xref: /openbmc/linux/fs/xfs/xfs_file.c (revision cd6d421e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 #include <linux/mount.h>
33 
34 static const struct vm_operations_struct xfs_file_vm_ops;
35 
36 /*
37  * Decide if the given file range is aligned to the size of the fundamental
38  * allocation unit for the file.
39  */
40 static bool
41 xfs_is_falloc_aligned(
42 	struct xfs_inode	*ip,
43 	loff_t			pos,
44 	long long int		len)
45 {
46 	struct xfs_mount	*mp = ip->i_mount;
47 	uint64_t		mask;
48 
49 	if (XFS_IS_REALTIME_INODE(ip)) {
50 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 			u64	rextbytes;
52 			u32	mod;
53 
54 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 			div_u64_rem(pos, rextbytes, &mod);
56 			if (mod)
57 				return false;
58 			div_u64_rem(len, rextbytes, &mod);
59 			return mod == 0;
60 		}
61 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 	} else {
63 		mask = mp->m_sb.sb_blocksize - 1;
64 	}
65 
66 	return !((pos | len) & mask);
67 }
68 
69 int
70 xfs_update_prealloc_flags(
71 	struct xfs_inode	*ip,
72 	enum xfs_prealloc_flags	flags)
73 {
74 	struct xfs_trans	*tp;
75 	int			error;
76 
77 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 			0, 0, 0, &tp);
79 	if (error)
80 		return error;
81 
82 	xfs_ilock(ip, XFS_ILOCK_EXCL);
83 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
84 
85 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
86 		VFS_I(ip)->i_mode &= ~S_ISUID;
87 		if (VFS_I(ip)->i_mode & S_IXGRP)
88 			VFS_I(ip)->i_mode &= ~S_ISGID;
89 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
90 	}
91 
92 	if (flags & XFS_PREALLOC_SET)
93 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
94 	if (flags & XFS_PREALLOC_CLEAR)
95 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
96 
97 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
98 	if (flags & XFS_PREALLOC_SYNC)
99 		xfs_trans_set_sync(tp);
100 	return xfs_trans_commit(tp);
101 }
102 
103 /*
104  * Fsync operations on directories are much simpler than on regular files,
105  * as there is no file data to flush, and thus also no need for explicit
106  * cache flush operations, and there are no non-transaction metadata updates
107  * on directories either.
108  */
109 STATIC int
110 xfs_dir_fsync(
111 	struct file		*file,
112 	loff_t			start,
113 	loff_t			end,
114 	int			datasync)
115 {
116 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
117 
118 	trace_xfs_dir_fsync(ip);
119 	return xfs_log_force_inode(ip);
120 }
121 
122 static xfs_lsn_t
123 xfs_fsync_lsn(
124 	struct xfs_inode	*ip,
125 	bool			datasync)
126 {
127 	if (!xfs_ipincount(ip))
128 		return 0;
129 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
130 		return 0;
131 	return ip->i_itemp->ili_last_lsn;
132 }
133 
134 /*
135  * All metadata updates are logged, which means that we just have to flush the
136  * log up to the latest LSN that touched the inode.
137  *
138  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
139  * the log force before we clear the ili_fsync_fields field. This ensures that
140  * we don't get a racing sync operation that does not wait for the metadata to
141  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
142  * then all that will happen is the log force will do nothing as the lsn will
143  * already be on disk.  We can't race with setting ili_fsync_fields because that
144  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
145  * shared until after the ili_fsync_fields is cleared.
146  */
147 static  int
148 xfs_fsync_flush_log(
149 	struct xfs_inode	*ip,
150 	bool			datasync,
151 	int			*log_flushed)
152 {
153 	int			error = 0;
154 	xfs_lsn_t		lsn;
155 
156 	xfs_ilock(ip, XFS_ILOCK_SHARED);
157 	lsn = xfs_fsync_lsn(ip, datasync);
158 	if (lsn) {
159 		error = xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC,
160 					  log_flushed);
161 
162 		spin_lock(&ip->i_itemp->ili_lock);
163 		ip->i_itemp->ili_fsync_fields = 0;
164 		spin_unlock(&ip->i_itemp->ili_lock);
165 	}
166 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
167 	return error;
168 }
169 
170 STATIC int
171 xfs_file_fsync(
172 	struct file		*file,
173 	loff_t			start,
174 	loff_t			end,
175 	int			datasync)
176 {
177 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
178 	struct xfs_mount	*mp = ip->i_mount;
179 	int			error = 0;
180 	int			log_flushed = 0;
181 
182 	trace_xfs_file_fsync(ip);
183 
184 	error = file_write_and_wait_range(file, start, end);
185 	if (error)
186 		return error;
187 
188 	if (XFS_FORCED_SHUTDOWN(mp))
189 		return -EIO;
190 
191 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
192 
193 	/*
194 	 * If we have an RT and/or log subvolume we need to make sure to flush
195 	 * the write cache the device used for file data first.  This is to
196 	 * ensure newly written file data make it to disk before logging the new
197 	 * inode size in case of an extending write.
