1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_error.h" 35 #include "xfs_dir2.h" 36 #include "xfs_dir2_priv.h" 37 #include "xfs_ioctl.h" 38 #include "xfs_trace.h" 39 #include "xfs_log.h" 40 #include "xfs_dinode.h" 41 42 #include <linux/aio.h> 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 47 static const struct vm_operations_struct xfs_file_vm_ops; 48 49 /* 50 * Locking primitives for read and write IO paths to ensure we consistently use 51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 52 */ 53 static inline void 54 xfs_rw_ilock( 55 struct xfs_inode *ip, 56 int type) 57 { 58 if (type & XFS_IOLOCK_EXCL) 59 mutex_lock(&VFS_I(ip)->i_mutex); 60 xfs_ilock(ip, type); 61 } 62 63 static inline void 64 xfs_rw_iunlock( 65 struct xfs_inode *ip, 66 int type) 67 { 68 xfs_iunlock(ip, type); 69 if (type & XFS_IOLOCK_EXCL) 70 mutex_unlock(&VFS_I(ip)->i_mutex); 71 } 72 73 static inline void 74 xfs_rw_ilock_demote( 75 struct xfs_inode *ip, 76 int type) 77 { 78 xfs_ilock_demote(ip, type); 79 if (type & XFS_IOLOCK_EXCL) 80 mutex_unlock(&VFS_I(ip)->i_mutex); 81 } 82 83 /* 84 * xfs_iozero 85 * 86 * xfs_iozero clears the specified range of buffer supplied, 87 * and marks all the affected blocks as valid and modified. If 88 * an affected block is not allocated, it will be allocated. If 89 * an affected block is not completely overwritten, and is not 90 * valid before the operation, it will be read from disk before 91 * being partially zeroed. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status; 102 103 mapping = VFS_I(ip)->i_mapping; 104 do { 105 unsigned offset, bytes; 106 void *fsdata; 107 108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 109 bytes = PAGE_CACHE_SIZE - offset; 110 if (bytes > count) 111 bytes = count; 112 113 status = pagecache_write_begin(NULL, mapping, pos, bytes, 114 AOP_FLAG_UNINTERRUPTIBLE, 115 &page, &fsdata); 116 if (status) 117 break; 118 119 zero_user(page, offset, bytes); 120 121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 122 page, fsdata); 123 WARN_ON(status <= 0); /* can't return less than zero! */ 124 pos += bytes; 125 count -= bytes; 126 status = 0; 127 } while (count); 128 129 return (-status); 130 } 131 132 /* 133 * Fsync operations on directories are much simpler than on regular files, 134 * as there is no file data to flush, and thus also no need for explicit 135 * cache flush operations, and there are no non-transaction metadata updates 136 * on directories either. 137 */ 138 STATIC int 139 xfs_dir_fsync( 140 struct file *file, 141 loff_t start, 142 loff_t end, 143 int datasync) 144 { 145 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 146 struct xfs_mount *mp = ip->i_mount; 147 xfs_lsn_t lsn = 0; 148 149 trace_xfs_dir_fsync(ip); 150 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) 153 lsn = ip->i_itemp->ili_last_lsn; 154 xfs_iunlock(ip, XFS_ILOCK_SHARED); 155 156 if (!lsn) 157 return 0; 158 return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 159 } 160 161 STATIC int 162 xfs_file_fsync( 163 struct file *file, 164 loff_t start, 165 loff_t end, 166 int datasync) 167 { 168 struct inode *inode = file->f_mapping->host; 169 struct xfs_inode *ip = XFS_I(inode); 170 struct xfs_mount *mp = ip->i_mount; 171 int error = 0; 172 int log_flushed = 0; 173 xfs_lsn_t lsn = 0; 174 175 trace_xfs_file_fsync(ip); 176 177 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 178 if (error) 179 return error; 180 181 if (XFS_FORCED_SHUTDOWN(mp)) 182 return -XFS_ERROR(EIO); 183 184 xfs_iflags_clear(ip, XFS_ITRUNCATED); 185 186 if (mp->m_flags & XFS_MOUNT_BARRIER) { 187 /* 188 * If we have an RT and/or log subvolume we need to make sure 189 * to flush the write cache the device used for file data 190 * first. This is to ensure newly written file data make 191 * it to disk before logging the new inode size in case of 192 * an extending write. 193 */ 194 if (XFS_IS_REALTIME_INODE(ip)) 195 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 196 else if (mp->m_logdev_targp != mp->m_ddev_targp) 197 xfs_blkdev_issue_flush(mp->m_ddev_targp); 198 } 199 200 /* 201 * All metadata updates are logged, which means that we just have 202 * to flush the log up to the latest LSN that touched the inode. 203 */ 204 xfs_ilock(ip, XFS_ILOCK_SHARED); 205 if (xfs_ipincount(ip)) { 206 if (!datasync || 207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 208 lsn = ip->i_itemp->ili_last_lsn; 209 } 210 xfs_iunlock(ip, XFS_ILOCK_SHARED); 211 212 if (lsn) 213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 214 215 /* 216 * If we only have a single device, and the log force about was 217 * a no-op we might have to flush the data device cache here. 218 * This can only happen for fdatasync/O_DSYNC if we were overwriting 219 * an already allocated file and thus do not have any metadata to 220 * commit. 