1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Clear the specified ranges to zero through either the pagecache or DAX. 52 * Holes and unwritten extents will be left as-is as they already are zeroed. 53 */ 54 int 55 xfs_zero_range( 56 struct xfs_inode *ip, 57 xfs_off_t pos, 58 xfs_off_t count, 59 bool *did_zero) 60 { 61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 62 } 63 64 int 65 xfs_update_prealloc_flags( 66 struct xfs_inode *ip, 67 enum xfs_prealloc_flags flags) 68 { 69 struct xfs_trans *tp; 70 int error; 71 72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 73 0, 0, 0, &tp); 74 if (error) 75 return error; 76 77 xfs_ilock(ip, XFS_ILOCK_EXCL); 78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 79 80 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 81 VFS_I(ip)->i_mode &= ~S_ISUID; 82 if (VFS_I(ip)->i_mode & S_IXGRP) 83 VFS_I(ip)->i_mode &= ~S_ISGID; 84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 85 } 86 87 if (flags & XFS_PREALLOC_SET) 88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 89 if (flags & XFS_PREALLOC_CLEAR) 90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 91 92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 93 if (flags & XFS_PREALLOC_SYNC) 94 xfs_trans_set_sync(tp); 95 return xfs_trans_commit(tp); 96 } 97 98 /* 99 * Fsync operations on directories are much simpler than on regular files, 100 * as there is no file data to flush, and thus also no need for explicit 101 * cache flush operations, and there are no non-transaction metadata updates 102 * on directories either. 103 */ 104 STATIC int 105 xfs_dir_fsync( 106 struct file *file, 107 loff_t start, 108 loff_t end, 109 int datasync) 110 { 111 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 112 struct xfs_mount *mp = ip->i_mount; 113 xfs_lsn_t lsn = 0; 114 115 trace_xfs_dir_fsync(ip); 116 117 xfs_ilock(ip, XFS_ILOCK_SHARED); 118 if (xfs_ipincount(ip)) 119 lsn = ip->i_itemp->ili_last_lsn; 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 122 if (!lsn) 123 return 0; 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 int error = 0; 138 int log_flushed = 0; 139 xfs_lsn_t lsn = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -EIO; 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 /* 153 * If we have an RT and/or log subvolume we need to make sure to flush 154 * the write cache the device used for file data first. This is to 155 * ensure newly written file data make it to disk before logging the new 156 * inode size in case of an extending write. 157 */ 158 if (XFS_IS_REALTIME_INODE(ip)) 159 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 160 else if (mp->m_logdev_targp != mp->m_ddev_targp) 161 xfs_blkdev_issue_flush(mp->m_ddev_targp); 162 163 /* 164 * All metadata updates are logged, which means that we just have to 165 * flush the log up to the latest LSN that touched the inode. If we have 166 * concurrent fsync/fdatasync() calls, we need them to all block on the 167 * log force before we clear the ili_fsync_fields field. This ensures 168 * that we don't get a racing sync operation that does not wait for the 169 * metadata to hit the journal before returning. If we race with 170 * clearing the ili_fsync_fields, then all that will happen is the log 171 * force will do nothing as the lsn will already be on disk. We can't 172 * race with setting ili_fsync_fields because that is done under 173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 174 * until after the ili_fsync_fields is cleared. 175 */ 176 xfs_ilock(ip, XFS_ILOCK_SHARED); 177 if (xfs_ipincount(ip)) { 178 if (!datasync || 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 180 lsn = ip->i_itemp->ili_last_lsn; 181 } 182 183 if (lsn) { 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 185 ip->i_itemp->ili_fsync_fields = 0; 186 } 187 xfs_iunlock(ip, XFS_ILOCK_SHARED); 188 189 /* 190 * If we only have a single device, and the log force about was 191 * a no-op we might have to flush the data device cache here. 192 * This can only happen for fdatasync/O_DSYNC if we were overwriting 193 * an already allocated file and thus do not have any metadata to 194 * commit. 195 */ 196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 197 mp->m_logdev_targp == mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 200 return error; 201 } 202 203 STATIC ssize_t 204 xfs_file_dio_aio_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 209 size_t count = iov_iter_count(to); 210 ssize_t ret; 211 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 file_accessed(iocb->ki_filp); 218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 222 223 return ret; 224 } 225 226 static noinline ssize_t 227 xfs_file_dax_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 232 size_t count = iov_iter_count(to); 233 ssize_t ret = 0; 234 235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 236 237 if (!count) 238 return 0; /* skip atime */ 239 240 xfs_ilock(ip, XFS_IOLOCK_SHARED); 241 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 242 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 243 244 file_accessed(iocb->ki_filp); 245 return ret; 246 } 247 248 STATIC ssize_t 249 xfs_file_buffered_aio_read( 250 struct kiocb *iocb, 251 struct iov_iter *to) 252 { 253 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 