198 	 */
199 	if (XFS_IS_REALTIME_INODE(ip))
200 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
201 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
202 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
203 
204 	/*
205 	 * Any inode that has dirty modifications in the log is pinned.  The
206 	 * racy check here for a pinned inode while not catch modifications
207 	 * that happen concurrently to the fsync call, but fsync semantics
208 	 * only require to sync previously completed I/O.
209 	 */
210 	if (xfs_ipincount(ip))
211 		error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
212 
213 	/*
214 	 * If we only have a single device, and the log force about was
215 	 * a no-op we might have to flush the data device cache here.
216 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 	 * an already allocated file and thus do not have any metadata to
218 	 * commit.
219 	 */
220 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
221 	    mp->m_logdev_targp == mp->m_ddev_targp)
222 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
223 
224 	return error;
225 }
226 
227 static int
228 xfs_ilock_iocb(
229 	struct kiocb		*iocb,
230 	unsigned int		lock_mode)
231 {
232 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
233 
234 	if (iocb->ki_flags & IOCB_NOWAIT) {
235 		if (!xfs_ilock_nowait(ip, lock_mode))
236 			return -EAGAIN;
237 	} else {
238 		xfs_ilock(ip, lock_mode);
239 	}
240 
241 	return 0;
242 }
243 
244 STATIC ssize_t
245 xfs_file_dio_read(
246 	struct kiocb		*iocb,
247 	struct iov_iter		*to)
248 {
249 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
250 	ssize_t			ret;
251 
252 	trace_xfs_file_direct_read(iocb, to);
253 
254 	if (!iov_iter_count(to))
255 		return 0; /* skip atime */
256 
257 	file_accessed(iocb->ki_filp);
258 
259 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
260 	if (ret)
261 		return ret;
262 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
263 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
264 
265 	return ret;
266 }
267 
268 static noinline ssize_t
269 xfs_file_dax_read(
270 	struct kiocb		*iocb,
271 	struct iov_iter		*to)
272 {
273 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
274 	ssize_t			ret = 0;
275 
276 	trace_xfs_file_dax_read(iocb, to);
277 
278 	if (!iov_iter_count(to))
279 		return 0; /* skip atime */
280 
281 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
282 	if (ret)
283 		return ret;
284 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
285 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
286 
287 	file_accessed(iocb->ki_filp);
288 	return ret;
289 }
290 
291 STATIC ssize_t
292 xfs_file_buffered_read(
293 	struct kiocb		*iocb,
294 	struct iov_iter		*to)
295 {
296 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
297 	ssize_t			ret;
298 
299 	trace_xfs_file_buffered_read(iocb, to);
300 
301 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
302 	if (ret)
303 		return ret;
304 	ret = generic_file_read_iter(iocb, to);
305 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
306 
307 	return ret;
308 }
309 
310 STATIC ssize_t
311 xfs_file_read_iter(
312 	struct kiocb		*iocb,
313 	struct iov_iter		*to)
314 {
315 	struct inode		*inode = file_inode(iocb->ki_filp);
316 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
317 	ssize_t			ret = 0;
318 
319 	XFS_STATS_INC(mp, xs_read_calls);
320 
321 	if (XFS_FORCED_SHUTDOWN(mp))
322 		return -EIO;
323 
324 	if (IS_DAX(inode))
325 		ret = xfs_file_dax_read(iocb, to);
326 	else if (iocb->ki_flags & IOCB_DIRECT)
327 		ret = xfs_file_dio_read(iocb, to);
328 	else
329 		ret = xfs_file_buffered_read(iocb, to);
330 
331 	if (ret > 0)
332 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
333 	return ret;
334 }
335 
336 /*
337  * Common pre-write limit and setup checks.
338  *
339  * Called with the iolocked held either shared and exclusive according to
340  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
341  * if called for a direct write beyond i_size.
