return values. 667 */ 668 STATIC ssize_t 669 xfs_file_dio_aio_write( 670 struct kiocb *iocb, 671 struct iov_iter *from) 672 { 673 struct file *file = iocb->ki_filp; 674 struct address_space *mapping = file->f_mapping; 675 struct inode *inode = mapping->host; 676 struct xfs_inode *ip = XFS_I(inode); 677 struct xfs_mount *mp = ip->i_mount; 678 ssize_t ret = 0; 679 int unaligned_io = 0; 680 int iolock; 681 size_t count = iov_iter_count(from); 682 loff_t pos = iocb->ki_pos; 683 loff_t end; 684 struct iov_iter data; 685 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 686 mp->m_rtdev_targp : mp->m_ddev_targp; 687 688 /* DIO must be aligned to device logical sector size */ 689 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask)) 690 return -EINVAL; 691 692 /* "unaligned" here means not aligned to a filesystem block */ 693 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 694 unaligned_io = 1; 695 696 /* 697 * We don't need to take an exclusive lock unless there page cache needs 698 * to be invalidated or unaligned IO is being executed. We don't need to 699 * consider the EOF extension case here because 700 * xfs_file_aio_write_checks() will relock the inode as necessary for 701 * EOF zeroing cases and fill out the new inode size as appropriate. 702 */ 703 if (unaligned_io || mapping->nrpages) 704 iolock = XFS_IOLOCK_EXCL; 705 else 706 iolock = XFS_IOLOCK_SHARED; 707 xfs_rw_ilock(ip, iolock); 708 709 /* 710 * Recheck if there are cached pages that need invalidate after we got 711 * the iolock to protect against other threads adding new pages while 712 * we were waiting for the iolock. 713 */ 714 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 715 xfs_rw_iunlock(ip, iolock); 716 iolock = XFS_IOLOCK_EXCL; 717 xfs_rw_ilock(ip, iolock); 718 } 719 720 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 721 if (ret) 722 goto out; 723 count = iov_iter_count(from); 724 pos = iocb->ki_pos; 725 end = pos + count - 1; 726 727 if (mapping->nrpages) { 728 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 729 pos, end); 730 if (ret) 731 goto out; 732 /* 733 * Invalidate whole pages. This can return an error if 734 * we fail to invalidate a page, but this should never 735 * happen on XFS. Warn if it does fail. 736 */ 737 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 738 pos >> PAGE_CACHE_SHIFT, 739 end >> PAGE_CACHE_SHIFT); 740 WARN_ON_ONCE(ret); 741 ret = 0; 742 } 743 744 /* 745 * If we are doing unaligned IO, wait for all other IO to drain, 746 * otherwise demote the lock if we had to flush cached pages 747 */ 748 if (unaligned_io) 749 inode_dio_wait(inode); 750 else if (iolock == XFS_IOLOCK_EXCL) { 751 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 752 iolock = XFS_IOLOCK_SHARED; 753 } 754 755 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 756 757 data = *from; 758 ret = mapping->a_ops->direct_IO(iocb, &data, pos); 759 760 /* see generic_file_direct_write() for why this is necessary */ 761 if (mapping->nrpages) { 762 invalidate_inode_pages2_range(mapping, 763 pos >> PAGE_CACHE_SHIFT, 764 end >> PAGE_CACHE_SHIFT); 765 } 766 767 if (ret > 0) { 768 pos += ret; 769 iov_iter_advance(from, ret); 770 iocb->ki_pos = pos; 771 } 772 out: 773 xfs_rw_iunlock(ip, iolock); 774 775 /* 776 * No fallback to buffered IO on errors for XFS. DAX can result in 777 * partial writes, but direct IO will either complete fully or fail. 778 */ 779 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip))); 780 return ret; 781 } 782 783 STATIC ssize_t 784 xfs_file_buffered_aio_write( 785 struct kiocb *iocb, 786 struct