xref: /openbmc/linux/fs/xfs/xfs_file.c (revision d4113f2f174aea83f0871cf5d050e0e08dfb9781)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		mutex_lock(&VFS_I(ip)->i_mutex);
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81 
82 /*
83  * xfs_iozero clears the specified range supplied via the page cache (except in
84  * the DAX case). Writes through the page cache will allocate blocks over holes,
85  * though the callers usually map the holes first and avoid them. If a block is
86  * not completely zeroed, then it will be read from disk before being partially
87  * zeroed.
88  *
89  * In the DAX case, we can just directly write to the underlying pages. This
90  * will not allocate blocks, but will avoid holes and unwritten extents and so
91  * not do unnecessary work.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status = 0;
102 
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 		bytes = PAGE_CACHE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		if (IS_DAX(VFS_I(ip))) {
115 			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 						     xfs_get_blocks_direct);
117 			if (status)
118 				break;
119 		} else {
120 			status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 						AOP_FLAG_UNINTERRUPTIBLE,
122 						&page, &fsdata);
123 			if (status)
124 				break;
125 
126 			zero_user(page, offset, bytes);
127 
128 			status = pagecache_write_end(NULL, mapping, pos, bytes,
129 						bytes, page, fsdata);
130 			WARN_ON(status <= 0); /* can't return less than zero! */
131 			status = 0;
132 		}
133 		pos += bytes;
134 		count -= bytes;
135 	} while (count);
136 
137 	return status;
138 }
139 
140 int
141 xfs_update_prealloc_flags(
142 	struct xfs_inode	*ip,
143 	enum xfs_prealloc_flags	flags)
144 {
145 	struct xfs_trans	*tp;
146 	int			error;
147 
148 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 	if (error) {
151 		xfs_trans_cancel(tp);
152 		return error;
153 	}
154 
155 	xfs_ilock(ip, XFS_ILOCK_EXCL);
156 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157 
158 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 		ip->i_d.di_mode &= ~S_ISUID;
160 		if (ip->i_d.di_mode & S_IXGRP)
161 			ip->i_d.di_mode &= ~S_ISGID;
162 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 	}
164 
165 	if (flags & XFS_PREALLOC_SET)
166 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 	if (flags & XFS_PREALLOC_CLEAR)
168 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169 
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 	if (flags & XFS_PREALLOC_SYNC)
172 		xfs_trans_set_sync(tp);
173 	return xfs_trans_commit(tp);
174 }
175 
176 /*
177  * Fsync operations on directories are much simpler than on regular files,
178  * as there is no file data to flush, and thus also no need for explicit
179  * cache flush operations, and there are no non-transaction metadata updates
180  * on directories either.
181  */
182 STATIC int
183 xfs_dir_fsync(
184 	struct file		*file,
185 	loff_t			start,
186 	loff_t			end,
187 	int			datasync)
188 {
189 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
190 	struct xfs_mount	*mp = ip->i_mount;
191 	xfs_lsn_t		lsn = 0;
192 
193 	trace_xfs_dir_fsync(ip);
194 
195 	xfs_ilock(ip, XFS_ILOCK_SHARED);
196 	if (xfs_ipincount(ip))
197 		lsn = ip->i_itemp->ili_last_lsn;
198 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
199 
200 	if (!lsn)
201 		return 0;
202 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 }
204 
205 STATIC int
206 xfs_file_fsync(
207 	struct file		*file,
208 	loff_t			start,
209 	loff_t			end,
210 	int			datasync)
211 {
212 	struct inode		*inode = file->f_mapping->host;
213 	struct xfs_inode	*ip = XFS_I(inode);
214 	struct xfs_mount	*mp = ip->i_mount;
215 	int			error = 0;
216 	int			log_flushed = 0;
217 	xfs_lsn_t		lsn = 0;
218 
219 	trace_xfs_file_fsync(ip);
220 
221 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 	if (error)
223 		return error;
224 
225 	if (XFS_FORCED_SHUTDOWN(mp))
226 		return -EIO;
227 
228 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
229 
230 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 		/*
232 		 * If we have an RT and/or log subvolume we need to make sure
233 		 * to flush the write cache the device used for file data
234 		 * first.  This is to ensure newly written file data make
235 		 * it to disk before logging the new inode size in case of
236 		 * an extending write.
237 		 */
238 		if (XFS_IS_REALTIME_INODE(ip))
239 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 	}
243 
244 	/*
245 	 * All metadata updates are logged, which means that we just have
246 	 * to flush the log up to the latest LSN that touched the inode.
247 	 */
248 	xfs_ilock(ip, XFS_ILOCK_SHARED);
249 	if (xfs_ipincount(ip)) {
250 		if (!datasync ||
251 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 			lsn = ip->i_itemp->ili_last_lsn;
253 	}
254 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
255 
256 	if (lsn)
257 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258 
259 	/*
260 	 * If we only have a single device, and the log force about was
261 	 * a no-op we might have to flush the data device cache here.
262 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 	 * an already allocated file and thus do not have any metadata to
264 	 * commit.
265 	 */
266 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 	    mp->m_logdev_targp == mp->m_ddev_targp &&
268 	    !XFS_IS_REALTIME_INODE(ip) &&
269 	    !log_flushed)
270 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
271 
272 	return error;
273 }
274 
275 STATIC ssize_t
276 xfs_file_read_iter(
277 	struct kiocb		*iocb,
278 	struct iov_iter		*to)
279 {
280 	struct file		*file = iocb->ki_filp;
281 	struct inode		*inode = file->f_mapping->host;
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	size_t			size = iov_iter_count(to);
285 	ssize_t			ret = 0;
286 	int			ioflags = 0;
287 	xfs_fsize_t		n;
288 	loff_t			pos = iocb->ki_pos;
289 
290 	XFS_STATS_INC(xs_read_calls);
291 
292 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
293 		ioflags |= XFS_IO_ISDIRECT;
294 	if (file->f_mode & FMODE_NOCMTIME)
295 		ioflags |= XFS_IO_INVIS;