342  */
343 STATIC ssize_t
344 xfs_file_write_checks(
345 	struct kiocb		*iocb,
346 	struct iov_iter		*from,
347 	int			*iolock)
348 {
349 	struct file		*file = iocb->ki_filp;
350 	struct inode		*inode = file->f_mapping->host;
351 	struct xfs_inode	*ip = XFS_I(inode);
352 	ssize_t			error = 0;
353 	size_t			count = iov_iter_count(from);
354 	bool			drained_dio = false;
355 	loff_t			isize;
356 
357 restart:
358 	error = generic_write_checks(iocb, from);
359 	if (error <= 0)
360 		return error;
361 
362 	if (iocb->ki_flags & IOCB_NOWAIT) {
363 		error = break_layout(inode, false);
364 		if (error == -EWOULDBLOCK)
365 			error = -EAGAIN;
366 	} else {
367 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
368 	}
369 
370 	if (error)
371 		return error;
372 
373 	/*
374 	 * For changing security info in file_remove_privs() we need i_rwsem
375 	 * exclusively.
376 	 */
377 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
378 		xfs_iunlock(ip, *iolock);
379 		*iolock = XFS_IOLOCK_EXCL;
380 		error = xfs_ilock_iocb(iocb, *iolock);
381 		if (error) {
382 			*iolock = 0;
383 			return error;
384 		}
385 		goto restart;
386 	}
387 	/*
388 	 * If the offset is beyond the size of the file, we need to zero any
389 	 * blocks that fall between the existing EOF and the start of this
390 	 * write.  If zeroing is needed and we are currently holding the
391 	 * iolock shared, we need to update it to exclusive which implies
392 	 * having to redo all checks before.
393 	 *
394 	 * We need to serialise against EOF updates that occur in IO
395 	 * completions here. We want to make sure that nobody is changing the
396 	 * size while we do this check until we have placed an IO barrier (i.e.
397 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
398 	 * The spinlock effectively forms a memory barrier once we have the
399 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
400 	 * and hence be able to correctly determine if we need to run zeroing.
401 	 */
402 	spin_lock(&ip->i_flags_lock);
403 	isize = i_size_read(inode);
404 	if (iocb->ki_pos > isize) {
405 		spin_unlock(&ip->i_flags_lock);
406 
407 		if (iocb->ki_flags & IOCB_NOWAIT)
408 			return -EAGAIN;
409 
410 		if (!drained_dio) {
411 			if (*iolock == XFS_IOLOCK_SHARED) {
412 				xfs_iunlock(ip, *iolock);
413 				*iolock = XFS_IOLOCK_EXCL;
414 				xfs_ilock(ip, *iolock);
415 				iov_iter_reexpand(from, count);
416 			}
417 			/*
418 			 * We now have an IO submission barrier in place, but
419 			 * AIO can do EOF updates during IO completion and hence
420 			 * we now need to wait for all of them to drain. Non-AIO
421 			 * DIO will have drained before we are given the
422 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
423 			 * no-op.
424 			 */
425 			inode_dio_wait(inode);
426 			drained_dio = true;
427 			goto restart;
428 		}
429 
430 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
431 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
432 				NULL, &xfs_buffered_write_iomap_ops);
433 		if (error)
434 			return error;
435 	} else
436 		spin_unlock(&ip->i_flags_lock);
437 
438 	return file_modified(file);
439 }
440 
441 static int
442 xfs_dio_write_end_io(
443 	struct kiocb		*iocb,
444 	ssize_t			size,
445 	int			error,
446 	unsigned		flags)
447 {
448 	struct inode		*inode = file_inode(iocb->ki_filp);
449 	struct xfs_inode	*ip = XFS_I(inode);
450 	loff_t			offset = iocb->ki_pos;
451 	unsigned int		nofs_flag;
452 
453 	trace_xfs_end_io_direct_write(ip, offset, size);
454 
455 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
456 		return -EIO;
457 
458 	if (error)
459 		return error;
460 	if (!size)
461 		return 0;
462 
463 	/*
464 	 * Capture amount written on completion as we can't reliably account
465 	 * for it on submission.
466 	 */
467 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
468 
469 	/*
470 	 * We can allocate memory here while doing writeback on behalf of
471 	 * memory reclaim.  To avoid memory allocation deadlocks set the
472 	 * task-wide nofs context for the following operations.
473 	 */
474 	nofs_flag = memalloc_nofs_save();
475 
476 	if (flags & IOMAP_DIO_COW) {
477 		error = xfs_reflink_end_cow(ip, offset, size);
478 		if (error)
479 			goto out;
480 	}
481 
482 	/*
483 	 * Unwritten conversion updates the in-core isize after extent
484 	 * conversion but before updating the on-disk size. Updating isize any
485 	 * earlier allows a racing dio read to find unwritten extents before
486 	 * they are converted.
487 	 */
488 	if (flags & IOMAP_DIO_UNWRITTEN) {
489 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
490 		goto out;
491 	}
492 
493 	/*
494 	 * We need to update the in-core inode size here so that we don't end up
495 	 * with the on-disk inode size being outside the in-core inode size. We
496 	 * have no other method of updating EOF for AIO, so always do it here
497 	 * if necessary.