iov_iter *from) 787 { 788 struct file *file = iocb->ki_filp; 789 struct address_space *mapping = file->f_mapping; 790 struct inode *inode = mapping->host; 791 struct xfs_inode *ip = XFS_I(inode); 792 ssize_t ret; 793 int enospc = 0; 794 int iolock = XFS_IOLOCK_EXCL; 795 796 xfs_rw_ilock(ip, iolock); 797 798 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 799 if (ret) 800 goto out; 801 802 /* We can write back this queue in page reclaim */ 803 current->backing_dev_info = inode_to_bdi(inode); 804 805 write_retry: 806 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 807 iocb->ki_pos, 0); 808 ret = generic_perform_write(file, from, iocb->ki_pos); 809 if (likely(ret >= 0)) 810 iocb->ki_pos += ret; 811 812 /* 813 * If we hit a space limit, try to free up some lingering preallocated 814 * space before returning an error. In the case of ENOSPC, first try to 815 * write back all dirty inodes to free up some of the excess reserved 816 * metadata space. This reduces the chances that the eofblocks scan 817 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 818 * also behaves as a filter to prevent too many eofblocks scans from 819 * running at the same time. 820 */ 821 if (ret == -EDQUOT && !enospc) { 822 enospc = xfs_inode_free_quota_eofblocks(ip); 823 if (enospc) 824 goto write_retry; 825 } else if (ret == -ENOSPC && !enospc) { 826 struct xfs_eofblocks eofb = {0}; 827 828 enospc = 1; 829 xfs_flush_inodes(ip->i_mount); 830 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 831 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 832 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 833 goto write_retry; 834 } 835 836 current->backing_dev_info = NULL; 837 out: 838 xfs_rw_iunlock(ip, iolock); 839 return ret; 840 } 841 842 STATIC ssize_t 843 xfs_file_write_iter( 844 struct kiocb *iocb, 845 struct iov_iter *from) 846 { 847 struct file *file = iocb->ki_filp; 848 struct address_space *mapping = file->f_mapping; 849 struct inode *inode = mapping->host; 850 struct xfs_inode *ip = XFS_I(inode); 851 ssize_t ret; 852 size_t ocount = iov_iter_count(from); 853 854 XFS_STATS_INC(xs_write_calls); 855 856 if (ocount == 0) 857 return 0; 858 859 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 860 return -EIO; 861 862 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode)) 863 ret = xfs_file_dio_aio_write(iocb, from); 864 else 865 ret = xfs_file_buffered_aio_write(iocb, from); 866 867 if (ret > 0) { 868 ssize_t err; 869 870 XFS_STATS_ADD(xs_write_bytes, ret); 871 872 /* Handle various SYNC-type writes */ 873 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 874 if (err < 0) 875 ret = err; 876 } 877 return ret; 878 } 879 880 #define XFS_FALLOC_FL_SUPPORTED \ 881 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 882 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 883 FALLOC_FL_INSERT_RANGE) 884 885 STATIC long 886 xfs_file_fallocate( 887 struct file *file, 888 int mode, 889 loff_t offset, 890 loff_t len) 891 { 892 struct inode *inode = file_inode(file); 893 struct xfs_inode *ip = XFS_I(inode); 894 long error; 895 enum xfs_prealloc_flags flags = 0; 896 uint iolock = XFS_IOLOCK_EXCL; 897 loff_t new_size = 0; 898 bool do_file_insert = 0; 899 900 if (!S_ISREG(inode->i_mode)) 901 return -EINVAL; 902 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 903 return -EOPNOTSUPP; 904 905 xfs_ilock(ip, iolock); 906 error = xfs_break_layouts(inode, &iolock, false); 907 if (error) 908 goto out_unlock; 909 910 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 911 iolock |= XFS_MMAPLOCK_EXCL; 912 913 if (mode & FALLOC_FL_PUNCH_HOLE) { 914 error = xfs_free_file_space(ip, offset, len); 915 if (error) 916 goto out_unlock; 917 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 918 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 919 920 if (offset & blksize_mask || len & blksize_mask) { 921 error = -EINVAL; 922 goto out_unlock; 923 } 924 925 /* 926 * There is no need to overlap collapse range with EOF, 927 * in which case it is effectively a truncate operation 928 */ 929 if (offset + len >= i_size_read(inode)) { 930 error = -EINVAL; 931 goto out_unlock; 932 } 933 934 new_size = i_size_read(inode) - len; 935 936 error = xfs_collapse_file_space(ip, offset, len); 937 if (error) 938 goto out_unlock; 939 } else if (mode & FALLOC_FL_INSERT_RANGE) { 940 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 941 942 new_size = i_size_read(inode) + len; 943 if (offset & blksize_mask || len & blksize_mask) { 944 error = -EINVAL; 945 goto out_unlock; 946 } 947 948 /* check the new inode size does not wrap through zero */ 949 if (new_size > inode->i_sb->s_maxbytes) { 950 error = -EFBIG; 951 goto out_unlock; 952 } 953 954 /* Offset should be less than i_size */ 955 if (offset >= i_size_read(inode)) { 956 error = -EINVAL; 957 goto out_unlock; 958 } 959 do_file_insert = 1; 960 } else { 961 flags |= XFS_PREALLOC_SET; 962 963 if (!(mode & FALLOC_FL_KEEP_SIZE) && 964 offset + len > i_size_read(inode)) { 965 new_size = offset + len; 966 error = inode_newsize_ok(inode, new_size); 967 if (error) 968 goto out_unlock; 969 } 970 971 if (mode & FALLOC_FL_ZERO_RANGE) 972 error = xfs_zero_file_space(ip, offset, len); 973 else 974 error = xfs_alloc_file_space(ip, offset, len, 975 XFS_BMAPI_PREALLOC); 976 if (error) 977 goto out_unlock; 978 } 979 980 if (file->f_flags & O_DSYNC) 981 flags |= XFS_PREALLOC_SYNC; 982 983 error = xfs_update_prealloc_flags(ip, flags); 984 if (error) 985 goto out_unlock; 986 987 /* Change file size if needed */ 988 if (new_size) { 989 struct iattr iattr; 990 991 iattr.ia_valid = ATTR_SIZE; 992 iattr.ia_size = new_size; 993 error = xfs_setattr_size(ip, &iattr); 994 if (error) 995 goto out_unlock; 996 } 997 998 /* 999 * Perform hole insertion now that the file size has been 1000 * updated so that if we crash during the operation we don't 1001 * leave shifted extents past EOF and hence losing access to 1002 * the data that is contained within them. 1003 */ 1004 if (do_file_insert) 1005 error = xfs_insert_file_space(ip, offset, len); 1006 1007 out_unlock: 1008 xfs_iunlock(ip, iolock); 1009 return error; 1010 } 1011 1012 1013 STATIC int 1014 xfs_file_open( 1015 struct inode *inode, 1016 struct file *file) 1017 { 1018 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1019 return -EFBIG; 1020 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1021 return -EIO; 1022 return 0; 1023 } 1024 1025 STATIC int 1026 xfs_dir_open( 1027 struct inode *inode, 1028 struct file *file) 1029 { 1030 struct xfs_inode *ip = XFS_I(inode); 1031 int mode; 1032 int error; 1033 1034 error = xfs_file_open(inode, file); 1035 if (error) 1036 return error; 1037 1038 /* 1039 * If there are any blocks, read-ahead block 0 as we're almost 1040 * certain to have the next operation be a read there. 