296 
297 	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
298 		xfs_buftarg_t	*target =
299 			XFS_IS_REALTIME_INODE(ip) ?
300 				mp->m_rtdev_targp : mp->m_ddev_targp;
301 		/* DIO must be aligned to device logical sector size */
302 		if ((pos | size) & target->bt_logical_sectormask) {
303 			if (pos == i_size_read(inode))
304 				return 0;
305 			return -EINVAL;
306 		}
307 	}
308 
309 	n = mp->m_super->s_maxbytes - pos;
310 	if (n <= 0 || size == 0)
311 		return 0;
312 
313 	if (n < size)
314 		size = n;
315 
316 	if (XFS_FORCED_SHUTDOWN(mp))
317 		return -EIO;
318 
319 	/*
320 	 * Locking is a bit tricky here. If we take an exclusive lock
321 	 * for direct IO, we effectively serialise all new concurrent
322 	 * read IO to this file and block it behind IO that is currently in
323 	 * progress because IO in progress holds the IO lock shared. We only
324 	 * need to hold the lock exclusive to blow away the page cache, so
325 	 * only take lock exclusively if the page cache needs invalidation.
326 	 * This allows the normal direct IO case of no page cache pages to
327 	 * proceeed concurrently without serialisation.
328 	 */
329 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
330 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
331 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
332 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333 
334 		if (inode->i_mapping->nrpages) {
335 			ret = filemap_write_and_wait_range(
336 							VFS_I(ip)->i_mapping,
337 							pos, pos + size - 1);
338 			if (ret) {
339 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
340 				return ret;
341 			}
342 
343 			/*
344 			 * Invalidate whole pages. This can return an error if
345 			 * we fail to invalidate a page, but this should never
346 			 * happen on XFS. Warn if it does fail.
347 			 */
348 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
349 					pos >> PAGE_CACHE_SHIFT,
350 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
351 			WARN_ON_ONCE(ret);
352 			ret = 0;
353 		}
354 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
355 	}
356 
357 	trace_xfs_file_read(ip, size, pos, ioflags);
358 
359 	ret = generic_file_read_iter(iocb, to);
360 	if (ret > 0)
361 		XFS_STATS_ADD(xs_read_bytes, ret);
362 
363 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
364 	return ret;
365 }
366 
367 STATIC ssize_t
368 xfs_file_splice_read(
369 	struct file		*infilp,
370 	loff_t			*ppos,
371 	struct pipe_inode_info	*pipe,
372 	size_t			count,
373 	unsigned int		flags)
374 {
375 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
376 	int			ioflags = 0;
377 	ssize_t			ret;
378 
379 	XFS_STATS_INC(xs_read_calls);
380 
381 	if (infilp->f_mode & FMODE_NOCMTIME)
382 		ioflags |= XFS_IO_INVIS;
383 
384 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 		return -EIO;
386 
387 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
388 
389 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
390 
391 	/* for dax, we need to avoid the page cache */
392 	if (IS_DAX(VFS_I(ip)))
393 		ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
394 	else
395 		ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
396 	if (ret > 0)
397 		XFS_STATS_ADD(xs_read_bytes, ret);
398 
399 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
400 	return ret;
401 }
402 
403 /*
404  * This routine is called to handle zeroing any space in the last block of the
405  * file that is beyond the EOF.  We do this since the size is being increased
406  * without writing anything to that block and we don't want to read the
407  * garbage on the disk.
408  */
409 STATIC int				/* error (positive) */
410 xfs_zero_last_block(
411 	struct xfs_inode	*ip,
412 	xfs_fsize_t		offset,
413 	xfs_fsize_t		isize,
414 	bool			*did_zeroing)
415 {
416 	struct xfs_mount	*mp = ip->i_mount;
417 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
418 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
419 	int			zero_len;
420 	int			nimaps = 1;
421 	int			error = 0;
422 	struct xfs_bmbt_irec	imap;
423 
424 	xfs_ilock(ip, XFS_ILOCK_EXCL);
425 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
426 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
427 	if (error)
428 		return error;
429 
430 	ASSERT(nimaps > 0);
431 
432 	/*
433 	 * If the block underlying isize is just a hole, then there
434 	 * is nothing to zero.
435 	 */
436 	if (imap.br_startblock == HOLESTARTBLOCK)
437 		return 0;
438 
439 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
440 	if (isize + zero_len > offset)
441 		zero_len = offset - isize;
442 	*did_zeroing = true;
443 	return xfs_iozero(ip, isize, zero_len);
444 }
445 
446 /*
447  * Zero any on disk space between the current EOF and the new, larger EOF.
448  *
449  * This handles the normal case of zeroing the remainder of the last block in
450  * the file and the unusual case of zeroing blocks out beyond the size of the
451  * file.  This second case only happens with fixed size extents and when the
452  * system crashes before the inode size was updated but after blocks were
453  * allocated.
454  *
455  * Expects the iolock to be held exclusive, and will take the ilock internally.
456  */
457 int					/* error (positive) */
458 xfs_zero_eof(
459 	struct xfs_inode	*ip,
460 	xfs_off_t		offset,		/* starting I/O offset */
461 	xfs_fsize_t		isize,		/* current inode size */
462 	bool			*did_zeroing)
463 {
464 	struct xfs_mount	*mp = ip->i_mount;
465 	xfs_fileoff_t		start_zero_fsb;
466 	xfs_fileoff_t		end_zero_fsb;
467 	xfs_fileoff_t		zero_count_fsb;
468 	xfs_fileoff_t		last_fsb;
469 	xfs_fileoff_t		zero_off;
470 	xfs_fsize_t		zero_len;
471 	int			nimaps;
472 	int			error = 0;
473 	struct xfs_bmbt_irec	imap;
474 
475 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
476 	ASSERT(offset > isize);
477 
478 	/*
479 	 * First handle zeroing the block on which isize resides.
480 	 *
481 	 * We only zero a part of that block so it is handled specially.