221 */ 222 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 223 mp->m_logdev_targp == mp->m_ddev_targp && 224 !XFS_IS_REALTIME_INODE(ip) && 225 !log_flushed) 226 xfs_blkdev_issue_flush(mp->m_ddev_targp); 227 228 return -error; 229 } 230 231 STATIC ssize_t 232 xfs_file_read_iter( 233 struct kiocb *iocb, 234 struct iov_iter *to) 235 { 236 struct file *file = iocb->ki_filp; 237 struct inode *inode = file->f_mapping->host; 238 struct xfs_inode *ip = XFS_I(inode); 239 struct xfs_mount *mp = ip->i_mount; 240 size_t size = iov_iter_count(to); 241 ssize_t ret = 0; 242 int ioflags = 0; 243 xfs_fsize_t n; 244 loff_t pos = iocb->ki_pos; 245 246 XFS_STATS_INC(xs_read_calls); 247 248 if (unlikely(file->f_flags & O_DIRECT)) 249 ioflags |= IO_ISDIRECT; 250 if (file->f_mode & FMODE_NOCMTIME) 251 ioflags |= IO_INVIS; 252 253 if (unlikely(ioflags & IO_ISDIRECT)) { 254 xfs_buftarg_t *target = 255 XFS_IS_REALTIME_INODE(ip) ? 256 mp->m_rtdev_targp : mp->m_ddev_targp; 257 /* DIO must be aligned to device logical sector size */ 258 if ((pos | size) & target->bt_logical_sectormask) { 259 if (pos == i_size_read(inode)) 260 return 0; 261 return -XFS_ERROR(EINVAL); 262 } 263 } 264 265 n = mp->m_super->s_maxbytes - pos; 266 if (n <= 0 || size == 0) 267 return 0; 268 269 if (n < size) 270 size = n; 271 272 if (XFS_FORCED_SHUTDOWN(mp)) 273 return -EIO; 274 275 /* 276 * Locking is a bit tricky here. If we take an exclusive lock 277 * for direct IO, we effectively serialise all new concurrent 278 * read IO to this file and block it behind IO that is currently in 279 * progress because IO in progress holds the IO lock shared. We only 280 * need to hold the lock exclusive to blow away the page cache, so 281 * only take lock exclusively if the page cache needs invalidation. 282 * This allows the normal direct IO case of no page cache pages to 283 * proceeed concurrently without serialisation. 284 */ 285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 286 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 289 290 if (inode->i_mapping->nrpages) { 291 ret = filemap_write_and_wait_range( 292 VFS_I(ip)->i_mapping, 293 pos, -1); 294 if (ret) { 295 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 296 return ret; 297 } 298 truncate_pagecache_range(VFS_I(ip), pos, -1); 299 } 300 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 301 } 302 303 trace_xfs_file_read(ip, size, pos, ioflags); 304 305 ret = generic_file_read_iter(iocb, to); 306 if (ret > 0) 307 XFS_STATS_ADD(xs_read_bytes, ret); 308 309 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 310 return ret; 311 } 312 313 STATIC ssize_t 314 xfs_file_splice_read( 315 struct file *infilp, 316 loff_t *ppos, 317 struct pipe_inode_info *pipe, 318 size_t count, 319 unsigned int flags) 320 { 321 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 322 int ioflags = 0; 323 ssize_t ret; 324 325 XFS_STATS_INC(xs_read_calls); 326 327 if (infilp->f_mode & FMODE_NOCMTIME) 328 ioflags |= IO_INVIS; 329 330 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 331 return -EIO; 332 333 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 334 335 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 336 337 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 338 if (ret > 0) 339 XFS_STATS_ADD(xs_read_bytes, ret); 340 341 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 342 return ret; 343 } 344 345 /* 346 * This routine is called to handle zeroing any space in the last block of the 347 * file that is beyond the EOF. We do this since the size is being increased 348 * without writing anything to that block and we don't want to read the 349 * garbage on the disk. 350 */ 351 STATIC int /* error (positive) */ 352 xfs_zero_last_block( 353 struct xfs_inode *ip, 354 xfs_fsize_t offset, 355 xfs_fsize_t isize) 356 { 357 struct xfs_mount *mp = ip->i_mount; 358 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 359 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 360 int zero_len; 361 int nimaps = 1; 362 int error = 0; 363 struct xfs_bmbt_irec imap; 364 365 xfs_ilock(ip, XFS_ILOCK_EXCL); 366 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 367 xfs_iunlock(ip, XFS_ILOCK_EXCL); 368 if (error) 369 return error; 370 371 ASSERT(nimaps > 0); 372 373 /* 374 * If the block underlying isize is just a hole, then there 375 * is nothing to zero. 376 */ 377 if (imap.br_startblock == HOLESTARTBLOCK) 378 return 0; 379 380 zero_len = mp->m_sb.sb_blocksize - zero_offset; 381 if (isize + zero_len > offset) 382 zero_len = offset - isize; 383 return xfs_iozero(ip, isize, zero_len); 384 } 385 386 /* 387 * Zero any on disk space between the current EOF and the new, larger EOF. 388 * 389 * This handles the normal case of zeroing the remainder of the last block in 390 * the file and the unusual case of zeroing blocks out beyond the size of the 391 * file. This second case only happens with fixed size extents and when the 392 * system crashes before the inode size was updated but after blocks were 393 * allocated. 