1041 */ 1042 mode = xfs_ilock_data_map_shared(ip); 1043 if (ip->i_d.di_nextents > 0) 1044 xfs_dir3_data_readahead(ip, 0, -1); 1045 xfs_iunlock(ip, mode); 1046 return 0; 1047 } 1048 1049 STATIC int 1050 xfs_file_release( 1051 struct inode *inode, 1052 struct file *filp) 1053 { 1054 return xfs_release(XFS_I(inode)); 1055 } 1056 1057 STATIC int 1058 xfs_file_readdir( 1059 struct file *file, 1060 struct dir_context *ctx) 1061 { 1062 struct inode *inode = file_inode(file); 1063 xfs_inode_t *ip = XFS_I(inode); 1064 size_t bufsize; 1065 1066 /* 1067 * The Linux API doesn't pass down the total size of the buffer 1068 * we read into down to the filesystem. With the filldir concept 1069 * it's not needed for correct information, but the XFS dir2 leaf 1070 * code wants an estimate of the buffer size to calculate it's 1071 * readahead window and size the buffers used for mapping to 1072 * physical blocks. 1073 * 1074 * Try to give it an estimate that's good enough, maybe at some 1075 * point we can change the ->readdir prototype to include the 1076 * buffer size. For now we use the current glibc buffer size. 1077 */ 1078 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1079 1080 return xfs_readdir(ip, ctx, bufsize); 1081 } 1082 1083 /* 1084 * This type is designed to indicate the type of offset we would like 1085 * to search from page cache for xfs_seek_hole_data(). 1086 */ 1087 enum { 1088 HOLE_OFF = 0, 1089 DATA_OFF, 1090 }; 1091 1092 /* 1093 * Lookup the desired type of offset from the given page. 1094 * 1095 * On success, return true and the offset argument will point to the 1096 * start of the region that was found. Otherwise this function will 1097 * return false and keep the offset argument unchanged. 1098 */ 1099 STATIC bool 1100 xfs_lookup_buffer_offset( 1101 struct page *page, 1102 loff_t *offset, 1103 unsigned int type) 1104 { 1105 loff_t lastoff = page_offset(page); 1106 bool found = false; 1107 struct buffer_head *bh, *head; 1108 1109 bh = head = page_buffers(page); 1110 do { 1111 /* 1112 * Unwritten extents that have data in the page 1113 * cache covering them can be identified by the 1114 * BH_Unwritten state flag. Pages with multiple 1115 * buffers might have a mix of holes, data and 1116 * unwritten extents - any buffer with valid 1117 * data in it should have BH_Uptodate flag set 1118 * on it. 1119 */ 1120 if (buffer_unwritten(bh) || 1121 buffer_uptodate(bh)) { 1122 if (type == DATA_OFF) 1123 found = true; 1124 } else { 1125 if (type == HOLE_OFF) 1126 found = true; 1127 } 1128 1129 if (found) { 1130 *offset = lastoff; 1131 break; 1132 } 1133 lastoff += bh->b_size; 1134 } while ((bh = bh->b_this_page) != head); 1135 1136 return found; 1137 } 1138 1139 /* 1140 * This routine is called to find out and return a data or hole offset 1141 * from the page cache for unwritten extents according to the desired 1142 * type for xfs_seek_hole_data(). 1143 * 1144 * The argument offset is used to tell where we start to search from the 1145 * page cache. Map is used to figure out the end points of the range to 1146 * lookup pages. 1147 * 1148 * Return true if the desired type of offset was found, and the argument 1149 * offset is filled with that address. Otherwise, return false and keep 1150 * offset unchanged. 1151 */ 1152 STATIC bool 1153 xfs_find_get_desired_pgoff( 1154 struct inode *inode, 1155 struct xfs_bmbt_irec *map, 1156 unsigned int type, 1157 loff_t *offset) 1158 { 1159 struct xfs_inode *ip = XFS_I(inode); 1160 struct xfs_mount *mp = ip->i_mount; 1161 struct pagevec pvec; 1162 pgoff_t index; 1163 pgoff_t end; 1164 loff_t endoff; 1165 loff_t startoff = *offset; 1166 loff_t lastoff = startoff; 1167 bool found = false; 1168 1169 pagevec_init(&pvec, 0); 1170 1171 index = startoff >> PAGE_CACHE_SHIFT; 1172 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1173 end = endoff >> PAGE_CACHE_SHIFT; 1174 do { 1175 int want; 1176 unsigned nr_pages; 1177 unsigned int i; 1178 1179 