482 	 */
483 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
484 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
485 		if (error)
486 			return error;
487 	}
488 
489 	/*
490 	 * Calculate the range between the new size and the old where blocks
491 	 * needing to be zeroed may exist.
492 	 *
493 	 * To get the block where the last byte in the file currently resides,
494 	 * we need to subtract one from the size and truncate back to a block
495 	 * boundary.  We subtract 1 in case the size is exactly on a block
496 	 * boundary.
497 	 */
498 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
499 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
500 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
501 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
502 	if (last_fsb == end_zero_fsb) {
503 		/*
504 		 * The size was only incremented on its last block.
505 		 * We took care of that above, so just return.
506 		 */
507 		return 0;
508 	}
509 
510 	ASSERT(start_zero_fsb <= end_zero_fsb);
511 	while (start_zero_fsb <= end_zero_fsb) {
512 		nimaps = 1;
513 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
514 
515 		xfs_ilock(ip, XFS_ILOCK_EXCL);
516 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
517 					  &imap, &nimaps, 0);
518 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
519 		if (error)
520 			return error;
521 
522 		ASSERT(nimaps > 0);
523 
524 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
525 		    imap.br_startblock == HOLESTARTBLOCK) {
526 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
528 			continue;
529 		}
530 
531 		/*
532 		 * There are blocks we need to zero.
533 		 */
534 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
535 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
536 
537 		if ((zero_off + zero_len) > offset)
538 			zero_len = offset - zero_off;
539 
540 		error = xfs_iozero(ip, zero_off, zero_len);
541 		if (error)
542 			return error;
543 
544 		*did_zeroing = true;
545 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
546 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * Common pre-write limit and setup checks.
554  *
555  * Called with the iolocked held either shared and exclusive according to
556  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
557  * if called for a direct write beyond i_size.
558  */
559 STATIC ssize_t
560 xfs_file_aio_write_checks(
561 	struct kiocb		*iocb,
562 	struct iov_iter		*from,
563 	int			*iolock)
564 {
565 	struct file		*file = iocb->ki_filp;
566 	struct inode		*inode = file->f_mapping->host;
567 	struct xfs_inode	*ip = XFS_I(inode);
568 	ssize_t			error = 0;
569 	size_t			count = iov_iter_count(from);
570 
571 restart:
572 	error = generic_write_checks(iocb, from);
573 	if (error <= 0)
574 		return error;
575 
576 	error = xfs_break_layouts(inode, iolock, true);
577 	if (error)
578 		return error;
579 
580 	/*
581 	 * If the offset is beyond the size of the file, we need to zero any
582 	 * blocks that fall between the existing EOF and the start of this
583 	 * write.  If zeroing is needed and we are currently holding the
584 	 * iolock shared, we need to update it to exclusive which implies
585 	 * having to redo all checks before.
586 	 *
587 	 * We need to serialise against EOF updates that occur in IO
588 	 * completions here. We want to make sure that nobody is changing the
589 	 * size while we do this check until we have placed an IO barrier (i.e.
590 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
591 	 * The spinlock effectively forms a memory barrier once we have the
592 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
593 	 * and hence be able to correctly determine if we need to run zeroing.
594 	 */
595 	spin_lock(&ip->i_flags_lock);
596 	if (iocb->ki_pos > i_size_read(inode)) {
597 		bool	zero = false;
598 
599 		spin_unlock(&ip->i_flags_lock);
600 		if (*iolock == XFS_IOLOCK_SHARED) {
601 			xfs_rw_iunlock(ip, *iolock);
602 			*iolock = XFS_IOLOCK_EXCL;
603 			xfs_rw_ilock(ip, *iolock);
604 			iov_iter_reexpand(from, count);
605 
606 			/*
607 			 * We now have an IO submission barrier in place, but
608 			 * AIO can do EOF updates during IO completion and hence
609 			 * we now need to wait for all of them to drain. Non-AIO
610 			 * DIO will have drained before we are given the
611 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
612 			 * no-op.
613 			 */
614 			inode_dio_wait(inode);
615 			goto restart;
616 		}
617 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
618 		if (error)
619 			return error;
620 	} else
621 		spin_unlock(&ip->i_flags_lock);
622 
623 	/*
624 	 * Updating the timestamps will grab the ilock again from
625 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
626 	 * lock above.  Eventually we should look into a way to avoid
627 	 * the pointless lock roundtrip.
628 	 */
629 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
630 		error = file_update_time(file);
631 		if (error)
632 			return error;
633 	}
634 
635 	/*
636 	 * If we're writing the file then make sure to clear the setuid and
637 	 * setgid bits if the process is not being run by root.  This keeps
638 	 * people from modifying setuid and setgid binaries.
639 	 */
640 	return file_remove_suid(file);
641 }
642 
643 /*
644  * xfs_file_dio_aio_write - handle direct IO writes
645  *
646  * Lock the inode appropriately to prepare for and issue a direct IO write.
647  * By separating it from the buffered write path we remove all the tricky to
648  * follow locking changes and looping.
649  *
650  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
651  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
652  * pages are flushed out.
653  *
654  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
655  * allowing them to be done in parallel with reads and other direct IO writes.
656  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
657  * needs to do sub-block zeroing and that requires serialisation against other
658  * direct IOs to the same block. In this case we need to serialise the
659  * submission of the unaligned IOs so that we don't get racing block zeroing in
660  * the dio layer.  To avoid the problem with aio, we also need to wait for
661  * outstanding IOs to complete so that unwritten extent conversion is completed
662  * before we try to map the overlapping block. This is currently implemented by
663  * hitting it with a big hammer (i.e. inode_dio_wait()).
664  *
665  * Returns with locks held indicated by @iolock and errors indicated by
666  * negative return values.