394 * 395 * Expects the iolock to be held exclusive, and will take the ilock internally. 396 */ 397 int /* error (positive) */ 398 xfs_zero_eof( 399 struct xfs_inode *ip, 400 xfs_off_t offset, /* starting I/O offset */ 401 xfs_fsize_t isize) /* current inode size */ 402 { 403 struct xfs_mount *mp = ip->i_mount; 404 xfs_fileoff_t start_zero_fsb; 405 xfs_fileoff_t end_zero_fsb; 406 xfs_fileoff_t zero_count_fsb; 407 xfs_fileoff_t last_fsb; 408 xfs_fileoff_t zero_off; 409 xfs_fsize_t zero_len; 410 int nimaps; 411 int error = 0; 412 struct xfs_bmbt_irec imap; 413 414 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 415 ASSERT(offset > isize); 416 417 /* 418 * First handle zeroing the block on which isize resides. 419 * 420 * We only zero a part of that block so it is handled specially. 421 */ 422 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 423 error = xfs_zero_last_block(ip, offset, isize); 424 if (error) 425 return error; 426 } 427 428 /* 429 * Calculate the range between the new size and the old where blocks 430 * needing to be zeroed may exist. 431 * 432 * To get the block where the last byte in the file currently resides, 433 * we need to subtract one from the size and truncate back to a block 434 * boundary. We subtract 1 in case the size is exactly on a block 435 * boundary. 436 */ 437 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 438 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 439 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 440 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 441 if (last_fsb == end_zero_fsb) { 442 /* 443 * The size was only incremented on its last block. 444 * We took care of that above, so just return. 445 */ 446 return 0; 447 } 448 449 ASSERT(start_zero_fsb <= end_zero_fsb); 450 while (start_zero_fsb <= end_zero_fsb) { 451 nimaps = 1; 452 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 453 454 xfs_ilock(ip, XFS_ILOCK_EXCL); 455 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 456 &imap, &nimaps, 0); 457 xfs_iunlock(ip, XFS_ILOCK_EXCL); 458 if (error) 459 return error; 460 461 ASSERT(nimaps > 0); 462 463 if (imap.br_state == XFS_EXT_UNWRITTEN || 464 imap.br_startblock == HOLESTARTBLOCK) { 465 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 466 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 467 continue; 468 } 469 470 /* 471 * There are blocks we need to zero. 472 */ 473 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 474 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 475 476 if ((zero_off + zero_len) > offset) 477 zero_len = offset - zero_off; 478 479 error = xfs_iozero(ip, zero_off, zero_len); 480 if (error) 481 return error; 482 483 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 484 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 485 } 486 487 return 0; 488 } 489 490 /* 491 * Common pre-write limit and setup checks. 492 * 493 * Called with the iolocked held either shared and exclusive according to 494 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 495 * if called for a direct write beyond i_size. 496 */ 497 STATIC ssize_t 498 xfs_file_aio_write_checks( 499 struct file *file, 500 loff_t *pos, 501 size_t *count, 502 int *iolock) 503 { 504 struct inode *inode = file->f_mapping->host; 505 struct xfs_inode *ip = XFS_I(inode); 506 int error = 0; 507 508 restart: 509 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 510 if (error) 511 return error; 512 513 /* 514 * If the offset is beyond the size of the file, we need to zero any 515 * blocks that fall between the existing EOF and the start of this 516 * write. If zeroing is needed and we are currently holding the 517 * iolock shared, we need to update it to exclusive which implies 518 * having to redo all checks before. 519 */ 520 if (*pos > i_size_read(inode)) { 521 if (*iolock == XFS_IOLOCK_SHARED) { 522 xfs_rw_iunlock(ip, *iolock); 523 *iolock = XFS_IOLOCK_EXCL; 524 xfs_rw_ilock(ip, *iolock); 525 goto restart; 526 } 527 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 528 if (error) 529 return error; 530 } 531 532 /* 533 * Updating the timestamps will grab the ilock again from 534 * xfs_fs_dirty_inode, so we have to call it after dropping the 535 * lock above. Eventually we should look into a way to avoid 536 * the pointless lock roundtrip. 537 */ 538 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 539 error = file_update_time(file); 540 if (error) 541 return error; 542 } 543 544 /* 545 * If we're writing the file then make sure to clear the setuid and 546 * setgid bits if the process is not being run by root. This keeps 547 * people from modifying setuid and setgid binaries. 548 */ 549 return file_remove_suid(file); 550 } 551 552 /* 553 * xfs_file_dio_aio_write - handle direct IO writes 554 * 555 * Lock the inode appropriately to prepare for and issue a direct IO write. 