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1180 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1181 want); 1182 /* 1183 * No page mapped into given range. If we are searching holes 1184 * and if this is the first time we got into the loop, it means 1185 * that the given offset is landed in a hole, return it. 1186 * 1187 * If we have already stepped through some block buffers to find 1188 * holes but they all contains data. In this case, the last 1189 * offset is already updated and pointed to the end of the last 1190 * mapped page, if it does not reach the endpoint to search, 1191 * that means there should be a hole between them. 1192 */ 1193 if (nr_pages == 0) { 1194 /* Data search found nothing */ 1195 if (type == DATA_OFF) 1196 break; 1197 1198 ASSERT(type == HOLE_OFF); 1199 if (lastoff == startoff || lastoff < endoff) { 1200 found = true; 1201 *offset = lastoff; 1202 } 1203 break; 1204 } 1205 1206 /* 1207 * At lease we found one page. If this is the first time we 1208 * step into the loop, and if the first page index offset is 1209 * greater than the given search offset, a hole was found. 1210 */ 1211 if (type == HOLE_OFF && lastoff == startoff && 1212 lastoff < page_offset(pvec.pages[0])) { 1213 found = true; 1214 break; 1215 } 1216 1217 for (i = 0; i < nr_pages; i++) { 1218 struct page *page = pvec.pages[i]; 1219 loff_t b_offset; 1220 1221 /* 1222 * At this point, the page may be truncated or 1223 * invalidated (changing page->mapping to NULL), 1224 * or even swizzled back from swapper_space to tmpfs 1225 * file mapping. However, page->index will not change 1226 * because we have a reference on the page. 1227 * 1228 * Searching done if the page index is out of range. 1229 * If the current offset is not reaches the end of 1230 * the specified search range, there should be a hole 1231 * between them. 1232 */ 1233 if (page->index > end) { 1234 if (type == HOLE_OFF && lastoff < endoff) { 1235 *offset = lastoff; 1236 found = true; 1237 } 1238 goto out; 1239 } 1240 1241 lock_page(page); 1242 /* 1243 * Page truncated or invalidated(page->mapping == NULL). 1244 * We can freely skip it and proceed to check the next 1245 * page. 1246 */ 1247 if (unlikely(page->mapping != inode->i_mapping)) { 1248 unlock_page(page); 1249 continue; 1250 } 1251 1252 if (!page_has_buffers(page)) { 1253 unlock_page(page); 1254 continue; 1255 } 1256 1257 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1258 if (found) { 1259 /* 1260 * The found offset may be less than the start 1261 * point to search if this is the first time to 1262 * come here. 1263 */ 1264 *offset = max_t(loff_t, startoff, b_offset); 1265 unlock_page(page); 1266 goto out; 1267 } 1268 1269 /* 1270 * We either searching data but nothing was found, or 1271 * searching hole but found a data buffer. In either 1272 * case, probably the next page contains the desired 1273 * things, update the last offset to it so. 1274 */ 1275 lastoff = page_offset(page) + PAGE_SIZE; 1276 unlock_page(page); 1277 } 1278 1279 /* 1280 * The number of returned pages less than our desired, search 1281 * done. In this case, nothing was found for searching data, 1282 * but we found a hole behind the last offset. 