667  */
668 STATIC ssize_t
669 xfs_file_dio_aio_write(
670 	struct kiocb		*iocb,
671 	struct iov_iter		*from)
672 {
673 	struct file		*file = iocb->ki_filp;
674 	struct address_space	*mapping = file->f_mapping;
675 	struct inode		*inode = mapping->host;
676 	struct xfs_inode	*ip = XFS_I(inode);
677 	struct xfs_mount	*mp = ip->i_mount;
678 	ssize_t			ret = 0;
679 	int			unaligned_io = 0;
680 	int			iolock;
681 	size_t			count = iov_iter_count(from);
682 	loff_t			pos = iocb->ki_pos;
683 	loff_t			end;
684 	struct iov_iter		data;
685 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
686 					mp->m_rtdev_targp : mp->m_ddev_targp;
687 
688 	/* DIO must be aligned to device logical sector size */
689 	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
690 		return -EINVAL;
691 
692 	/* "unaligned" here means not aligned to a filesystem block */
693 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
694 		unaligned_io = 1;
695 
696 	/*
697 	 * We don't need to take an exclusive lock unless there page cache needs
698 	 * to be invalidated or unaligned IO is being executed. We don't need to
699 	 * consider the EOF extension case here because
700 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
701 	 * EOF zeroing cases and fill out the new inode size as appropriate.
702 	 */
703 	if (unaligned_io || mapping->nrpages)
704 		iolock = XFS_IOLOCK_EXCL;
705 	else
706 		iolock = XFS_IOLOCK_SHARED;
707 	xfs_rw_ilock(ip, iolock);
708 
709 	/*
710 	 * Recheck if there are cached pages that need invalidate after we got
711 	 * the iolock to protect against other threads adding new pages while
712 	 * we were waiting for the iolock.
713 	 */
714 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
715 		xfs_rw_iunlock(ip, iolock);
716 		iolock = XFS_IOLOCK_EXCL;
717 		xfs_rw_ilock(ip, iolock);
718 	}
719 
720 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
721 	if (ret)
722 		goto out;
723 	count = iov_iter_count(from);
724 	pos = iocb->ki_pos;
725 	end = pos + count - 1;
726 
727 	if (mapping->nrpages) {
728 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
729 						   pos, end);
730 		if (ret)
731 			goto out;
732 		/*
733 		 * Invalidate whole pages. This can return an error if
734 		 * we fail to invalidate a page, but this should never
735 		 * happen on XFS. Warn if it does fail.
736 		 */
737 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
738 					pos >> PAGE_CACHE_SHIFT,
739 					end >> PAGE_CACHE_SHIFT);
740 		WARN_ON_ONCE(ret);
741 		ret = 0;
742 	}
743 
744 	/*
745 	 * If we are doing unaligned IO, wait for all other IO to drain,
746 	 * otherwise demote the lock if we had to flush cached pages
747 	 */
748 	if (unaligned_io)
749 		inode_dio_wait(inode);
750 	else if (iolock == XFS_IOLOCK_EXCL) {
751 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
752 		iolock = XFS_IOLOCK_SHARED;
753 	}
754 
755 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
756 
757 	data = *from;
758 	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
759 
760 	/* see generic_file_direct_write() for why this is necessary */
761 	if (mapping->nrpages) {
762 		invalidate_inode_pages2_range(mapping,
763 					      pos >> PAGE_CACHE_SHIFT,
764 					      end >> PAGE_CACHE_SHIFT);
765 	}
766 
767 	if (ret > 0) {
768 		pos += ret;
769 		iov_iter_advance(from, ret);
770 		iocb->ki_pos = pos;
771 	}
772 out:
773 	xfs_rw_iunlock(ip, iolock);
774 
775 	/*
776 	 * No fallback to buffered IO on errors for XFS. DAX can result in
777 	 * partial writes, but direct IO will either complete fully or fail.
778 	 */
779 	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
780 	return ret;
781 }
782 
783 STATIC ssize_t
784 xfs_file_buffered_aio_write(
785 	struct kiocb		*iocb,
786 	struct iov_iter		*from)
787 {
788 	struct file		*file = iocb->ki_filp;
789 	struct address_space	*mapping = file->f_mapping;
790 	struct inode		*inode = mapping->host;
791 	struct xfs_inode	*ip = XFS_I(inode);
792 	ssize_t			ret;
793 	int			enospc = 0;
794 	int			iolock = XFS_IOLOCK_EXCL;
795 
796 	xfs_rw_ilock(ip, iolock);
797 
798 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
799 	if (ret)
800 		goto out;
801 
802 	/* We can write back this queue in page reclaim */
803 	current->backing_dev_info = inode_to_bdi(inode);
804 
805 write_retry:
806 	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
807 				      iocb->ki_pos, 0);
808 	ret = generic_perform_write(file, from, iocb->ki_pos);
809 	if (likely(ret >= 0))
810 		iocb->ki_pos += ret;
811 
812 	/*
813 	 * If we hit a space limit, try to free up some lingering preallocated
814 	 * space before returning an error. In the case of ENOSPC, first try to
815 	 * write back all dirty inodes to free up some of the excess reserved
816 	 * metadata space. This reduces the chances that the eofblocks scan
817 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
818 	 * also behaves as a filter to prevent too many eofblocks scans from
819 	 * running at the same time.