254 ssize_t ret; 255 256 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 257 258 xfs_ilock(ip, XFS_IOLOCK_SHARED); 259 ret = generic_file_read_iter(iocb, to); 260 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 261 262 return ret; 263 } 264 265 STATIC ssize_t 266 xfs_file_read_iter( 267 struct kiocb *iocb, 268 struct iov_iter *to) 269 { 270 struct inode *inode = file_inode(iocb->ki_filp); 271 struct xfs_mount *mp = XFS_I(inode)->i_mount; 272 ssize_t ret = 0; 273 274 XFS_STATS_INC(mp, xs_read_calls); 275 276 if (XFS_FORCED_SHUTDOWN(mp)) 277 return -EIO; 278 279 if (IS_DAX(inode)) 280 ret = xfs_file_dax_read(iocb, to); 281 else if (iocb->ki_flags & IOCB_DIRECT) 282 ret = xfs_file_dio_aio_read(iocb, to); 283 else 284 ret = xfs_file_buffered_aio_read(iocb, to); 285 286 if (ret > 0) 287 XFS_STATS_ADD(mp, xs_read_bytes, ret); 288 return ret; 289 } 290 291 /* 292 * Zero any on disk space between the current EOF and the new, larger EOF. 293 * 294 * This handles the normal case of zeroing the remainder of the last block in 295 * the file and the unusual case of zeroing blocks out beyond the size of the 296 * file. This second case only happens with fixed size extents and when the 297 * system crashes before the inode size was updated but after blocks were 298 * allocated. 299 * 300 * Expects the iolock to be held exclusive, and will take the ilock internally. 301 */ 302 int /* error (positive) */ 303 xfs_zero_eof( 304 struct xfs_inode *ip, 305 xfs_off_t offset, /* starting I/O offset */ 306 xfs_fsize_t isize, /* current inode size */ 307 bool *did_zeroing) 308 { 309 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 310 ASSERT(offset > isize); 311 312 trace_xfs_zero_eof(ip, isize, offset - isize); 313 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 314 } 315 316 /* 317 * Common pre-write limit and setup checks. 318 * 319 * Called with the iolocked held either shared and exclusive according to 320 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 321 * if called for a direct write beyond i_size. 322 */ 323 STATIC ssize_t 324 xfs_file_aio_write_checks( 325 struct kiocb *iocb, 326 struct iov_iter *from, 327 int *iolock) 328 { 329 struct file *file = iocb->ki_filp; 330 struct inode *inode = file->f_mapping->host; 331 struct xfs_inode *ip = XFS_I(inode); 332 ssize_t error = 0; 333 size_t count = iov_iter_count(from); 334 bool drained_dio = false; 335 336 restart: 337 error = generic_write_checks(iocb, from); 338 if (error <= 0) 339 return error; 340 341 error = xfs_break_layouts(inode, iolock); 342 if (error) 343 return error; 344 345 /* 346 * For changing security info in file_remove_privs() we need i_rwsem 347 * exclusively. 348 */ 349 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 350 xfs_iunlock(ip, *iolock); 351 *iolock = XFS_IOLOCK_EXCL; 352 xfs_ilock(ip, *iolock); 353 goto restart; 354 } 355 /* 356 * If the offset is beyond the size of the file, we need to zero any 357 * blocks that fall between the existing EOF and the start of this 358 * write. If zeroing is needed and we are currently holding the 359 * iolock shared, we need to update it to exclusive which implies 360 * having to redo all checks before. 361 * 362 * We need to serialise against EOF updates that occur in IO 363 * completions here. We want to make sure that nobody is changing the 364 * size while we do this check until we have placed an IO barrier (i.e. 365 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 366 * The spinlock effectively forms a memory barrier once we have the 367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 368 * and hence be able to correctly determine if we need to run zeroing. 369 */ 370 spin_lock(&ip->i_flags_lock); 371 if (iocb->ki_pos > i_size_read(inode)) { 372 bool zero = false; 373 374 spin_unlock(&ip->i_flags_lock); 375 if (!drained_dio) { 376 if (*iolock == XFS_IOLOCK_SHARED) { 377 xfs_iunlock(ip, *iolock); 378 *iolock = XFS_IOLOCK_EXCL; 379 xfs_ilock(ip, *iolock); 380 iov_iter_reexpand(from, count); 381 } 382 /* 383 * We now have an IO submission barrier in place, but 384 * AIO can do EOF updates during IO completion and hence 385 * we now need to wait for all of them to drain. Non-AIO 386 * DIO will have drained before we are given the 387 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 388 * no-op. 389 */ 390 inode_dio_wait(inode); 391 drained_dio = true; 392 goto restart; 393 } 394 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 395 if (error) 396 return error; 397 } else 398 spin_unlock(&ip->i_flags_lock); 399 400 /* 401 * Updating the timestamps will grab the ilock again from 402 * xfs_fs_dirty_inode, so we have to call it after dropping the 403 * lock above. Eventually we should look into a way to avoid 404 * the pointless lock roundtrip. 405 */ 406 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 407 error = file_update_time(file); 408 if (error) 409 return error; 410 } 411 412 /* 413 * If we're writing the file then make sure to clear the setuid and 414 * setgid bits if the process is not being run by root. This keeps 415 * people from modifying setuid and setgid binaries. 