556 * By separating it from the buffered write path we remove all the tricky to 557 * follow locking changes and looping. 558 * 559 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 560 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 561 * pages are flushed out. 562 * 563 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 564 * allowing them to be done in parallel with reads and other direct IO writes. 565 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 566 * needs to do sub-block zeroing and that requires serialisation against other 567 * direct IOs to the same block. In this case we need to serialise the 568 * submission of the unaligned IOs so that we don't get racing block zeroing in 569 * the dio layer. To avoid the problem with aio, we also need to wait for 570 * outstanding IOs to complete so that unwritten extent conversion is completed 571 * before we try to map the overlapping block. This is currently implemented by 572 * hitting it with a big hammer (i.e. inode_dio_wait()). 573 * 574 * Returns with locks held indicated by @iolock and errors indicated by 575 * negative return values. 576 */ 577 STATIC ssize_t 578 xfs_file_dio_aio_write( 579 struct kiocb *iocb, 580 struct iov_iter *from) 581 { 582 struct file *file = iocb->ki_filp; 583 struct address_space *mapping = file->f_mapping; 584 struct inode *inode = mapping->host; 585 struct xfs_inode *ip = XFS_I(inode); 586 struct xfs_mount *mp = ip->i_mount; 587 ssize_t ret = 0; 588 int unaligned_io = 0; 589 int iolock; 590 size_t count = iov_iter_count(from); 591 loff_t pos = iocb->ki_pos; 592 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 593 mp->m_rtdev_targp : mp->m_ddev_targp; 594 595 /* DIO must be aligned to device logical sector size */ 596 if ((pos | count) & target->bt_logical_sectormask) 597 return -XFS_ERROR(EINVAL); 598 599 /* "unaligned" here means not aligned to a filesystem block */ 600 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 601 unaligned_io = 1; 602 603 /* 604 * We don't need to take an exclusive lock unless there page cache needs 605 * to be invalidated or unaligned IO is being executed. We don't need to 606 * consider the EOF extension case here because 607 * xfs_file_aio_write_checks() will relock the inode as necessary for 608 * EOF zeroing cases and fill out the new inode size as appropriate. 609 */ 610 if (unaligned_io || mapping->nrpages) 611 iolock = XFS_IOLOCK_EXCL; 612 else 613 iolock = XFS_IOLOCK_SHARED; 614 xfs_rw_ilock(ip, iolock); 615 616 /* 617 * Recheck if there are cached pages that need invalidate after we got 618 * the iolock to protect against other threads adding new pages while 619 * we were waiting for the iolock. 620 */ 621 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 622 xfs_rw_iunlock(ip, iolock); 623 iolock = XFS_IOLOCK_EXCL; 624 xfs_rw_ilock(ip, iolock); 625 } 626 627 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 628 if (ret) 629 goto out; 630 iov_iter_truncate(from, count); 631 632 if (mapping->nrpages) { 633 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 634 pos, -1); 635 if (ret) 636 goto out; 637 truncate_pagecache_range(VFS_I(ip), pos, -1); 638 } 639 640 /* 641 * If we are doing unaligned IO, wait for all other IO to drain, 642 * otherwise demote the lock if we had to flush cached pages 643 */ 644 if (unaligned_io) 645 inode_dio_wait(inode); 646 else if (iolock == XFS_IOLOCK_EXCL) { 647 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 648 iolock = XFS_IOLOCK_SHARED; 649 } 650 651 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 652 ret = generic_file_direct_write(iocb, from, pos); 653 654 out: 655 xfs_rw_iunlock(ip, iolock); 656 657 /* No fallback to buffered IO on errors for XFS. */ 658 ASSERT(ret < 0 || ret == count); 659 return ret; 660 } 661 662 STATIC ssize_t 663 xfs_file_buffered_aio_write( 664 struct kiocb *iocb, 665 struct iov_iter *from) 666 { 667 struct file *file = iocb->ki_filp; 668 struct address_space *mapping = file->f_mapping; 669 struct inode *inode = mapping->host; 670 struct xfs_inode *ip = XFS_I(inode); 671 ssize_t ret; 672 int enospc = 0; 673 int iolock = XFS_IOLOCK_EXCL; 674 loff_t pos = iocb->ki_pos; 675 size_t count = iov_iter_count(from); 676 677 xfs_rw_ilock(ip, iolock); 678 679 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 680 if (ret) 681 goto out; 682 683 iov_iter_truncate(from, count); 684 /* We can write back this queue in page reclaim */ 685 current->backing_dev_info = mapping->backing_dev_info; 686 687 write_retry: 688 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 689 ret = generic_perform_write(file, from, pos); 690 if (likely(ret >= 0)) 691 iocb->ki_pos = pos + ret; 692 /* 693 * If we just got an ENOSPC, try to write back all dirty inodes to 694 * convert delalloc space to free up some of the excess reserved 695 * metadata space. 