820 	 */
821 	if (ret == -EDQUOT && !enospc) {
822 		enospc = xfs_inode_free_quota_eofblocks(ip);
823 		if (enospc)
824 			goto write_retry;
825 	} else if (ret == -ENOSPC && !enospc) {
826 		struct xfs_eofblocks eofb = {0};
827 
828 		enospc = 1;
829 		xfs_flush_inodes(ip->i_mount);
830 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
831 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
832 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
833 		goto write_retry;
834 	}
835 
836 	current->backing_dev_info = NULL;
837 out:
838 	xfs_rw_iunlock(ip, iolock);
839 	return ret;
840 }
841 
842 STATIC ssize_t
843 xfs_file_write_iter(
844 	struct kiocb		*iocb,
845 	struct iov_iter		*from)
846 {
847 	struct file		*file = iocb->ki_filp;
848 	struct address_space	*mapping = file->f_mapping;
849 	struct inode		*inode = mapping->host;
850 	struct xfs_inode	*ip = XFS_I(inode);
851 	ssize_t			ret;
852 	size_t			ocount = iov_iter_count(from);
853 
854 	XFS_STATS_INC(xs_write_calls);
855 
856 	if (ocount == 0)
857 		return 0;
858 
859 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
860 		return -EIO;
861 
862 	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
863 		ret = xfs_file_dio_aio_write(iocb, from);
864 	else
865 		ret = xfs_file_buffered_aio_write(iocb, from);
866 
867 	if (ret > 0) {
868 		ssize_t err;
869 
870 		XFS_STATS_ADD(xs_write_bytes, ret);
871 
872 		/* Handle various SYNC-type writes */
873 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
874 		if (err < 0)
875 			ret = err;
876 	}
877 	return ret;
878 }
879 
880 #define	XFS_FALLOC_FL_SUPPORTED						\
881 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
882 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
883 		 FALLOC_FL_INSERT_RANGE)
884 
885 STATIC long
886 xfs_file_fallocate(
887 	struct file		*file,
888 	int			mode,
889 	loff_t			offset,
890 	loff_t			len)
891 {
892 	struct inode		*inode = file_inode(file);
893 	struct xfs_inode	*ip = XFS_I(inode);
894 	long			error;
895 	enum xfs_prealloc_flags	flags = 0;
896 	uint			iolock = XFS_IOLOCK_EXCL;
897 	loff_t			new_size = 0;
898 	bool			do_file_insert = 0;
899 
900 	if (!S_ISREG(inode->i_mode))
901 		return -EINVAL;
902 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
903 		return -EOPNOTSUPP;
904 
905 	xfs_ilock(ip, iolock);
906 	error = xfs_break_layouts(inode, &iolock, false);
907 	if (error)
908 		goto out_unlock;
909 
910 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
911 	iolock |= XFS_MMAPLOCK_EXCL;
912 
913 	if (mode & FALLOC_FL_PUNCH_HOLE) {
914 		error = xfs_free_file_space(ip, offset, len);
915 		if (error)
916 			goto out_unlock;
917 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
918 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
919 
920 		if (offset & blksize_mask || len & blksize_mask) {
921 			error = -EINVAL;
922 			goto out_unlock;
923 		}
924 
925 		/*
926 		 * There is no need to overlap collapse range with EOF,
927 		 * in which case it is effectively a truncate operation
928 		 */
929 		if (offset + len >= i_size_read(inode)) {
930 			error = -EINVAL;
931 			goto out_unlock;
932 		}
933 
934 		new_size = i_size_read(inode) - len;
935 
936 		error = xfs_collapse_file_space(ip, offset, len);
937 		if (error)
938 			goto out_unlock;
939 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
940 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
941 
942 		new_size = i_size_read(inode) + len;
943 		if (offset & blksize_mask || len & blksize_mask) {
944 			error = -EINVAL;
945 			goto out_unlock;
946 		}
947 
948 		/* check the new inode size does not wrap through zero */
949 		if (new_size > inode->i_sb->s_maxbytes) {
950 			error = -EFBIG;
951 			goto out_unlock;
952 		}
953 
954 		/* Offset should be less than i_size */
955 		if (offset >= i_size_read(inode)) {
956 			error = -EINVAL;
957 			goto out_unlock;
958 		}
959 		do_file_insert = 1;
960 	} else {
961 		flags |= XFS_PREALLOC_SET;
962 
963 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
964 		    offset + len > i_size_read(inode)) {
965 			new_size = offset + len;
966 			error = inode_newsize_ok(inode, new_size);
967 			if (error)
968 				goto out_unlock;
969 		}
970 
971 		if (mode & FALLOC_FL_ZERO_RANGE)
972 			error = xfs_zero_file_space(ip, offset, len);
973 		else
974 			error = xfs_alloc_file_space(ip, offset, len,
975 						     XFS_BMAPI_PREALLOC);
976 		if (error)
977 			goto out_unlock;
978 	}
979 
980 	if (file->f_flags & O_DSYNC)
981 		flags |= XFS_PREALLOC_SYNC;
982 
983 	error = xfs_update_prealloc_flags(ip, flags);
984 	if (error)
985 		goto out_unlock;
986 
987 	/* Change file size if needed */
988 	if (new_size) {
989 		struct iattr iattr;
990 
991 		iattr.ia_valid = ATTR_SIZE;
992 		iattr.ia_size = new_size;
993 		error = xfs_setattr_size(ip, &iattr);
994 		if (error)
995 			goto out_unlock;
996 	}
997 
998 	/*
999 	 * Perform hole insertion now that the file size has been
1000 	 * updated so that if we crash during the operation we don't
1001 	 * leave shifted extents past EOF and hence losing access to
1002 	 * the data that is contained within them.
1003 	 */
1004 	if (do_file_insert)
1005 		error = xfs_insert_file_space(ip, offset, len);
1006 
1007 out_unlock:
1008 	xfs_iunlock(ip, iolock);
1009 	return error;
1010 }
1011 
1012 
1013 STATIC int
1014 xfs_file_open(
1015 	struct inode	*inode,
1016 	struct file	*file)
1017 {
1018 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1019 		return -EFBIG;
1020 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1021 		return -EIO;
1022 	return 0;
1023 }
1024 
1025 STATIC int
1026 xfs_dir_open(
1027 	struct inode	*inode,
1028 	struct file	*file)
1029 {
1030 	struct xfs_inode *ip = XFS_I(inode);
1031 	int		mode;
1032 	int		error;
1033 
1034 	error = xfs_file_open(inode, file);
1035 	if (error)
1036 		return error;
1037 
1038 	/*
1039 	 * If there are any blocks, read-ahead block 0 as we're almost
1040 	 * certain to have the next operation be a read there.