498 	 *
499 	 * We need to lock the test/set EOF update as we can be racing with
500 	 * other IO completions here to update the EOF. Failing to serialise
501 	 * here can result in EOF moving backwards and Bad Things Happen when
502 	 * that occurs.
503 	 */
504 	spin_lock(&ip->i_flags_lock);
505 	if (offset + size > i_size_read(inode)) {
506 		i_size_write(inode, offset + size);
507 		spin_unlock(&ip->i_flags_lock);
508 		error = xfs_setfilesize(ip, offset, size);
509 	} else {
510 		spin_unlock(&ip->i_flags_lock);
511 	}
512 
513 out:
514 	memalloc_nofs_restore(nofs_flag);
515 	return error;
516 }
517 
518 static const struct iomap_dio_ops xfs_dio_write_ops = {
519 	.end_io		= xfs_dio_write_end_io,
520 };
521 
522 /*
523  * Handle block aligned direct I/O writes
524  */
525 static noinline ssize_t
526 xfs_file_dio_write_aligned(
527 	struct xfs_inode	*ip,
528 	struct kiocb		*iocb,
529 	struct iov_iter		*from)
530 {
531 	int			iolock = XFS_IOLOCK_SHARED;
532 	ssize_t			ret;
533 
534 	ret = xfs_ilock_iocb(iocb, iolock);
535 	if (ret)
536 		return ret;
537 	ret = xfs_file_write_checks(iocb, from, &iolock);
538 	if (ret)
539 		goto out_unlock;
540 
541 	/*
542 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
543 	 * the iolock back to shared if we had to take the exclusive lock in
544 	 * xfs_file_write_checks() for other reasons.
545 	 */
546 	if (iolock == XFS_IOLOCK_EXCL) {
547 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
548 		iolock = XFS_IOLOCK_SHARED;
549 	}
550 	trace_xfs_file_direct_write(iocb, from);
551 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
552 			   &xfs_dio_write_ops, 0);
553 out_unlock:
554 	if (iolock)
555 		xfs_iunlock(ip, iolock);
556 	return ret;
557 }
558 
559 /*
560  * Handle block unaligned direct I/O writes
561  *
562  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
563  * them to be done in parallel with reads and other direct I/O writes.  However,
564  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
565  * to do sub-block zeroing and that requires serialisation against other direct
566  * I/O to the same block.  In this case we need to serialise the submission of
567  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
568  * In the case where sub-block zeroing is not required, we can do concurrent
569  * sub-block dios to the same block successfully.
570  *
571  * Optimistically submit the I/O using the shared lock first, but use the
572  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
573  * if block allocation or partial block zeroing would be required.  In that case
574  * we try again with the exclusive lock.
575  */
576 static noinline ssize_t
577 xfs_file_dio_write_unaligned(
578 	struct xfs_inode	*ip,
579 	struct kiocb		*iocb,
580 	struct iov_iter		*from)
581 {
582 	size_t			isize = i_size_read(VFS_I(ip));
583 	size_t			count = iov_iter_count(from);
584 	int			iolock = XFS_IOLOCK_SHARED;
585 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
586 	ssize_t			ret;
587 
588 	/*
589 	 * Extending writes need exclusivity because of the sub-block zeroing
590 	 * that the DIO code always does for partial tail blocks beyond EOF, so
591 	 * don't even bother trying the fast path in this case.
592 	 */
593 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
594 retry_exclusive:
595 		if (iocb->ki_flags & IOCB_NOWAIT)
596 			return -EAGAIN;
597 		iolock = XFS_IOLOCK_EXCL;
598 		flags = IOMAP_DIO_FORCE_WAIT;
599 	}
600 
601 	ret = xfs_ilock_iocb(iocb, iolock);
602 	if (ret)
603 		return ret;
604 
605 	/*
606 	 * We can't properly handle unaligned direct I/O to reflink files yet,
607 	 * as we can't unshare a partial block.
608 	 */
609 	if (xfs_is_cow_inode(ip)) {
610 		trace_xfs_reflink_bounce_dio_write(iocb, from);
611 		ret = -ENOTBLK;
612 		goto out_unlock;
613 	}
614 
615 	ret = xfs_file_write_checks(iocb, from, &iolock);
616 	if (ret)
617 		goto out_unlock;
618 
619 	/*
620 	 * If we are doing exclusive unaligned I/O, this must be the only I/O
621 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
622 	 * conversions from the AIO end_io handler.  Wait for all other I/O to
623 	 * drain first.