696 */ 697 if (ret == -ENOSPC && !enospc) { 698 enospc = 1; 699 xfs_flush_inodes(ip->i_mount); 700 goto write_retry; 701 } 702 703 current->backing_dev_info = NULL; 704 out: 705 xfs_rw_iunlock(ip, iolock); 706 return ret; 707 } 708 709 STATIC ssize_t 710 xfs_file_write_iter( 711 struct kiocb *iocb, 712 struct iov_iter *from) 713 { 714 struct file *file = iocb->ki_filp; 715 struct address_space *mapping = file->f_mapping; 716 struct inode *inode = mapping->host; 717 struct xfs_inode *ip = XFS_I(inode); 718 ssize_t ret; 719 size_t ocount = iov_iter_count(from); 720 721 XFS_STATS_INC(xs_write_calls); 722 723 if (ocount == 0) 724 return 0; 725 726 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 727 return -EIO; 728 729 if (unlikely(file->f_flags & O_DIRECT)) 730 ret = xfs_file_dio_aio_write(iocb, from); 731 else 732 ret = xfs_file_buffered_aio_write(iocb, from); 733 734 if (ret > 0) { 735 ssize_t err; 736 737 XFS_STATS_ADD(xs_write_bytes, ret); 738 739 /* Handle various SYNC-type writes */ 740 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 741 if (err < 0) 742 ret = err; 743 } 744 return ret; 745 } 746 747 STATIC long 748 xfs_file_fallocate( 749 struct file *file, 750 int mode, 751 loff_t offset, 752 loff_t len) 753 { 754 struct inode *inode = file_inode(file); 755 struct xfs_inode *ip = XFS_I(inode); 756 struct xfs_trans *tp; 757 long error; 758 loff_t new_size = 0; 759 760 if (!S_ISREG(inode->i_mode)) 761 return -EINVAL; 762 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 763 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 764 return -EOPNOTSUPP; 765 766 xfs_ilock(ip, XFS_IOLOCK_EXCL); 767 if (mode & FALLOC_FL_PUNCH_HOLE) { 768 error = xfs_free_file_space(ip, offset, len); 769 if (error) 770 goto out_unlock; 771 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 772 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 773 774 if (offset & blksize_mask || len & blksize_mask) { 775 error = EINVAL; 776 goto out_unlock; 777 } 778 779 /* 780 * There is no need to overlap collapse range with EOF, 781 * in which case it is effectively a truncate operation 782 */ 783 if (offset + len >= i_size_read(inode)) { 784 error = EINVAL; 785 goto out_unlock; 786 } 787 788 new_size = i_size_read(inode) - len; 789 790 error = xfs_collapse_file_space(ip, offset, len); 791 if (error) 792 goto out_unlock; 793 } else { 794 if (!(mode & FALLOC_FL_KEEP_SIZE) && 795 offset + len > i_size_read(inode)) { 796 new_size = offset + len; 797 error = -inode_newsize_ok(inode, new_size); 798 if (error) 799 goto out_unlock; 800 } 801 802 if (mode & FALLOC_FL_ZERO_RANGE) 803 error = xfs_zero_file_space(ip, offset, len); 804 else 805 error = xfs_alloc_file_space(ip, offset, len, 806 XFS_BMAPI_PREALLOC); 807 if (error) 808 goto out_unlock; 809 } 810 811 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 812 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 813 if (error) { 814 xfs_trans_cancel(tp, 0); 815 goto out_unlock; 816 } 817 818 xfs_ilock(ip, XFS_ILOCK_EXCL); 819 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 820 ip->i_d.di_mode &= ~S_ISUID; 821 if (ip->i_d.di_mode & S_IXGRP) 822 ip->i_d.di_mode &= ~S_ISGID; 823 824 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE))) 825 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 826 827 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 828 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 829 830 if (file->f_flags & O_DSYNC) 831 xfs_trans_set_sync(tp); 832 error = xfs_trans_commit(tp, 0); 833 if (error) 834 goto out_unlock; 835 836 /* Change file size if needed */ 837 if (new_size) { 838 struct iattr iattr; 839 840 iattr.ia_valid = ATTR_SIZE; 841 iattr.ia_size = new_size; 842 error = xfs_setattr_size(ip, &iattr); 843 } 844 845 out_unlock: 846 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 847 return -error; 848 } 849 850 851 STATIC int 852 xfs_file_open( 853 struct inode *inode, 854 struct file *file) 855 { 856 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 857 return -EFBIG; 858 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 859 return -EIO; 860 return 0; 861 } 862 863 STATIC int 864 xfs_dir_open( 865 struct inode *inode, 866 struct file *file) 867 { 868 struct xfs_inode *ip = XFS_I(inode); 869 int mode; 870 int error; 871 872 error = xfs_file_open(inode, file); 873 if (error) 874 return error; 875 876 /* 877 * If there are any blocks, read-ahead block 0 as we're almost 878 * certain to have the next operation be a read there. 