1041 	 */
1042 	mode = xfs_ilock_data_map_shared(ip);
1043 	if (ip->i_d.di_nextents > 0)
1044 		xfs_dir3_data_readahead(ip, 0, -1);
1045 	xfs_iunlock(ip, mode);
1046 	return 0;
1047 }
1048 
1049 STATIC int
1050 xfs_file_release(
1051 	struct inode	*inode,
1052 	struct file	*filp)
1053 {
1054 	return xfs_release(XFS_I(inode));
1055 }
1056 
1057 STATIC int
1058 xfs_file_readdir(
1059 	struct file	*file,
1060 	struct dir_context *ctx)
1061 {
1062 	struct inode	*inode = file_inode(file);
1063 	xfs_inode_t	*ip = XFS_I(inode);
1064 	size_t		bufsize;
1065 
1066 	/*
1067 	 * The Linux API doesn't pass down the total size of the buffer
1068 	 * we read into down to the filesystem.  With the filldir concept
1069 	 * it's not needed for correct information, but the XFS dir2 leaf
1070 	 * code wants an estimate of the buffer size to calculate it's
1071 	 * readahead window and size the buffers used for mapping to
1072 	 * physical blocks.
1073 	 *
1074 	 * Try to give it an estimate that's good enough, maybe at some
1075 	 * point we can change the ->readdir prototype to include the
1076 	 * buffer size.  For now we use the current glibc buffer size.
1077 	 */
1078 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1079 
1080 	return xfs_readdir(ip, ctx, bufsize);
1081 }
1082 
1083 /*
1084  * This type is designed to indicate the type of offset we would like
1085  * to search from page cache for xfs_seek_hole_data().
1086  */
1087 enum {
1088 	HOLE_OFF = 0,
1089 	DATA_OFF,
1090 };
1091 
1092 /*
1093  * Lookup the desired type of offset from the given page.
1094  *
1095  * On success, return true and the offset argument will point to the
1096  * start of the region that was found.  Otherwise this function will
1097  * return false and keep the offset argument unchanged.
1098  */
1099 STATIC bool
1100 xfs_lookup_buffer_offset(
1101 	struct page		*page,
1102 	loff_t			*offset,
1103 	unsigned int		type)
1104 {
1105 	loff_t			lastoff = page_offset(page);
1106 	bool			found = false;
1107 	struct buffer_head	*bh, *head;
1108 
1109 	bh = head = page_buffers(page);
1110 	do {
1111 		/*
1112 		 * Unwritten extents that have data in the page
1113 		 * cache covering them can be identified by the
1114 		 * BH_Unwritten state flag.  Pages with multiple
1115 		 * buffers might have a mix of holes, data and
1116 		 * unwritten extents - any buffer with valid
1117 		 * data in it should have BH_Uptodate flag set
1118 		 * on it.
1119 		 */
1120 		if (buffer_unwritten(bh) ||
1121 		    buffer_uptodate(bh)) {
1122 			if (type == DATA_OFF)
1123 				found = true;
1124 		} else {
1125 			if (type == HOLE_OFF)
1126 				found = true;
1127 		}
1128 
1129 		if (found) {
1130 			*offset = lastoff;
1131 			break;
1132 		}
1133 		lastoff += bh->b_size;
1134 	} while ((bh = bh->b_this_page) != head);
1135 
1136 	return found;
1137 }
1138 
1139 /*
1140  * This routine is called to find out and return a data or hole offset
1141  * from the page cache for unwritten extents according to the desired
1142  * type for xfs_seek_hole_data().
1143  *
1144  * The argument offset is used to tell where we start to search from the
1145  * page cache.  Map is used to figure out the end points of the range to
1146  * lookup pages.
1147  *
1148  * Return true if the desired type of offset was found, and the argument
1149  * offset is filled with that address.  Otherwise, return false and keep
1150  * offset unchanged.
1151  */
1152 STATIC bool
1153 xfs_find_get_desired_pgoff(
1154 	struct inode		*inode,
1155 	struct xfs_bmbt_irec	*map,
1156 	unsigned int		type,
1157 	loff_t			*offset)
1158 {
1159 	struct xfs_inode	*ip = XFS_I(inode);
1160 	struct xfs_mount	*mp = ip->i_mount;
1161 	struct pagevec		pvec;
1162 	pgoff_t			index;
1163 	pgoff_t			end;
1164 	loff_t			endoff;
1165 	loff_t			startoff = *offset;
1166 	loff_t			lastoff = startoff;
1167 	bool			found = false;
1168 
1169 	pagevec_init(&pvec, 0);
1170 
1171 	index = startoff >> PAGE_CACHE_SHIFT;
1172 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1173 	end = endoff >> PAGE_CACHE_SHIFT;
1174 	do {
1175 		int		want;
1176 		unsigned	nr_pages;
1177 		unsigned int	i;
1178 
1179 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1180 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1181 					  want);
1182 		/*
1183 		 * No page mapped into given range.  If we are searching holes
1184 		 * and if this is the first time we got into the loop, it means
1185 		 * that the given offset is landed in a hole, return it.
1186 		 *
1187 		 * If we have already stepped through some block buffers to find
1188 		 * holes but they all contains data.  In this case, the last
1189 		 * offset is already updated and pointed to the end of the last
1190 		 * mapped page, if it does not reach the endpoint to search,
1191 		 * that means there should be a hole between them.
1192 		 */
1193 		if (nr_pages == 0) {
1194 			/* Data search found nothing */
1195 			if (type == DATA_OFF)
1196 				break;
1197 
1198 			ASSERT(type == HOLE_OFF);
1199 			if (lastoff == startoff || lastoff < endoff) {
1200 				found = true;
1201 				*offset = lastoff;
1202 			}
1203 			break;
1204 		}
1205 
1206 		/*
1207 		 * At lease we found one page.  If this is the first time we
1208 		 * step into the loop, and if the first page index offset is
1209 		 * greater than the given search offset, a hole was found.