624 	 */
625 	if (flags & IOMAP_DIO_FORCE_WAIT)
626 		inode_dio_wait(VFS_I(ip));
627 
628 	trace_xfs_file_direct_write(iocb, from);
629 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
630 			   &xfs_dio_write_ops, flags);
631 
632 	/*
633 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
634 	 * layer rejected it for mapping or locking reasons. If we are doing
635 	 * nonblocking user I/O, propagate the error.
636 	 */
637 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
638 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
639 		xfs_iunlock(ip, iolock);
640 		goto retry_exclusive;
641 	}
642 
643 out_unlock:
644 	if (iolock)
645 		xfs_iunlock(ip, iolock);
646 	return ret;
647 }
648 
649 static ssize_t
650 xfs_file_dio_write(
651 	struct kiocb		*iocb,
652 	struct iov_iter		*from)
653 {
654 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
655 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
656 	size_t			count = iov_iter_count(from);
657 
658 	/* direct I/O must be aligned to device logical sector size */
659 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
660 		return -EINVAL;
661 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
662 		return xfs_file_dio_write_unaligned(ip, iocb, from);
663 	return xfs_file_dio_write_aligned(ip, iocb, from);
664 }
665 
666 static noinline ssize_t
667 xfs_file_dax_write(
668 	struct kiocb		*iocb,
669 	struct iov_iter		*from)
670 {
671 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
672 	struct xfs_inode	*ip = XFS_I(inode);
673 	int			iolock = XFS_IOLOCK_EXCL;
674 	ssize_t			ret, error = 0;
675 	loff_t			pos;
676 
677 	ret = xfs_ilock_iocb(iocb, iolock);
678 	if (ret)
679 		return ret;
680 	ret = xfs_file_write_checks(iocb, from, &iolock);
681 	if (ret)
682 		goto out;
683 
684 	pos = iocb->ki_pos;
685 
686 	trace_xfs_file_dax_write(iocb, from);
687 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
688 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
689 		i_size_write(inode, iocb->ki_pos);
690 		error = xfs_setfilesize(ip, pos, ret);
691 	}
692 out:
693 	if (iolock)
694 		xfs_iunlock(ip, iolock);
695 	if (error)
696 		return error;
697 
698 	if (ret > 0) {
699 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
700 
701 		/* Handle various SYNC-type writes */
702 		ret = generic_write_sync(iocb, ret);
703 	}
704 	return ret;
705 }
706 
707 STATIC ssize_t
708 xfs_file_buffered_write(
709 	struct kiocb		*iocb,
710 	struct iov_iter		*from)
711 {
712 	struct file		*file = iocb->ki_filp;
713 	struct address_space	*mapping = file->f_mapping;
714 	struct inode		*inode = mapping->host;
715 	struct xfs_inode	*ip = XFS_I(inode);
716 	ssize_t			ret;
717 	bool			cleared_space = false;
718 	int			iolock;
719 
720 	if (iocb->ki_flags & IOCB_NOWAIT)
721 		return -EOPNOTSUPP;
722 
723 write_retry:
724 	iolock = XFS_IOLOCK_EXCL;
725 	xfs_ilock(ip, iolock);
726 
727 	ret = xfs_file_write_checks(iocb, from, &iolock);
728 	if (ret)
729 		goto out;
730 
731 	/* We can write back this queue in page reclaim */
732 	current->backing_dev_info = inode_to_bdi(inode);
733 
734 	trace_xfs_file_buffered_write(iocb, from);
735 	ret = iomap_file_buffered_write(iocb, from,
736 			&xfs_buffered_write_iomap_ops);
737 	if (likely(ret >= 0))
738 		iocb->ki_pos += ret;
739 
740 	/*
741 	 * If we hit a space limit, try to free up some lingering preallocated
742 	 * space before returning an error. In the case of ENOSPC, first try to
743 	 * write back all dirty inodes to free up some of the excess reserved
744 	 * metadata space. This reduces the chances that the eofblocks scan
745 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
746 	 * also behaves as a filter to prevent too many eofblocks scans from
747 	 * running at the same time.  Use a synchronous scan to increase the
748 	 * effectiveness of the scan.