879 */ 880 mode = xfs_ilock_data_map_shared(ip); 881 if (ip->i_d.di_nextents > 0) 882 xfs_dir3_data_readahead(ip, 0, -1); 883 xfs_iunlock(ip, mode); 884 return 0; 885 } 886 887 STATIC int 888 xfs_file_release( 889 struct inode *inode, 890 struct file *filp) 891 { 892 return -xfs_release(XFS_I(inode)); 893 } 894 895 STATIC int 896 xfs_file_readdir( 897 struct file *file, 898 struct dir_context *ctx) 899 { 900 struct inode *inode = file_inode(file); 901 xfs_inode_t *ip = XFS_I(inode); 902 int error; 903 size_t bufsize; 904 905 /* 906 * The Linux API doesn't pass down the total size of the buffer 907 * we read into down to the filesystem. With the filldir concept 908 * it's not needed for correct information, but the XFS dir2 leaf 909 * code wants an estimate of the buffer size to calculate it's 910 * readahead window and size the buffers used for mapping to 911 * physical blocks. 912 * 913 * Try to give it an estimate that's good enough, maybe at some 914 * point we can change the ->readdir prototype to include the 915 * buffer size. For now we use the current glibc buffer size. 916 */ 917 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 918 919 error = xfs_readdir(ip, ctx, bufsize); 920 if (error) 921 return -error; 922 return 0; 923 } 924 925 STATIC int 926 xfs_file_mmap( 927 struct file *filp, 928 struct vm_area_struct *vma) 929 { 930 vma->vm_ops = &xfs_file_vm_ops; 931 932 file_accessed(filp); 933 return 0; 934 } 935 936 /* 937 * mmap()d file has taken write protection fault and is being made 938 * writable. We can set the page state up correctly for a writable 939 * page, which means we can do correct delalloc accounting (ENOSPC 940 * checking!) and unwritten extent mapping. 941 */ 942 STATIC int 943 xfs_vm_page_mkwrite( 944 struct vm_area_struct *vma, 945 struct vm_fault *vmf) 946 { 947 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 948 } 949 950 /* 951 * This type is designed to indicate the type of offset we would like 952 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 953 */ 954 enum { 955 HOLE_OFF = 0, 956 DATA_OFF, 957 }; 958 959 /* 960 * Lookup the desired type of offset from the given page. 961 * 962 * On success, return true and the offset argument will point to the 963 * start of the region that was found. Otherwise this function will 964 * return false and keep the offset argument unchanged. 965 */ 966 STATIC bool 967 xfs_lookup_buffer_offset( 968 struct page *page, 969 loff_t *offset, 970 unsigned int type) 971 { 972 loff_t lastoff = page_offset(page); 973 bool found = false; 974 struct buffer_head *bh, *head; 975 976 bh = head = page_buffers(page); 977 do { 978 /* 979 * Unwritten extents that have data in the page 980 * cache covering them can be identified by the 981 * BH_Unwritten state flag. Pages with multiple 982 * buffers might have a mix of holes, data and 983 * unwritten extents - any buffer with valid 984 * data in it should have BH_Uptodate flag set 985 * on it. 986 */ 987 if (buffer_unwritten(bh) || 988 buffer_uptodate(bh)) { 989 if (type == DATA_OFF) 990 found = true; 991 } else { 992 if (type == HOLE_OFF) 993 found = true; 994 } 995 996 if (found) { 997 *offset = lastoff; 998 break; 999 } 1000 lastoff += bh->b_size; 1001 } while ((bh = bh->b_this_page) != head); 1002 1003 return found; 1004 } 1005 1006 /* 1007 * This routine is called to find out and return a data or hole offset 1008 * from the page cache for unwritten extents according to the desired 1009 * type for xfs_seek_data() or xfs_seek_hole(). 1010 * 1011 * The argument offset is used to tell where we start to search from the 1012 * page cache. Map is used to figure out the end points of the range to 1013 * lookup pages. 1014 * 1015 * Return true if the desired type of offset was found, and the argument 1016 * offset is filled with that address. Otherwise, return false and keep 1017 * offset unchanged. 1018 */ 1019 STATIC bool 1020 xfs_find_get_desired_pgoff( 1021 struct inode *inode, 1022 struct xfs_bmbt_irec *map, 1023 unsigned int type, 1024 loff_t *offset) 1025 { 1026 struct xfs_inode *ip = XFS_I(inode); 1027 struct xfs_mount *mp = ip->i_mount; 1028 struct pagevec pvec; 1029 pgoff_t index; 1030 pgoff_t end; 1031 loff_t endoff; 1032 loff_t startoff = *offset; 1033 loff_t lastoff = startoff; 1034 bool found = false; 1035 1036 pagevec_init(&pvec, 0); 1037 1038 index = startoff >> PAGE_CACHE_SHIFT; 1039 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1040 end = endoff >> PAGE_CACHE_SHIFT; 1041 do { 1042 int want; 1043 unsigned nr_pages; 1044 unsigned int i; 1045 1046 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1047 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1048 want); 1049 /* 1050 * No page mapped into given range. If we are searching holes 1051 * and if this is the first time we got into the loop, it means 1052 * that the given offset is landed in a hole, return it. 1053 * 1054 * If we have already stepped through some block buffers to find 1055 * holes but they all contains data. In this case, the last 1056 * offset is already updated and pointed to the end of the last 1057 * mapped page, if it does not reach the endpoint to search, 1058 * that means there should be a hole between them. 1059 */ 1060 if (nr_pages == 0) { 1061 /* Data search found nothing */ 1062 if (type == DATA_OFF) 1063 break; 1064 1065 ASSERT(type == HOLE_OFF); 1066 if (lastoff == startoff || lastoff < endoff) { 1067 found = true; 1068 *offset = lastoff; 1069 } 1070 break; 1071 } 1072 1073 /* 1074 * At lease we found one page. If this is the first time we 1075 * step into the loop, and if the first page index offset is 1076 * greater than the given search offset, a hole was found. 