1283 */ 1284 if (nr_pages < want) { 1285 if (type == HOLE_OFF) { 1286 *offset = lastoff; 1287 found = true; 1288 } 1289 break; 1290 } 1291 1292 index = pvec.pages[i - 1]->index + 1; 1293 pagevec_release(&pvec); 1294 } while (index <= end); 1295 1296 out: 1297 pagevec_release(&pvec); 1298 return found; 1299 } 1300 1301 STATIC loff_t 1302 xfs_seek_hole_data( 1303 struct file *file, 1304 loff_t start, 1305 int whence) 1306 { 1307 struct inode *inode = file->f_mapping->host; 1308 struct xfs_inode *ip = XFS_I(inode); 1309 struct xfs_mount *mp = ip->i_mount; 1310 loff_t uninitialized_var(offset); 1311 xfs_fsize_t isize; 1312 xfs_fileoff_t fsbno; 1313 xfs_filblks_t end; 1314 uint lock; 1315 int error; 1316 1317 if (XFS_FORCED_SHUTDOWN(mp)) 1318 return -EIO; 1319 1320 lock = xfs_ilock_data_map_shared(ip); 1321 1322 isize = i_size_read(inode); 1323 if (start >= isize) { 1324 error = -ENXIO; 1325 goto out_unlock; 1326 } 1327 1328 /* 1329 * Try to read extents from the first block indicated 1330 * by fsbno to the end block of the file. 1331 */ 1332 fsbno = XFS_B_TO_FSBT(mp, start); 1333 end = XFS_B_TO_FSB(mp, isize); 1334 1335 for (;;) { 1336 struct xfs_bmbt_irec map[2]; 1337 int nmap = 2; 1338 unsigned int i; 1339 1340 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1341 XFS_BMAPI_ENTIRE); 1342 if (error) 1343 goto out_unlock; 1344 1345 /* No extents at given offset, must be beyond EOF */ 1346 if (nmap == 0) { 1347 error = -ENXIO; 1348 goto out_unlock; 1349 } 1350 1351 for (i = 0; i < nmap; i++) { 1352 offset = max_t(loff_t, start, 1353 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1354 1355 /* Landed in the hole we wanted? */ 1356 if (whence == SEEK_HOLE && 1357 map[i].br_startblock == HOLESTARTBLOCK) 1358 goto out; 1359 1360 /* Landed in the data extent we wanted? */ 1361 if (whence == SEEK_DATA && 1362 (map[i].br_startblock == DELAYSTARTBLOCK || 1363 (map[i].br_state == XFS_EXT_NORM && 1364 !isnullstartblock(map[i].br_startblock)))) 1365 goto out; 1366 1367 /* 1368 * Landed in an unwritten extent, try to search 1369 * for hole or data from page cache. 1370 */ 1371 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1372 if (xfs_find_get_desired_pgoff(inode, &map[i], 1373 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1374 &offset)) 1375 goto out; 1376 } 1377 } 1378 1379 /* 1380 * We only received one extent out of the two requested. This 1381 * means we've hit EOF and didn't find what we are looking for. 1382 */ 1383 if (nmap == 1) { 1384 /* 1385 * If we were looking for a hole, set offset to 1386 * the end of the file (i.e., there is an implicit 1387 * hole at the end of any file). 1388 */ 1389 if (whence == SEEK_HOLE) { 1390 offset = isize; 1391 break; 1392 } 1393 /* 1394 * If we were looking for data, it's nowhere to be found 1395 */ 1396 ASSERT(whence == SEEK_DATA); 1397 error = -ENXIO; 1398 goto out_unlock; 1399 } 1400 1401 ASSERT(i > 1); 1402 1403 /* 1404 * Nothing was found, proceed to the next round of search 1405 * if the next reading offset is not at or beyond EOF. 1406 */ 1407 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1408 start = XFS_FSB_TO_B(mp, fsbno); 1409 if (start >= isize) { 1410 if (whence == SEEK_HOLE) { 1411 offset = isize; 1412 break; 1413 } 1414 ASSERT(whence == SEEK_DATA); 1415 error = -ENXIO; 1416 goto out_unlock; 1417 } 1418 } 1419 1420 out: 1421 /* 1422 * If at this point we have found the hole we wanted, the returned 1423 * offset may be bigger than the file size as it may be aligned to 1424 * page boundary for unwritten extents. We need to deal with this 1425 * situation in particular. 