749 	 */
750 	if (ret == -EDQUOT && !cleared_space) {
751 		xfs_iunlock(ip, iolock);
752 		xfs_blockgc_free_quota(ip, XFS_EOF_FLAGS_SYNC);
753 		cleared_space = true;
754 		goto write_retry;
755 	} else if (ret == -ENOSPC && !cleared_space) {
756 		struct xfs_eofblocks eofb = {0};
757 
758 		cleared_space = true;
759 		xfs_flush_inodes(ip->i_mount);
760 
761 		xfs_iunlock(ip, iolock);
762 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
763 		xfs_blockgc_free_space(ip->i_mount, &eofb);
764 		goto write_retry;
765 	}
766 
767 	current->backing_dev_info = NULL;
768 out:
769 	if (iolock)
770 		xfs_iunlock(ip, iolock);
771 
772 	if (ret > 0) {
773 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
774 		/* Handle various SYNC-type writes */
775 		ret = generic_write_sync(iocb, ret);
776 	}
777 	return ret;
778 }
779 
780 STATIC ssize_t
781 xfs_file_write_iter(
782 	struct kiocb		*iocb,
783 	struct iov_iter		*from)
784 {
785 	struct file		*file = iocb->ki_filp;
786 	struct address_space	*mapping = file->f_mapping;
787 	struct inode		*inode = mapping->host;
788 	struct xfs_inode	*ip = XFS_I(inode);
789 	ssize_t			ret;
790 	size_t			ocount = iov_iter_count(from);
791 
792 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
793 
794 	if (ocount == 0)
795 		return 0;
796 
797 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
798 		return -EIO;
799 
800 	if (IS_DAX(inode))
801 		return xfs_file_dax_write(iocb, from);
802 
803 	if (iocb->ki_flags & IOCB_DIRECT) {
804 		/*
805 		 * Allow a directio write to fall back to a buffered
806 		 * write *only* in the case that we're doing a reflink
807 		 * CoW.  In all other directio scenarios we do not
808 		 * allow an operation to fall back to buffered mode.
809 		 */
810 		ret = xfs_file_dio_write(iocb, from);
811 		if (ret != -ENOTBLK)
812 			return ret;
813 	}
814 
815 	return xfs_file_buffered_write(iocb, from);
816 }
817 
818 static void
819 xfs_wait_dax_page(
820 	struct inode		*inode)
821 {
822 	struct xfs_inode        *ip = XFS_I(inode);
823 
824 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
825 	schedule();
826 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
827 }
828 
829 static int
830 xfs_break_dax_layouts(
831 	struct inode		*inode,
832 	bool			*retry)
833 {
834 	struct page		*page;
835 
836 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
837 
838 	page = dax_layout_busy_page(inode->i_mapping);
839 	if (!page)
840 		return 0;
841 
842 	*retry = true;
843 	return ___wait_var_event(&page->_refcount,
844 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
845 			0, 0, xfs_wait_dax_page(inode));
846 }
847 
848 int
849 xfs_break_layouts(
850 	struct inode		*inode,
851 	uint			*iolock,
852 	enum layout_break_reason reason)
853 {
854 	bool			retry;
855 	int			error;
856 
857 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
858 
859 	do {
860 		retry = false;
861 		switch (reason) {
862 		case BREAK_UNMAP:
863 			error = xfs_break_dax_layouts(inode, &retry);
864 			if (error || retry)
865 				break;
866 			/* fall through */
867 		case BREAK_WRITE:
868 			error = xfs_break_leased_layouts(inode, iolock, &retry);
869 			break;
870 		default:
871 			WARN_ON_ONCE(1);
872 			error = -EINVAL;
873 		}
874 	} while (error == 0 && retry);
875 
876 	return error;
877 }
878 
879 #define	XFS_FALLOC_FL_SUPPORTED						\
880 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
881 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
882 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
883 
884 STATIC long
885 xfs_file_fallocate(
886 	struct file		*file,
887 	int			mode,
888 	loff_t			offset,
889 	loff_t			len)
890 {
891 	struct inode		*inode = file_inode(file);
892 	struct xfs_inode	*ip = XFS_I(inode);
893 	long			error;
894 	enum xfs_prealloc_flags	flags = 0;
895 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
896 	loff_t			new_size = 0;
897 	bool			do_file_insert = false;
898 
899 	if (!S_ISREG(inode->i_mode))
900 		return -EINVAL;
901 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
902 		return -EOPNOTSUPP;
903 
904 	xfs_ilock(ip, iolock);
905 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
906 	if (error)
907 		goto out_unlock;
908 
909 	/*
910 	 * Must wait for all AIO to complete before we continue as AIO can
911 	 * change the file size on completion without holding any locks we
912 	 * currently hold. We must do this first because AIO can update both
913 	 * the on disk and in memory inode sizes, and the operations that follow
914 	 * require the in-memory size to be fully up-to-date.
915 	 */
916 	inode_dio_wait(inode);
917 
918 	/*
919 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
920 	 * the cached range over the first operation we are about to run.