416 */ 417 if (!IS_NOSEC(inode)) 418 return file_remove_privs(file); 419 return 0; 420 } 421 422 static int 423 xfs_dio_write_end_io( 424 struct kiocb *iocb, 425 ssize_t size, 426 unsigned flags) 427 { 428 struct inode *inode = file_inode(iocb->ki_filp); 429 struct xfs_inode *ip = XFS_I(inode); 430 loff_t offset = iocb->ki_pos; 431 bool update_size = false; 432 int error = 0; 433 434 trace_xfs_end_io_direct_write(ip, offset, size); 435 436 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 437 return -EIO; 438 439 if (size <= 0) 440 return size; 441 442 /* 443 * We need to update the in-core inode size here so that we don't end up 444 * with the on-disk inode size being outside the in-core inode size. We 445 * have no other method of updating EOF for AIO, so always do it here 446 * if necessary. 447 * 448 * We need to lock the test/set EOF update as we can be racing with 449 * other IO completions here to update the EOF. Failing to serialise 450 * here can result in EOF moving backwards and Bad Things Happen when 451 * that occurs. 452 */ 453 spin_lock(&ip->i_flags_lock); 454 if (offset + size > i_size_read(inode)) { 455 i_size_write(inode, offset + size); 456 update_size = true; 457 } 458 spin_unlock(&ip->i_flags_lock); 459 460 if (flags & IOMAP_DIO_COW) { 461 error = xfs_reflink_end_cow(ip, offset, size); 462 if (error) 463 return error; 464 } 465 466 if (flags & IOMAP_DIO_UNWRITTEN) 467 error = xfs_iomap_write_unwritten(ip, offset, size); 468 else if (update_size) 469 error = xfs_setfilesize(ip, offset, size); 470 471 return error; 472 } 473 474 /* 475 * xfs_file_dio_aio_write - handle direct IO writes 476 * 477 * Lock the inode appropriately to prepare for and issue a direct IO write. 478 * By separating it from the buffered write path we remove all the tricky to 479 * follow locking changes and looping. 480 * 481 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 482 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 483 * pages are flushed out. 484 * 485 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 486 * allowing them to be done in parallel with reads and other direct IO writes. 487 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 488 * needs to do sub-block zeroing and that requires serialisation against other 489 * direct IOs to the same block. In this case we need to serialise the 490 * submission of the unaligned IOs so that we don't get racing block zeroing in 491 * the dio layer. To avoid the problem with aio, we also need to wait for 492 * outstanding IOs to complete so that unwritten extent conversion is completed 493 * before we try to map the overlapping block. This is currently implemented by 494 * hitting it with a big hammer (i.e. inode_dio_wait()). 495 * 496 * Returns with locks held indicated by @iolock and errors indicated by 497 * negative return values. 498 */ 499 STATIC ssize_t 500 xfs_file_dio_aio_write( 501 struct kiocb *iocb, 502 struct iov_iter *from) 503 { 504 struct file *file = iocb->ki_filp; 505 struct address_space *mapping = file->f_mapping; 506 struct inode *inode = mapping->host; 507 struct xfs_inode *ip = XFS_I(inode); 508 struct xfs_mount *mp = ip->i_mount; 509 ssize_t ret = 0; 510 int unaligned_io = 0; 511 int iolock; 512 size_t count = iov_iter_count(from); 513 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 514 mp->m_rtdev_targp : mp->m_ddev_targp; 515 516 /* DIO must be aligned to device logical sector size */ 517 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 518 return -EINVAL; 519 520 /* 521 * Don't take the exclusive iolock here unless the I/O is unaligned to 522 * the file system block size. We don't need to consider the EOF 523 * extension case here because xfs_file_aio_write_checks() will relock 524 * the inode as necessary for EOF zeroing cases and fill out the new 525 * inode size as appropriate. 526 */ 527 if ((iocb->ki_pos & mp->m_blockmask) || 528 ((iocb->ki_pos + count) & mp->m_blockmask)) { 529 unaligned_io = 1; 530 531 /* 532 * We can't properly handle unaligned direct I/O to reflink 533 * files yet, as we can't unshare a partial block. 534 */ 535 if (xfs_is_reflink_inode(ip)) { 536 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 537 return -EREMCHG; 538 } 539 iolock = XFS_IOLOCK_EXCL; 540 } else { 541 iolock = XFS_IOLOCK_SHARED; 542 } 543 544 xfs_ilock(ip, iolock); 545 546 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 547 if (ret) 548 goto out; 549 count = iov_iter_count(from); 550 551 /* 552 * If we are doing unaligned IO, wait for all other IO to drain, 553 * otherwise demote the lock if we had to take the exclusive lock 554 * for other reasons in xfs_file_aio_write_checks. 