1426 */ 1427 if (whence == SEEK_HOLE) 1428 offset = min_t(loff_t, offset, isize); 1429 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1430 1431 out_unlock: 1432 xfs_iunlock(ip, lock); 1433 1434 if (error) 1435 return error; 1436 return offset; 1437 } 1438 1439 STATIC loff_t 1440 xfs_file_llseek( 1441 struct file *file, 1442 loff_t offset, 1443 int whence) 1444 { 1445 switch (whence) { 1446 case SEEK_END: 1447 case SEEK_CUR: 1448 case SEEK_SET: 1449 return generic_file_llseek(file, offset, whence); 1450 case SEEK_HOLE: 1451 case SEEK_DATA: 1452 return xfs_seek_hole_data(file, offset, whence); 1453 default: 1454 return -EINVAL; 1455 } 1456 } 1457 1458 /* 1459 * Locking for serialisation of IO during page faults. This results in a lock 1460 * ordering of: 1461 * 1462 * mmap_sem (MM) 1463 * sb_start_pagefault(vfs, freeze) 1464 * i_mmap_lock (XFS - truncate serialisation) 1465 * page_lock (MM) 1466 * i_lock (XFS - extent map serialisation) 1467 */ 1468 1469 /* 1470 * mmap()d file has taken write protection fault and is being made writable. We 1471 * can set the page state up correctly for a writable page, which means we can 1472 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1473 * mapping. 1474 */ 1475 STATIC int 1476 xfs_filemap_page_mkwrite( 1477 struct vm_area_struct *vma, 1478 struct vm_fault *vmf) 1479 { 1480 struct inode *inode = file_inode(vma->vm_file); 1481 int ret; 1482 1483 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1484 1485 sb_start_pagefault(inode->i_sb); 1486 file_update_time(vma->vm_file); 1487 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1488 1489 if (IS_DAX(inode)) { 1490 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct, 1491 xfs_end_io_dax_write); 1492 } else { 1493 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks); 1494 ret = block_page_mkwrite_return(ret); 1495 } 1496 1497 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1498 sb_end_pagefault(inode->i_sb); 1499 1500 return ret; 1501 } 1502 1503 STATIC int 1504 xfs_filemap_fault( 1505 struct vm_area_struct *vma, 1506 struct vm_fault *vmf) 1507 { 1508 struct xfs_inode *ip = XFS_I(file_inode(vma->vm_file)); 1509 int ret; 1510 1511 trace_xfs_filemap_fault(ip); 1512 1513 /* DAX can shortcut the normal fault path on write faults! */ 1514 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(VFS_I(ip))) 1515 return xfs_filemap_page_mkwrite(vma, vmf); 1516 1517 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1518 ret = filemap_fault(vma, vmf); 1519 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1520 1521 return ret; 1522 } 1523 1524 static const struct vm_operations_struct xfs_file_vm_ops = { 1525 .fault = xfs_filemap_fault, 1526 .map_pages = filemap_map_pages, 1527 .page_mkwrite = xfs_filemap_page_mkwrite, 1528 }; 1529 1530 STATIC int 1531 xfs_file_mmap( 1532 struct file *filp, 1533 struct vm_area_struct *vma) 1534 { 1535 file_accessed(filp); 1536 vma->vm_ops = &xfs_file_vm_ops; 1537 if (IS_DAX(file_inode(filp))) 1538 vma->vm_flags |= VM_MIXEDMAP; 1539 return 0; 1540 } 1541 1542 const struct file_operations xfs_file_operations = { 1543 .llseek = xfs_file_llseek, 1544 .read_iter = xfs_file_read_iter, 1545 .write_iter = xfs_file_write_iter, 1546 .splice_read = xfs_file_splice_read, 1547 .splice_write = iter_file_splice_write, 1548 .unlocked_ioctl = xfs_file_ioctl, 1549 #ifdef CONFIG_COMPAT 1550 .compat_ioctl = xfs_file_compat_ioctl, 1551 #endif 1552 .mmap = xfs_file_mmap, 1553 .open = xfs_file_open, 1554 .release = xfs_file_release, 1555 .fsync = xfs_file_fsync, 1556 .fallocate = xfs_file_fallocate, 1557 }; 1558 1559 const struct file_operations xfs_dir_file_operations = { 1560 .open = xfs_dir_open, 1561 .read = generic_read_dir, 1562 .iterate = xfs_file_readdir, 1563 .llseek = generic_file_llseek, 1564 .unlocked_ioctl = xfs_file_ioctl, 1565 #ifdef CONFIG_COMPAT 1566 .compat_ioctl = xfs_file_compat_ioctl, 1567 #endif 1568 .fsync = xfs_dir_fsync, 1569 }; 1570