921 	 *
922 	 * We care about zero and collapse here because they both run a hole
923 	 * punch over the range first. Because that can zero data, and the range
924 	 * of invalidation for the shift operations is much larger, we still do
925 	 * the required flush for collapse in xfs_prepare_shift().
926 	 *
927 	 * Insert has the same range requirements as collapse, and we extend the
928 	 * file first which can zero data. Hence insert has the same
929 	 * flush/invalidate requirements as collapse and so they are both
930 	 * handled at the right time by xfs_prepare_shift().
931 	 */
932 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
933 		    FALLOC_FL_COLLAPSE_RANGE)) {
934 		error = xfs_flush_unmap_range(ip, offset, len);
935 		if (error)
936 			goto out_unlock;
937 	}
938 
939 	if (mode & FALLOC_FL_PUNCH_HOLE) {
940 		error = xfs_free_file_space(ip, offset, len);
941 		if (error)
942 			goto out_unlock;
943 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
944 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
945 			error = -EINVAL;
946 			goto out_unlock;
947 		}
948 
949 		/*
950 		 * There is no need to overlap collapse range with EOF,
951 		 * in which case it is effectively a truncate operation
952 		 */
953 		if (offset + len >= i_size_read(inode)) {
954 			error = -EINVAL;
955 			goto out_unlock;
956 		}
957 
958 		new_size = i_size_read(inode) - len;
959 
960 		error = xfs_collapse_file_space(ip, offset, len);
961 		if (error)
962 			goto out_unlock;
963 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
964 		loff_t		isize = i_size_read(inode);
965 
966 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
967 			error = -EINVAL;
968 			goto out_unlock;
969 		}
970 
971 		/*
972 		 * New inode size must not exceed ->s_maxbytes, accounting for
973 		 * possible signed overflow.
974 		 */
975 		if (inode->i_sb->s_maxbytes - isize < len) {
976 			error = -EFBIG;
977 			goto out_unlock;
978 		}
979 		new_size = isize + len;
980 
981 		/* Offset should be less than i_size */
982 		if (offset >= isize) {
983 			error = -EINVAL;
984 			goto out_unlock;
985 		}
986 		do_file_insert = true;
987 	} else {
988 		flags |= XFS_PREALLOC_SET;
989 
990 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
991 		    offset + len > i_size_read(inode)) {
992 			new_size = offset + len;
993 			error = inode_newsize_ok(inode, new_size);
994 			if (error)
995 				goto out_unlock;
996 		}
997 
998 		if (mode & FALLOC_FL_ZERO_RANGE) {
999 			/*
1000 			 * Punch a hole and prealloc the range.  We use a hole
1001 			 * punch rather than unwritten extent conversion for two
1002 			 * reasons:
1003 			 *
1004 			 *   1.) Hole punch handles partial block zeroing for us.
1005 			 *   2.) If prealloc returns ENOSPC, the file range is
1006 			 *       still zero-valued by virtue of the hole punch.
1007 			 */
1008 			unsigned int blksize = i_blocksize(inode);
1009 
1010 			trace_xfs_zero_file_space(ip);
1011 
1012 			error = xfs_free_file_space(ip, offset, len);
1013 			if (error)
1014 				goto out_unlock;
1015 
1016 			len = round_up(offset + len, blksize) -
1017 			      round_down(offset, blksize);
1018 			offset = round_down(offset, blksize);
1019 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1020 			error = xfs_reflink_unshare(ip, offset, len);
1021 			if (error)
1022 				goto out_unlock;
1023 		} else {
1024 			/*
1025 			 * If always_cow mode we can't use preallocations and
1026 			 * thus should not create them.
1027 			 */
1028 			if (xfs_is_always_cow_inode(ip)) {
1029 				error = -EOPNOTSUPP;
1030 				goto out_unlock;
1031 			}
1032 		}
1033 
1034 		if (!xfs_is_always_cow_inode(ip)) {
1035 			error = xfs_alloc_file_space(ip, offset, len,
1036 						     XFS_BMAPI_PREALLOC);
1037 			if (error)
1038 				goto out_unlock;
1039 		}
1040 	}
1041 
1042 	if (file->f_flags & O_DSYNC)
1043 		flags |= XFS_PREALLOC_SYNC;
1044 
1045 	error = xfs_update_prealloc_flags(ip, flags);
1046 	if (error)
1047 		goto out_unlock;
1048 
1049 	/* Change file size if needed */
1050 	if (new_size) {
1051 		struct iattr iattr;
1052 
1053 		iattr.ia_valid = ATTR_SIZE;
1054 		iattr.ia_size = new_size;
1055 		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1056 					    file_dentry(file), &iattr);
1057 		if (error)
1058 			goto out_unlock;
1059 	}
1060 
1061 	/*
1062 	 * Perform hole insertion now that the file size has been
1063 	 * updated so that if we crash during the operation we don't
1064 	 * leave shifted extents past EOF and hence losing access to
1065 	 * the data that is contained within them.