555 */ 556 if (unaligned_io) 557 inode_dio_wait(inode); 558 else if (iolock == XFS_IOLOCK_EXCL) { 559 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 560 iolock = XFS_IOLOCK_SHARED; 561 } 562 563 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 564 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 565 out: 566 xfs_iunlock(ip, iolock); 567 568 /* 569 * No fallback to buffered IO on errors for XFS, direct IO will either 570 * complete fully or fail. 571 */ 572 ASSERT(ret < 0 || ret == count); 573 return ret; 574 } 575 576 static noinline ssize_t 577 xfs_file_dax_write( 578 struct kiocb *iocb, 579 struct iov_iter *from) 580 { 581 struct inode *inode = iocb->ki_filp->f_mapping->host; 582 struct xfs_inode *ip = XFS_I(inode); 583 int iolock = XFS_IOLOCK_EXCL; 584 ssize_t ret, error = 0; 585 size_t count; 586 loff_t pos; 587 588 xfs_ilock(ip, iolock); 589 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 590 if (ret) 591 goto out; 592 593 pos = iocb->ki_pos; 594 count = iov_iter_count(from); 595 596 trace_xfs_file_dax_write(ip, count, pos); 597 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 598 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 599 i_size_write(inode, iocb->ki_pos); 600 error = xfs_setfilesize(ip, pos, ret); 601 } 602 out: 603 xfs_iunlock(ip, iolock); 604 return error ? error : ret; 605 } 606 607 STATIC ssize_t 608 xfs_file_buffered_aio_write( 609 struct kiocb *iocb, 610 struct iov_iter *from) 611 { 612 struct file *file = iocb->ki_filp; 613 struct address_space *mapping = file->f_mapping; 614 struct inode *inode = mapping->host; 615 struct xfs_inode *ip = XFS_I(inode); 616 ssize_t ret; 617 int enospc = 0; 618 int iolock; 619 620 write_retry: 621 iolock = XFS_IOLOCK_EXCL; 622 xfs_ilock(ip, iolock); 623 624 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 625 if (ret) 626 goto out; 627 628 /* We can write back this queue in page reclaim */ 629 current->backing_dev_info = inode_to_bdi(inode); 630 631 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 632 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 633 if (likely(ret >= 0)) 634 iocb->ki_pos += ret; 635 636 /* 637 * If we hit a space limit, try to free up some lingering preallocated 638 * space before returning an error. In the case of ENOSPC, first try to 639 * write back all dirty inodes to free up some of the excess reserved 640 * metadata space. This reduces the chances that the eofblocks scan 641 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 642 * also behaves as a filter to prevent too many eofblocks scans from 643 * running at the same time. 644 */ 645 if (ret == -EDQUOT && !enospc) { 646 xfs_iunlock(ip, iolock); 647 enospc = xfs_inode_free_quota_eofblocks(ip); 648 if (enospc) 649 goto write_retry; 650 enospc = xfs_inode_free_quota_cowblocks(ip); 651 if (enospc) 652 goto write_retry; 653 iolock = 0; 654 } else if (ret == -ENOSPC && !enospc) { 655 struct xfs_eofblocks eofb = {0}; 656 657 enospc = 1; 658 xfs_flush_inodes(ip->i_mount); 659 660 xfs_iunlock(ip, iolock); 661 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 662 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 663 goto write_retry; 664 } 665 666 current->backing_dev_info = NULL; 667 out: 668 if (iolock) 669 xfs_iunlock(ip, iolock); 670 return ret; 671 } 672 673 STATIC ssize_t 674 xfs_file_write_iter( 675 struct kiocb *iocb, 676 struct iov_iter *from) 677 { 678 struct file *file = iocb->ki_filp; 679 struct address_space *mapping = file->f_mapping; 680 struct inode *inode = mapping->host; 681 struct xfs_inode *ip = XFS_I(inode); 682 ssize_t ret; 683 size_t ocount = iov_iter_count(from); 684 685 XFS_STATS_INC(ip->i_mount, xs_write_calls); 686 687 if (ocount == 0) 688 return 0; 689 690 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 691 return -EIO; 692 693 if (IS_DAX(inode)) 694 ret = xfs_file_dax_write(iocb, from); 695 else if (iocb->ki_flags & IOCB_DIRECT) { 696 /* 697 * Allow a directio write to fall back to a buffered 698 * write *only* in the case that we're doing a reflink 699 * CoW. In all other directio scenarios we do not 700 * allow an operation to fall back to buffered mode. 701 */ 702 ret = xfs_file_dio_aio_write(iocb, from); 703 if (ret == -EREMCHG) 704 goto buffered; 705 } else { 706 buffered: 707 ret = xfs_file_buffered_aio_write(iocb, from); 708 } 709 710 if (ret > 0) { 711 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 712 713 /* Handle various SYNC-type writes */ 714 ret = generic_write_sync(iocb, ret); 715 } 716 return ret; 717 } 718 719 #define XFS_FALLOC_FL_SUPPORTED \ 720 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 721 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 722 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 723 724 STATIC long 725 xfs_file_fallocate( 726 struct file *file, 727 int mode, 728 loff_t offset, 729 loff_t len) 730 { 731 struct inode *inode = file_inode(file); 732 struct xfs_inode *ip = XFS_I(inode); 733 long error; 734 enum xfs_prealloc_flags flags = 0; 735 uint iolock = XFS_IOLOCK_EXCL; 736 loff_t new_size = 0; 737 bool do_file_insert = 0; 738 739 if (!S_ISREG(inode->i_mode)) 740 return -EINVAL; 741 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 742 return -EOPNOTSUPP; 743 744 xfs_ilock(ip, iolock); 745 error = xfs_break_layouts(inode, &iolock); 746 if (error) 747 goto out_unlock; 748 749 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 750 iolock |= XFS_MMAPLOCK_EXCL; 751 752 if (mode & FALLOC_FL_PUNCH_HOLE) { 753 error = xfs_free_file_space(ip, offset, len); 754 if (error) 755 goto out_unlock; 756 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 757 unsigned int blksize_mask = i_blocksize(inode) - 1; 758 759 if (offset & blksize_mask || len & blksize_mask) { 760 error = -EINVAL; 761 goto out_unlock; 762 } 763 764 /* 765 * There is no need to overlap collapse range with EOF, 766 * in which case it is effectively a truncate operation 767 */ 768 if (offset + len >= i_size_read(inode)) { 769 error = -EINVAL; 770 goto out_unlock; 771 } 772 773 new_size = i_size_read(inode) - len; 774 775 error = xfs_collapse_file_space(ip, offset, len); 776 if (error) 777 goto out_unlock; 778 } else if (mode & FALLOC_FL_INSERT_RANGE) { 779 unsigned int blksize_mask = i_blocksize(inode) - 1; 780 781 new_size = i_size_read(inode) + len; 782 if (offset & blksize_mask || len & blksize_mask) { 783 error = -EINVAL; 784 goto out_unlock; 785 } 786 787 /* check the new inode size does not wrap through zero */ 788 if (new_size > inode->i_sb->s_maxbytes) { 789 error = -EFBIG; 790 goto out_unlock; 791 } 792 793 /* Offset should be less than i_size */ 794 if (offset >= i_size_read(inode)) { 795 error = -EINVAL; 796 goto out_unlock; 797 } 798 do_file_insert = 1; 799 } else { 800 flags |= XFS_PREALLOC_SET; 801 802 if (!