1077 */ 1078 if (type == HOLE_OFF && lastoff == startoff && 1079 lastoff < page_offset(pvec.pages[0])) { 1080 found = true; 1081 break; 1082 } 1083 1084 for (i = 0; i < nr_pages; i++) { 1085 struct page *page = pvec.pages[i]; 1086 loff_t b_offset; 1087 1088 /* 1089 * At this point, the page may be truncated or 1090 * invalidated (changing page->mapping to NULL), 1091 * or even swizzled back from swapper_space to tmpfs 1092 * file mapping. However, page->index will not change 1093 * because we have a reference on the page. 1094 * 1095 * Searching done if the page index is out of range. 1096 * If the current offset is not reaches the end of 1097 * the specified search range, there should be a hole 1098 * between them. 1099 */ 1100 if (page->index > end) { 1101 if (type == HOLE_OFF && lastoff < endoff) { 1102 *offset = lastoff; 1103 found = true; 1104 } 1105 goto out; 1106 } 1107 1108 lock_page(page); 1109 /* 1110 * Page truncated or invalidated(page->mapping == NULL). 1111 * We can freely skip it and proceed to check the next 1112 * page. 1113 */ 1114 if (unlikely(page->mapping != inode->i_mapping)) { 1115 unlock_page(page); 1116 continue; 1117 } 1118 1119 if (!page_has_buffers(page)) { 1120 unlock_page(page); 1121 continue; 1122 } 1123 1124 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1125 if (found) { 1126 /* 1127 * The found offset may be less than the start 1128 * point to search if this is the first time to 1129 * come here. 1130 */ 1131 *offset = max_t(loff_t, startoff, b_offset); 1132 unlock_page(page); 1133 goto out; 1134 } 1135 1136 /* 1137 * We either searching data but nothing was found, or 1138 * searching hole but found a data buffer. In either 1139 * case, probably the next page contains the desired 1140 * things, update the last offset to it so. 1141 */ 1142 lastoff = page_offset(page) + PAGE_SIZE; 1143 unlock_page(page); 1144 } 1145 1146 /* 1147 * The number of returned pages less than our desired, search 1148 * done. In this case, nothing was found for searching data, 1149 * but we found a hole behind the last offset. 1150 */ 1151 if (nr_pages < want) { 1152 if (type == HOLE_OFF) { 1153 *offset = lastoff; 1154 found = true; 1155 } 1156 break; 1157 } 1158 1159 index = pvec.pages[i - 1]->index + 1; 1160 pagevec_release(&pvec); 1161 } while (index <= end); 1162 1163 out: 1164 pagevec_release(&pvec); 1165 return found; 1166 } 1167 1168 STATIC loff_t 1169 xfs_seek_data( 1170 struct file *file, 1171 loff_t start) 1172 { 1173 struct inode *inode = file->f_mapping->host; 1174 struct xfs_inode *ip = XFS_I(inode); 1175 struct xfs_mount *mp = ip->i_mount; 1176 loff_t uninitialized_var(offset); 1177 xfs_fsize_t isize; 1178 xfs_fileoff_t fsbno; 1179 xfs_filblks_t end; 1180 uint lock; 1181 int error; 1182 1183 lock = xfs_ilock_data_map_shared(ip); 1184 1185 isize = i_size_read(inode); 1186 if (start >= isize) { 1187 error = ENXIO; 1188 goto out_unlock; 1189 } 1190 1191 /* 1192 * Try to read extents from the first block indicated 1193 * by fsbno to the end block of the file. 1194 */ 1195 fsbno = XFS_B_TO_FSBT(mp, start); 1196 end = XFS_B_TO_FSB(mp, isize); 1197 for (;;) { 1198 struct xfs_bmbt_irec map[2]; 1199 int nmap = 2; 1200 unsigned int i; 1201 1202 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1203 XFS_BMAPI_ENTIRE); 1204 if (error) 1205 goto out_unlock; 1206 1207 /* No extents at given offset, must be beyond EOF */ 1208 if (nmap == 0) { 1209 error = ENXIO; 1210 goto out_unlock; 1211 } 1212 1213 for (i = 0; i < nmap; i++) { 1214 offset = max_t(loff_t, start, 1215 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1216 1217 /* Landed in a data extent */ 1218 if (map[i].br_startblock == DELAYSTARTBLOCK || 1219 (map[i].br_state == XFS_EXT_NORM && 1220 !isnullstartblock(map[i].br_startblock))) 1221 goto out; 1222 1223 /* 1224 * Landed in an unwritten extent, try to search data 1225 * from page cache. 1226 */ 1227 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1228 if (xfs_find_get_desired_pgoff(inode, &map[i], 1229 DATA_OFF, &offset)) 1230 goto out; 1231 } 1232 } 1233 1234 /* 1235 * map[0] is hole or its an unwritten extent but 1236 * without data in page cache. Probably means that 1237 * we are reading after EOF if nothing in map[1]. 