1210 		 */
1211 		if (type == HOLE_OFF && lastoff == startoff &&
1212 		    lastoff < page_offset(pvec.pages[0])) {
1213 			found = true;
1214 			break;
1215 		}
1216 
1217 		for (i = 0; i < nr_pages; i++) {
1218 			struct page	*page = pvec.pages[i];
1219 			loff_t		b_offset;
1220 
1221 			/*
1222 			 * At this point, the page may be truncated or
1223 			 * invalidated (changing page->mapping to NULL),
1224 			 * or even swizzled back from swapper_space to tmpfs
1225 			 * file mapping. However, page->index will not change
1226 			 * because we have a reference on the page.
1227 			 *
1228 			 * Searching done if the page index is out of range.
1229 			 * If the current offset is not reaches the end of
1230 			 * the specified search range, there should be a hole
1231 			 * between them.
1232 			 */
1233 			if (page->index > end) {
1234 				if (type == HOLE_OFF && lastoff < endoff) {
1235 					*offset = lastoff;
1236 					found = true;
1237 				}
1238 				goto out;
1239 			}
1240 
1241 			lock_page(page);
1242 			/*
1243 			 * Page truncated or invalidated(page->mapping == NULL).
1244 			 * We can freely skip it and proceed to check the next
1245 			 * page.
1246 			 */
1247 			if (unlikely(page->mapping != inode->i_mapping)) {
1248 				unlock_page(page);
1249 				continue;
1250 			}
1251 
1252 			if (!page_has_buffers(page)) {
1253 				unlock_page(page);
1254 				continue;
1255 			}
1256 
1257 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1258 			if (found) {
1259 				/*
1260 				 * The found offset may be less than the start
1261 				 * point to search if this is the first time to
1262 				 * come here.
1263 				 */
1264 				*offset = max_t(loff_t, startoff, b_offset);
1265 				unlock_page(page);
1266 				goto out;
1267 			}
1268 
1269 			/*
1270 			 * We either searching data but nothing was found, or
1271 			 * searching hole but found a data buffer.  In either
1272 			 * case, probably the next page contains the desired
1273 			 * things, update the last offset to it so.
1274 			 */
1275 			lastoff = page_offset(page) + PAGE_SIZE;
1276 			unlock_page(page);
1277 		}
1278 
1279 		/*
1280 		 * The number of returned pages less than our desired, search
1281 		 * done.  In this case, nothing was found for searching data,
1282 		 * but we found a hole behind the last offset.
1283 		 */
1284 		if (nr_pages < want) {
1285 			if (type == HOLE_OFF) {
1286 				*offset = lastoff;
1287 				found = true;
1288 			}
1289 			break;
1290 		}
1291 
1292 		index = pvec.pages[i - 1]->index + 1;
1293 		pagevec_release(&pvec);
1294 	} while (index <= end);
1295 
1296 out:
1297 	pagevec_release(&pvec);
1298 	return found;
1299 }
1300 
1301 STATIC loff_t
1302 xfs_seek_hole_data(
1303 	struct file		*file,
1304 	loff_t			start,
1305 	int			whence)
1306 {
1307 	struct inode		*inode = file->f_mapping->host;
1308 	struct xfs_inode	*ip = XFS_I(inode);
1309 	struct xfs_mount	*mp = ip->i_mount;
1310 	loff_t			uninitialized_var(offset);
1311 	xfs_fsize_t		isize;
1312 	xfs_fileoff_t		fsbno;
1313 	xfs_filblks_t		end;
1314 	uint			lock;
1315 	int			error;
1316 
1317 	if (XFS_FORCED_SHUTDOWN(mp))
1318 		return -EIO;
1319 
1320 	lock = xfs_ilock_data_map_shared(ip);
1321 
1322 	isize = i_size_read(inode);
1323 	if (start >= isize) {
1324 		error = -ENXIO;
1325 		goto out_unlock;
1326 	}
1327 
1328 	/*
1329 	 * Try to read extents from the first block indicated
1330 	 * by fsbno to the end block of the file.
1331 	 */
1332 	fsbno = XFS_B_TO_FSBT(mp, start);
1333 	end = XFS_B_TO_FSB(mp, isize);
1334 
1335 	for (;;) {
1336 		struct xfs_bmbt_irec	map[2];
1337 		int			nmap = 2;
1338 		unsigned int		i;
1339 
1340 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1341 				       XFS_BMAPI_ENTIRE);
1342 		if (error)
1343 			goto out_unlock;
1344 
1345 		/* No extents at given offset, must be beyond EOF */
1346 		if (nmap == 0) {
1347 			error = -ENXIO;
1348 			goto out_unlock;
1349 		}
1350 
1351 		for (i = 0; i < nmap; i++) {
1352 			offset = max_t(loff_t, start,
1353 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1354 
1355 			/* Landed in the hole we wanted? */
1356 			if (whence == SEEK_HOLE &&
1357 			    map[i].br_startblock == HOLESTARTBLOCK)
1358 				goto out;
1359 
1360 			/* Landed in the data extent we wanted? */
1361 			if (whence == SEEK_DATA &&
1362 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1363 			     (map[i].br_state == XFS_EXT_NORM &&
1364 			      !isnullstartblock(map[i].br_startblock))))
1365 				goto out;
1366 
1367 			/*
1368 			 * Landed in an unwritten extent, try to search
1369 			 * for hole or data from page cache.
1370 			 */
1371 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1372 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1373 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1374 							&offset))
1375 					goto out;
1376 			}
1377 		}
1378 
1379 		/*
1380 		 * We only received one extent out of the two requested. This
1381 		 * means we've hit EOF and didn't find what we are looking for.
1382 		 */
1383 		if (nmap == 1) {
1384 			/*
1385 			 * If we were looking for a hole, set offset to
1386 			 * the end of the file (i.e., there is an implicit
1387 			 * hole at the end of any file).