(mode & FALLOC_FL_KEEP_SIZE) && 803 offset + len > i_size_read(inode)) { 804 new_size = offset + len; 805 error = inode_newsize_ok(inode, new_size); 806 if (error) 807 goto out_unlock; 808 } 809 810 if (mode & FALLOC_FL_ZERO_RANGE) 811 error = xfs_zero_file_space(ip, offset, len); 812 else { 813 if (mode & FALLOC_FL_UNSHARE_RANGE) { 814 error = xfs_reflink_unshare(ip, offset, len); 815 if (error) 816 goto out_unlock; 817 } 818 error = xfs_alloc_file_space(ip, offset, len, 819 XFS_BMAPI_PREALLOC); 820 } 821 if (error) 822 goto out_unlock; 823 } 824 825 if (file->f_flags & O_DSYNC) 826 flags |= XFS_PREALLOC_SYNC; 827 828 error = xfs_update_prealloc_flags(ip, flags); 829 if (error) 830 goto out_unlock; 831 832 /* Change file size if needed */ 833 if (new_size) { 834 struct iattr iattr; 835 836 iattr.ia_valid = ATTR_SIZE; 837 iattr.ia_size = new_size; 838 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 839 if (error) 840 goto out_unlock; 841 } 842 843 /* 844 * Perform hole insertion now that the file size has been 845 * updated so that if we crash during the operation we don't 846 * leave shifted extents past EOF and hence losing access to 847 * the data that is contained within them. 848 */ 849 if (do_file_insert) 850 error = xfs_insert_file_space(ip, offset, len); 851 852 out_unlock: 853 xfs_iunlock(ip, iolock); 854 return error; 855 } 856 857 STATIC int 858 xfs_file_clone_range( 859 struct file *file_in, 860 loff_t pos_in, 861 struct file *file_out, 862 loff_t pos_out, 863 u64 len) 864 { 865 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 866 len, false); 867 } 868 869 STATIC ssize_t 870 xfs_file_dedupe_range( 871 struct file *src_file, 872 u64 loff, 873 u64 len, 874 struct file *dst_file, 875 u64 dst_loff) 876 { 877 int error; 878 879 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 880 len, true); 881 if (error) 882 return error; 883 return len; 884 } 885 886 STATIC int 887 xfs_file_open( 888 struct inode *inode, 889 struct file *file) 890 { 891 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 892 return -EFBIG; 893 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 894 return -EIO; 895 return 0; 896 } 897 898 STATIC int 899 xfs_dir_open( 900 struct inode *inode, 901 struct file *file) 902 { 903 struct xfs_inode *ip = XFS_I(inode); 904 int mode; 905 int error; 906 907 error = xfs_file_open(inode, file); 908 if (error) 909 return error; 910 911 /* 912 * If there are any blocks, read-ahead block 0 as we're almost 913 * certain to have the next operation be a read there. 914 */ 915 mode = xfs_ilock_data_map_shared(ip); 916 if (ip->i_d.di_nextents > 0) 917 error = xfs_dir3_data_readahead(ip, 0, -1); 918 xfs_iunlock(ip, mode); 919 return error; 920 } 921 922 STATIC int 923 xfs_file_release( 924 struct inode *inode, 925 struct file *filp) 926 { 927 return xfs_release(XFS_I(inode)); 928 } 929 930 STATIC int 931 xfs_file_readdir( 932 struct file *file, 933 struct dir_context *ctx) 934 { 935 struct inode *inode = file_inode(file); 936 xfs_inode_t *ip = XFS_I(inode); 937 size_t bufsize; 938 939 /* 940 * The Linux API doesn't pass down the total size of the buffer 941 * we read into down to the filesystem. With the filldir concept 942 * it's not needed for correct information, but the XFS dir2 leaf 943 * code wants an estimate of the buffer size to calculate it's 944 * readahead window and size the buffers used for mapping to 945 * physical blocks. 946 * 947 * Try to give it an estimate that's good enough, maybe at some 948 * point we can change the ->readdir prototype to include the 949 * buffer size. For now we use the current glibc buffer size. 950 */ 951 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 952 953 return xfs_readdir(ip, ctx, bufsize); 954 } 955 956 /* 957 * This type is designed to indicate the type of offset we would like 958 * to search from page cache for xfs_seek_hole_data(). 959 */ 960 enum { 961 HOLE_OFF = 0, 962 DATA_OFF, 963 }; 964 965 /* 966 * Lookup the desired type of offset from the given page. 967 * 968 * On success, return true and the offset argument will point to the 969 * start of the region that was found. Otherwise this function will 970 * return false and keep the offset argument unchanged. 