1238 */ 1239 if (nmap == 1) { 1240 error = ENXIO; 1241 goto out_unlock; 1242 } 1243 1244 ASSERT(i > 1); 1245 1246 /* 1247 * Nothing was found, proceed to the next round of search 1248 * if reading offset not beyond or hit EOF. 1249 */ 1250 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1251 start = XFS_FSB_TO_B(mp, fsbno); 1252 if (start >= isize) { 1253 error = ENXIO; 1254 goto out_unlock; 1255 } 1256 } 1257 1258 out: 1259 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1260 1261 out_unlock: 1262 xfs_iunlock(ip, lock); 1263 1264 if (error) 1265 return -error; 1266 return offset; 1267 } 1268 1269 STATIC loff_t 1270 xfs_seek_hole( 1271 struct file *file, 1272 loff_t start) 1273 { 1274 struct inode *inode = file->f_mapping->host; 1275 struct xfs_inode *ip = XFS_I(inode); 1276 struct xfs_mount *mp = ip->i_mount; 1277 loff_t uninitialized_var(offset); 1278 xfs_fsize_t isize; 1279 xfs_fileoff_t fsbno; 1280 xfs_filblks_t end; 1281 uint lock; 1282 int error; 1283 1284 if (XFS_FORCED_SHUTDOWN(mp)) 1285 return -XFS_ERROR(EIO); 1286 1287 lock = xfs_ilock_data_map_shared(ip); 1288 1289 isize = i_size_read(inode); 1290 if (start >= isize) { 1291 error = ENXIO; 1292 goto out_unlock; 1293 } 1294 1295 fsbno = XFS_B_TO_FSBT(mp, start); 1296 end = XFS_B_TO_FSB(mp, isize); 1297 1298 for (;;) { 1299 struct xfs_bmbt_irec map[2]; 1300 int nmap = 2; 1301 unsigned int i; 1302 1303 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1304 XFS_BMAPI_ENTIRE); 1305 if (error) 1306 goto out_unlock; 1307 1308 /* No extents at given offset, must be beyond EOF */ 1309 if (nmap == 0) { 1310 error = ENXIO; 1311 goto out_unlock; 1312 } 1313 1314 for (i = 0; i < nmap; i++) { 1315 offset = max_t(loff_t, start, 1316 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1317 1318 /* Landed in a hole */ 1319 if (map[i].br_startblock == HOLESTARTBLOCK) 1320 goto out; 1321 1322 /* 1323 * Landed in an unwritten extent, try to search hole 1324 * from page cache. 1325 */ 1326 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1327 if (xfs_find_get_desired_pgoff(inode, &map[i], 1328 HOLE_OFF, &offset)) 1329 goto out; 1330 } 1331 } 1332 1333 /* 1334 * map[0] contains data or its unwritten but contains 1335 * data in page cache, probably means that we are 1336 * reading after EOF. We should fix offset to point 1337 * to the end of the file(i.e., there is an implicit 1338 * hole at the end of any file). 1339 */ 1340 if (nmap == 1) { 1341 offset = isize; 1342 break; 1343 } 1344 1345 ASSERT(i > 1); 1346 1347 /* 1348 * Both mappings contains data, proceed to the next round of 1349 * search if the current reading offset not beyond or hit EOF. 1350 */ 1351 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1352 start = XFS_FSB_TO_B(mp, fsbno); 1353 if (start >= isize) { 1354 offset = isize; 1355 break; 1356 } 1357 } 1358 1359 out: 1360 /* 1361 * At this point, we must have found a hole. However, the returned 1362 * offset may be bigger than the file size as it may be aligned to 1363 * page boundary for unwritten extents, we need to deal with this 1364 * situation in particular. 1365 */ 1366 offset = min_t(loff_t, offset, isize); 1367 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1368 1369 out_unlock: 1370 xfs_iunlock(ip, lock); 1371 1372 if (error) 1373 return -error; 1374 return offset; 1375 } 1376 1377 STATIC loff_t 1378 xfs_file_llseek( 1379 struct file *file, 1380 loff_t offset, 1381 int origin) 1382 { 1383 switch (origin) { 1384 case SEEK_END: 1385 case SEEK_CUR: 1386 case SEEK_SET: 1387 return generic_file_llseek(file, offset, origin); 1388 case SEEK_DATA: 1389 return xfs_seek_data(file, offset); 1390 case SEEK_HOLE: 1391 return xfs_seek_hole(file, offset); 1392 default: 1393 return -EINVAL; 1394 } 1395 } 1396 1397 const struct file_operations xfs_file_operations = { 1398 .llseek = xfs_file_llseek, 1399 .read = new_sync_read, 1400 .write = new_sync_write, 1401 .read_iter = xfs_file_read_iter, 1402 .write_iter = xfs_file_write_iter, 1403 .splice_read = xfs_file_splice_read, 1404 .splice_write = iter_file_splice_write, 1405 .unlocked_ioctl = xfs_file_ioctl, 1406 #ifdef CONFIG_COMPAT 1407 .compat_ioctl = xfs_file_compat_ioctl, 1408 #endif 1409 .mmap = xfs_file_mmap, 1410 .open = xfs_file_open, 1411 .release = xfs_file_release, 1412 .fsync = xfs_file_fsync, 1413 .fallocate = xfs_file_fallocate, 1414 }; 1415 1416 const struct file_operations xfs_dir_file_operations = { 1417 .open = xfs_dir_open, 1418 .read = generic_read_dir, 1419 .iterate = xfs_file_readdir, 1420 .llseek = generic_file_llseek, 1421 .unlocked_ioctl = xfs_file_ioctl, 1422 #ifdef CONFIG_COMPAT 1423 .compat_ioctl = xfs_file_compat_ioctl, 1424 #endif 1425 .fsync = xfs_dir_fsync, 1426 }; 1427 1428 static const struct vm_operations_struct xfs_file_vm_ops = { 1429 .fault = filemap_fault, 1430 .map_pages = filemap_map_pages, 1431 .page_mkwrite = xfs_vm_page_mkwrite, 1432 .remap_pages = generic_file_remap_pages, 1433 }; 1434