1388 		 	 */
1389 			if (whence == SEEK_HOLE) {
1390 				offset = isize;
1391 				break;
1392 			}
1393 			/*
1394 			 * If we were looking for data, it's nowhere to be found
1395 			 */
1396 			ASSERT(whence == SEEK_DATA);
1397 			error = -ENXIO;
1398 			goto out_unlock;
1399 		}
1400 
1401 		ASSERT(i > 1);
1402 
1403 		/*
1404 		 * Nothing was found, proceed to the next round of search
1405 		 * if the next reading offset is not at or beyond EOF.
1406 		 */
1407 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1408 		start = XFS_FSB_TO_B(mp, fsbno);
1409 		if (start >= isize) {
1410 			if (whence == SEEK_HOLE) {
1411 				offset = isize;
1412 				break;
1413 			}
1414 			ASSERT(whence == SEEK_DATA);
1415 			error = -ENXIO;
1416 			goto out_unlock;
1417 		}
1418 	}
1419 
1420 out:
1421 	/*
1422 	 * If at this point we have found the hole we wanted, the returned
1423 	 * offset may be bigger than the file size as it may be aligned to
1424 	 * page boundary for unwritten extents.  We need to deal with this
1425 	 * situation in particular.
1426 	 */
1427 	if (whence == SEEK_HOLE)
1428 		offset = min_t(loff_t, offset, isize);
1429 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1430 
1431 out_unlock:
1432 	xfs_iunlock(ip, lock);
1433 
1434 	if (error)
1435 		return error;
1436 	return offset;
1437 }
1438 
1439 STATIC loff_t
1440 xfs_file_llseek(
1441 	struct file	*file,
1442 	loff_t		offset,
1443 	int		whence)
1444 {
1445 	switch (whence) {
1446 	case SEEK_END:
1447 	case SEEK_CUR:
1448 	case SEEK_SET:
1449 		return generic_file_llseek(file, offset, whence);
1450 	case SEEK_HOLE:
1451 	case SEEK_DATA:
1452 		return xfs_seek_hole_data(file, offset, whence);
1453 	default:
1454 		return -EINVAL;
1455 	}
1456 }
1457 
1458 /*
1459  * Locking for serialisation of IO during page faults. This results in a lock
1460  * ordering of:
1461  *
1462  * mmap_sem (MM)
1463  *   sb_start_pagefault(vfs, freeze)
1464  *     i_mmap_lock (XFS - truncate serialisation)
1465  *       page_lock (MM)
1466  *         i_lock (XFS - extent map serialisation)
1467  */
1468 
1469 /*
1470  * mmap()d file has taken write protection fault and is being made writable. We
1471  * can set the page state up correctly for a writable page, which means we can
1472  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1473  * mapping.
1474  */
1475 STATIC int
1476 xfs_filemap_page_mkwrite(
1477 	struct vm_area_struct	*vma,
1478 	struct vm_fault		*vmf)
1479 {
1480 	struct inode		*inode = file_inode(vma->vm_file);
1481 	int			ret;
1482 
1483 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1484 
1485 	sb_start_pagefault(inode->i_sb);
1486 	file_update_time(vma->vm_file);
1487 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1488 
1489 	if (IS_DAX(inode)) {
1490 		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1491 				    xfs_end_io_dax_write);
1492 	} else {
1493 		ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1494 		ret = block_page_mkwrite_return(ret);
1495 	}
1496 
1497 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1498 	sb_end_pagefault(inode->i_sb);
1499 
1500 	return ret;
1501 }
1502 
1503 STATIC int
1504 xfs_filemap_fault(
1505 	struct vm_area_struct	*vma,
1506 	struct vm_fault		*vmf)
1507 {
1508 	struct xfs_inode	*ip = XFS_I(file_inode(vma->vm_file));
1509 	int			ret;
1510 
1511 	trace_xfs_filemap_fault(ip);
1512 
1513 	/* DAX can shortcut the normal fault path on write faults! */
1514 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(VFS_I(ip)))
1515 		return xfs_filemap_page_mkwrite(vma, vmf);
1516 
1517 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1518 	ret = filemap_fault(vma, vmf);
1519 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1520 
1521 	return ret;
1522 }
1523 
1524 static const struct vm_operations_struct xfs_file_vm_ops = {
1525 	.fault		= xfs_filemap_fault,
1526 	.map_pages	= filemap_map_pages,
1527 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1528 };
1529 
1530 STATIC int
1531 xfs_file_mmap(
1532 	struct file	*filp,
1533 	struct vm_area_struct *vma)
1534 {
1535 	file_accessed(filp);
1536 	vma->vm_ops = &xfs_file_vm_ops;
1537 	if (IS_DAX(file_inode(filp)))
1538 		vma->vm_flags |= VM_MIXEDMAP;
1539 	return 0;
1540 }
1541 
1542 const struct file_operations xfs_file_operations = {
1543 	.llseek		= xfs_file_llseek,
1544 	.read_iter	= xfs_file_read_iter,
1545 	.write_iter	= xfs_file_write_iter,
1546 	.splice_read	= xfs_file_splice_read,
1547 	.splice_write	= iter_file_splice_write,
1548 	.unlocked_ioctl	= xfs_file_ioctl,
1549 #ifdef CONFIG_COMPAT
1550 	.compat_ioctl	= xfs_file_compat_ioctl,
1551 #endif
1552 	.mmap		= xfs_file_mmap,
1553 	.open		= xfs_file_open,
1554 	.release	= xfs_file_release,
1555 	.fsync		= xfs_file_fsync,
1556 	.fallocate	= xfs_file_fallocate,
1557 };
1558 
1559 const struct file_operations xfs_dir_file_operations = {
1560 	.open		= xfs_dir_open,
1561 	.read		= generic_read_dir,
1562 	.iterate	= xfs_file_readdir,
1563 	.llseek		= generic_file_llseek,
1564 	.unlocked_ioctl	= xfs_file_ioctl,
1565 #ifdef CONFIG_COMPAT
1566 	.compat_ioctl	= xfs_file_compat_ioctl,
1567 #endif
1568 	.fsync		= xfs_dir_fsync,
1569 };
1570