971 */ 972 STATIC bool 973 xfs_lookup_buffer_offset( 974 struct page *page, 975 loff_t *offset, 976 unsigned int type) 977 { 978 loff_t lastoff = page_offset(page); 979 bool found = false; 980 struct buffer_head *bh, *head; 981 982 bh = head = page_buffers(page); 983 do { 984 /* 985 * Unwritten extents that have data in the page 986 * cache covering them can be identified by the 987 * BH_Unwritten state flag. Pages with multiple 988 * buffers might have a mix of holes, data and 989 * unwritten extents - any buffer with valid 990 * data in it should have BH_Uptodate flag set 991 * on it. 992 */ 993 if (buffer_unwritten(bh) || 994 buffer_uptodate(bh)) { 995 if (type == DATA_OFF) 996 found = true; 997 } else { 998 if (type == HOLE_OFF) 999 found = true; 1000 } 1001 1002 if (found) { 1003 *offset = lastoff; 1004 break; 1005 } 1006 lastoff += bh->b_size; 1007 } while ((bh = bh->b_this_page) != head); 1008 1009 return found; 1010 } 1011 1012 /* 1013 * This routine is called to find out and return a data or hole offset 1014 * from the page cache for unwritten extents according to the desired 1015 * type for xfs_seek_hole_data(). 1016 * 1017 * The argument offset is used to tell where we start to search from the 1018 * page cache. Map is used to figure out the end points of the range to 1019 * lookup pages. 1020 * 1021 * Return true if the desired type of offset was found, and the argument 1022 * offset is filled with that address. Otherwise, return false and keep 1023 * offset unchanged. 1024 */ 1025 STATIC bool 1026 xfs_find_get_desired_pgoff( 1027 struct inode *inode, 1028 struct xfs_bmbt_irec *map, 1029 unsigned int type, 1030 loff_t *offset) 1031 { 1032 struct xfs_inode *ip = XFS_I(inode); 1033 struct xfs_mount *mp = ip->i_mount; 1034 struct pagevec pvec; 1035 pgoff_t index; 1036 pgoff_t end; 1037 loff_t endoff; 1038 loff_t startoff = *offset; 1039 loff_t lastoff = startoff; 1040 bool found = false; 1041 1042 pagevec_init(&pvec, 0); 1043 1044 index = startoff >> PAGE_SHIFT; 1045 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1046 end = endoff >> PAGE_SHIFT; 1047 do { 1048 int want; 1049 unsigned nr_pages; 1050 unsigned int i; 1051 1052 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1053 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1054 want); 1055 /* 1056 * No page mapped into given range. If we are searching holes 1057 * and if this is the first time we got into the loop, it means 1058 * that the given offset is landed in a hole, return it. 1059 * 1060 * If we have already stepped through some block buffers to find 1061 * holes but they all contains data. In this case, the last 1062 * offset is already updated and pointed to the end of the last 1063 * mapped page, if it does not reach the endpoint to search, 1064 * that means there should be a hole between them. 1065 */ 1066 if (nr_pages == 0) { 1067 /* Data search found nothing */ 1068 if (type == DATA_OFF) 1069 break; 1070 1071 ASSERT(type == HOLE_OFF); 1072 if (lastoff == startoff || lastoff < endoff) { 1073 found = true; 1074 *offset = lastoff; 1075 } 1076 break; 1077 } 1078 1079 /* 1080 * At lease we found one page. If this is the first time we 1081 * step into the loop, and if the first page index offset is 1082 * greater than the given search offset, a hole was found. 1083 */ 1084 if (type == HOLE_OFF && lastoff == startoff && 1085 lastoff < page_offset(pvec.pages[0])) { 1086 found = true; 1087 break; 1088 } 1089 1090 for (i = 0; i < nr_pages; i++) { 1091 struct page *page = pvec.pages[i]; 1092 loff_t b_offset; 1093 1094 /* 1095 * At this point, the page may be truncated or 1096 * invalidated (changing page->mapping to NULL), 1097 * or even swizzled back from swapper_space to tmpfs 1098 * file mapping. However, page->index will not change 1099 * because we have a reference on the page. 1100 * 1101 * Searching done if the page index is out of range. 1102 * If the current offset is not reaches the end of 1103 * the specified search range, there should be a hole 1104 * between them. 1105 */ 1106 if (page->index > end) { 1107 if (type == HOLE_OFF && lastoff < endoff) { 1108 *offset = lastoff; 1109 found = true; 1110 } 1111 goto out; 1112 } 1113 1114 lock_page(page); 1115 /* 1116 * Page truncated or invalidated(page->mapping == NULL). 1117 * We can freely skip it and proceed to check the next 1118 * page. 1119 */ 1120 if (unlikely(page->mapping != inode->i_mapping)) { 1121 unlock_page(page); 1122 continue; 1123 } 1124 1125 if (!page_has_buffers(page)) { 1126 unlock_page(page); 1127 continue; 1128 } 1129 1130 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1131 if (found) { 1132 /* 1133 * The found offset may be less than the start 1134 * point to search if this is the first time to 1135 * come here. 1136 */ 1137 *offset = max_t(loff_t, startoff, b_offset); 1138 unlock_page(page); 1139 goto out; 1140 } 1141 1142 /* 1143 * We either searching data but nothing was found, or 1144 * searching hole but found a data buffer. In either 1145 * case, probably the next page contains the desired 1146 * things, update the last offset to it so. 1147 */ 1148 lastoff = page_offset(page) + PAGE_SIZE; 1149 unlock_page(page); 1150 } 1151 1152 /* 1153 * The number of returned pages less than our desired, search 1154 * done. In this case, nothing was found for searching data, 1155 * but we found a hole behind the last offset. 1156 */ 1157 if (nr_pages < want) { 1158 if (type == HOLE_OFF) { 1159 *offset = lastoff; 1160 found = true; 1161 } 1162 break; 1163 } 1164 1165 index = pvec.pages[i - 1]->index + 1; 1166 pagevec_release(&pvec); 1167 } while (index <= end); 1168 1169 out: 1170 pagevec_release(&pvec); 1171 return found; 1172 } 1173 1174 /* 1175 * caller must lock inode with xfs_ilock_data_map_shared, 1176 * can we craft an appropriate ASSERT? 1177 * 1178 * end is because the VFS-level lseek interface is defined such that any 1179 * offset past i_size shall return -ENXIO, but we use this for quota code 1180 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1181 */ 1182 loff_t 1183 __xfs_seek_hole_data( 1184 struct inode *inode, 1185 loff_t start, 1186 loff_t end, 1187 int whence) 1188 { 1189 struct xfs_inode *ip = XFS_I(inode); 1190 struct xfs_mount *mp = ip->i_mount; 1191 loff_t uninitialized_var(offset); 1192 xfs_fileoff_t fsbno; 1193 xfs_filblks_t lastbno; 1194 int error; 1195 1196 if (start >= end) { 1197 error = -ENXIO; 1198 goto out_error; 1199 } 1200 1201 /* 1202 * Try to read extents from the first block indicated 1203 * by fsbno to the end block of the file. 1204 */ 1205 fsbno = XFS_B_TO_FSBT(mp, start); 1206 lastbno = XFS_B_TO_FSB(mp, end); 1207 1208 for (;;) { 1209 struct xfs_bmbt_irec map[2]; 1210 int nmap = 2; 1211 unsigned int i; 1212 1213 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1214 XFS_BMAPI_ENTIRE); 1215 if (error) 1216 goto out_error; 1217 1218 /* No extents at given offset, must be beyond EOF */ 1219 if (nmap == 0) { 1220 error = -ENXIO; 1221 goto out_error; 1222 } 1223 1224 for (i = 0; i < nmap; i++) { 1225 offset = max_t(loff_t, start, 1226 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1227 1228 /* Landed in the hole we wanted? */ 1229 if (whence == SEEK_HOLE && 1230 map[i].br_startblock == HOLESTARTBLOCK) 1231 goto out; 1232 1233 /* Landed in the data extent we wanted? */ 1234 if (whence == SEEK_DATA && 1235 (map[i].br_startblock == DELAYSTARTBLOCK || 1236 (map[i].br_state == XFS_EXT_NORM && 1237 !isnullstartblock(map[i].br_startblock)))) 1238 goto out; 1239 1240 /* 1241 * Landed in an unwritten extent, try to search 1242 * for hole or data from page cache. 1243 */ 1244 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1245 if (xfs_find_get_desired_pgoff(inode, &map[i], 1246 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1247 &offset)) 1248 goto out; 1249 } 1250 } 1251 1252 /* 1253 * We only received one extent out of the two requested. This 1254 * means we've hit EOF and didn't find what we are looking for. 1255 */ 1256 if (nmap == 1) { 1257 /* 1258 * If we were looking for a hole, set offset to 1259 * the end of the file (i.e., there is an implicit 1260 * hole at the end of any file). 1261 */ 1262 if (whence == SEEK_HOLE) { 1263 offset = end; 1264 break; 1265 } 1266 /* 1267 * If we were looking for data, it's nowhere to be found 1268 */ 1269 ASSERT(whence == SEEK_DATA); 1270 error = -ENXIO; 1271 goto out_error; 1272 } 1273 1274 ASSERT(i > 1); 1275 1276 /* 1277 * Nothing was found, proceed to the next round of search 1278 * if the next reading offset is not at or beyond EOF. 1279 */ 1280 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1281 start = XFS_FSB_TO_B(mp, fsbno); 1282 if (start >= end) { 1283 if (whence == SEEK_HOLE) { 1284 offset = end; 1285 break; 1286 } 1287 ASSERT(whence == SEEK_DATA); 1288 error = -ENXIO; 1289 goto out_error; 1290 } 1291 } 1292 1293 out: 1294 /* 1295 * If at this point we have found the hole we wanted, the returned 1296 * offset may be bigger than the file size as it may be aligned to 1297 * page boundary for unwritten extents. We need to deal with this 1298 * situation in particular. 1299 */ 1300 if (whence == SEEK_HOLE) 1301 offset = min_t(loff_t, offset, end); 1302 1303 return offset; 1304 1305 out_error: 1306 return error; 1307 } 1308 1309 STATIC loff_t 1310 xfs_seek_hole_data( 1311 struct file *file, 1312 loff_t start, 1313 int whence) 1314 { 1315 struct inode *inode = file->f_mapping->host; 1316 struct xfs_inode *ip = XFS_I(inode); 1317 struct xfs_mount *mp = ip->i_mount; 1318 uint lock; 1319 loff_t offset, end; 1320 int error = 0; 1321 1322 if (XFS_FORCED_SHUTDOWN(mp)) 1323 return -EIO; 1324 1325 lock = xfs_ilock_data_map_shared(ip); 1326 1327 end = i_size_read(inode); 1328 offset = __xfs_seek_hole_data(inode, start, end, whence); 1329 if (offset < 0) { 1330 error = offset; 1331 goto out_unlock; 1332 } 1333 1334 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1335 1336 out_unlock: 1337 xfs_iunlock(ip, lock); 1338 1339 if (error) 1340 return error; 1341 return offset; 1342 } 1343 1344 STATIC loff_t 1345 xfs_file_llseek( 1346 struct file *file, 1347 loff_t offset, 1348 int whence) 1349 { 1350 switch (whence) { 1351 case SEEK_END: 1352 case SEEK_CUR: 1353 case SEEK_SET: 1354 return generic_file_llseek(file, offset, whence); 1355 case SEEK_HOLE: 1356 case SEEK_DATA: 1357 return xfs_seek_hole_data(file, offset, whence); 1358 default: 1359 return -EINVAL; 1360 } 1361 } 1362 1363 /* 1364 * Locking for serialisation of IO during page faults. This results in a lock 1365 * ordering of: 1366 * 1367 * mmap_sem (MM) 1368 * sb_start_pagefault(vfs, freeze) 1369 * i_mmaplock (XFS - truncate serialisation) 1370 * page_lock (MM) 1371 * i_lock (XFS - extent map serialisation) 1372 */ 1373 1374 /* 1375 * mmap()d file has taken write protection fault and is being made writable. We 1376 * can set the page state up correctly for a writable page, which means we can 1377 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1378 * mapping. 1379 */ 1380 STATIC int 1381 xfs_filemap_page_mkwrite( 1382 struct vm_fault *vmf) 1383 { 1384 struct inode *inode = file_inode(vmf->vma->vm_file); 1385 int ret; 1386 1387 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1388 1389 sb_start_pagefault(inode->i_sb); 1390 file_update_time(vmf->vma->vm_file); 1391 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1392 1393 if (IS_DAX(inode)) { 1394 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1395 } else { 1396 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1397 ret = block_page_mkwrite_return(ret); 1398 } 1399 1400 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1401 sb_end_pagefault(inode->i_sb); 1402 1403 return ret; 1404 } 1405 1406 STATIC int 1407 xfs_filemap_fault( 1408 struct vm_fault *vmf) 1409 { 1410 struct inode *inode = file_inode(vmf->vma->vm_file); 1411 int ret; 1412 1413 trace_xfs_filemap_fault(XFS_I(inode)); 1414 1415 /* DAX can shortcut the normal fault path on write faults! */ 1416 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1417 return xfs_filemap_page_mkwrite(vmf); 1418 1419 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1420 if (IS_DAX(inode)) 1421 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1422 else 1423 ret = filemap_fault(vmf); 1424 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1425 1426 return ret; 1427 } 1428 1429 /* 1430 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1431 * both read and write faults. Hence we need to handle both cases. There is no 1432 * ->huge_mkwrite callout for huge pages, so we have a single function here to 1433 * handle both cases here. @flags carries the information on the type of fault 1434 * occuring. 1435 */ 1436 STATIC int 1437 xfs_filemap_huge_fault( 1438 struct vm_fault *vmf, 1439 enum page_entry_size pe_size) 1440 { 1441 struct inode *inode = file_inode(vmf->vma->vm_file); 1442 struct xfs_inode *ip = XFS_I(inode); 1443 int ret; 1444 1445 if (!IS_DAX(inode)) 1446 return VM_FAULT_FALLBACK; 1447 1448 trace_xfs_filemap_huge_fault(ip); 1449 1450 if (vmf->flags & FAULT_FLAG_WRITE) { 1451 sb_start_pagefault(inode->i_sb); 1452 file_update_time(vmf->vma->vm_file); 1453 } 1454 1455 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1456 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops); 1457 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1458 1459 if (vmf->flags & FAULT_FLAG_WRITE) 1460 sb_end_pagefault(inode->i_sb); 1461 1462 return ret; 1463 } 1464 1465 /* 1466 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1467 * updates on write faults. In reality, it's need to serialise against 1468 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1469 * to ensure we serialise the fault barrier in place. 1470 */ 1471 static int 1472 xfs_filemap_pfn_mkwrite( 1473 struct vm_fault *vmf) 1474 { 1475 1476 struct inode *inode = file_inode(vmf->vma->vm_file); 1477 struct xfs_inode *ip = XFS_I(inode); 1478 int ret = VM_FAULT_NOPAGE; 1479 loff_t size; 1480 1481 trace_xfs_filemap_pfn_mkwrite(ip); 1482 1483 sb_start_pagefault(inode->i_sb); 1484 file_update_time(vmf->vma->vm_file); 1485 1486 /* check if the faulting page hasn't raced with truncate */ 1487 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1488 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1489 if (vmf->pgoff >= size) 1490 ret = VM_FAULT_SIGBUS; 1491 else if (IS_DAX(inode)) 1492 ret = dax_pfn_mkwrite(vmf); 1493 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1494 sb_end_pagefault(inode->i_sb); 1495 return ret; 1496 1497 } 1498 1499 static const struct vm_operations_struct xfs_file_vm_ops = { 1500 .fault = xfs_filemap_fault, 1501 .huge_fault = xfs_filemap_huge_fault, 1502 .map_pages = filemap_map_pages, 1503 .page_mkwrite = xfs_filemap_page_mkwrite, 1504 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1505 }; 1506 1507 STATIC int 1508 xfs_file_mmap( 1509 struct file *filp, 1510 struct vm_area_struct *vma) 1511 { 1512 file_accessed(filp); 1513 vma->vm_ops = &xfs_file_vm_ops; 1514 if (IS_DAX(file_inode(filp))) 1515 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1516 return 0; 1517 } 1518 1519 const struct file_operations xfs_file_operations = { 1520 .llseek = xfs_file_llseek, 1521 .read_iter = xfs_file_read_iter, 1522 .write_iter = xfs_file_write_iter, 1523 .splice_read = generic_file_splice_read, 1524 .splice_write = iter_file_splice_write, 1525 .unlocked_ioctl = xfs_file_ioctl, 1526 #ifdef CONFIG_COMPAT 1527 .compat_ioctl = xfs_file_compat_ioctl, 1528 #endif 1529 .mmap = xfs_file_mmap, 1530 .open = xfs_file_open, 1531 .release = xfs_file_release, 1532 .fsync = xfs_file_fsync, 1533 .get_unmapped_area = thp_get_unmapped_area, 1534 .fallocate = xfs_file_fallocate, 1535 .clone_file_range = xfs_file_clone_range, 1536 .dedupe_file_range = xfs_file_dedupe_range, 1537 }; 1538 1539 const struct file_operations xfs_dir_file_operations = { 1540 .open = xfs_dir_open, 1541 .read = generic_read_dir, 1542 .iterate_shared = xfs_file_readdir, 1543 .llseek = generic_file_llseek, 1544 .unlocked_ioctl = xfs_file_ioctl, 1545 #ifdef CONFIG_COMPAT 1546 .compat_ioctl = xfs_file_compat_ioctl, 1547 #endif 1548 .fsync = xfs_dir_fsync, 1549 }; 1550