1066 	 */
1067 	if (do_file_insert)
1068 		error = xfs_insert_file_space(ip, offset, len);
1069 
1070 out_unlock:
1071 	xfs_iunlock(ip, iolock);
1072 	return error;
1073 }
1074 
1075 STATIC int
1076 xfs_file_fadvise(
1077 	struct file	*file,
1078 	loff_t		start,
1079 	loff_t		end,
1080 	int		advice)
1081 {
1082 	struct xfs_inode *ip = XFS_I(file_inode(file));
1083 	int ret;
1084 	int lockflags = 0;
1085 
1086 	/*
1087 	 * Operations creating pages in page cache need protection from hole
1088 	 * punching and similar ops
1089 	 */
1090 	if (advice == POSIX_FADV_WILLNEED) {
1091 		lockflags = XFS_IOLOCK_SHARED;
1092 		xfs_ilock(ip, lockflags);
1093 	}
1094 	ret = generic_fadvise(file, start, end, advice);
1095 	if (lockflags)
1096 		xfs_iunlock(ip, lockflags);
1097 	return ret;
1098 }
1099 
1100 /* Does this file, inode, or mount want synchronous writes? */
1101 static inline bool xfs_file_sync_writes(struct file *filp)
1102 {
1103 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1104 
1105 	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1106 		return true;
1107 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1108 		return true;
1109 	if (IS_SYNC(file_inode(filp)))
1110 		return true;
1111 
1112 	return false;
1113 }
1114 
1115 STATIC loff_t
1116 xfs_file_remap_range(
1117 	struct file		*file_in,
1118 	loff_t			pos_in,
1119 	struct file		*file_out,
1120 	loff_t			pos_out,
1121 	loff_t			len,
1122 	unsigned int		remap_flags)
1123 {
1124 	struct inode		*inode_in = file_inode(file_in);
1125 	struct xfs_inode	*src = XFS_I(inode_in);
1126 	struct inode		*inode_out = file_inode(file_out);
1127 	struct xfs_inode	*dest = XFS_I(inode_out);
1128 	struct xfs_mount	*mp = src->i_mount;
1129 	loff_t			remapped = 0;
1130 	xfs_extlen_t		cowextsize;
1131 	int			ret;
1132 
1133 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1134 		return -EINVAL;
1135 
1136 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1137 		return -EOPNOTSUPP;
1138 
1139 	if (XFS_FORCED_SHUTDOWN(mp))
1140 		return -EIO;
1141 
1142 	/* Prepare and then clone file data. */
1143 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1144 			&len, remap_flags);
1145 	if (ret || len == 0)
1146 		return ret;
1147 
1148 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1149 
1150 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1151 			&remapped);
1152 	if (ret)
1153 		goto out_unlock;
1154 
1155 	/*
1156 	 * Carry the cowextsize hint from src to dest if we're sharing the
1157 	 * entire source file to the entire destination file, the source file
1158 	 * has a cowextsize hint, and the destination file does not.
1159 	 */
1160 	cowextsize = 0;
1161 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1162 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1163 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1164 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1165 		cowextsize = src->i_d.di_cowextsize;
1166 
1167 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1168 			remap_flags);
1169 	if (ret)
1170 		goto out_unlock;
1171 
1172 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1173 		xfs_log_force_inode(dest);
1174 out_unlock:
1175 	xfs_iunlock2_io_mmap(src, dest);
1176 	if (ret)
1177 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1178 	return remapped > 0 ? remapped : ret;
1179 }
1180 
1181 STATIC int
1182 xfs_file_open(
1183 	struct inode	*inode,
1184 	struct file	*file)
1185 {
1186 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1187 		return -EFBIG;
1188 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1189 		return -EIO;
1190 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1191 	return 0;
1192 }
1193 
1194 STATIC int
1195 xfs_dir_open(
1196 	struct inode	*inode,
1197 	struct file	*file)
1198 {
1199 	struct xfs_inode *ip = XFS_I(inode);
1200 	int		mode;
1201 	int		error;
1202 
1203 	error = xfs_file_open(inode, file);
1204 	if (error)
1205 		return error;
1206 
1207 	/*
1208 	 * If there are any blocks, read-ahead block 0 as we're almost
1209 	 * certain to have the next operation be a read there.
1210 	 */
1211 	mode = xfs_ilock_data_map_shared(ip);
1212 	if (ip->i_df.if_nextents > 0)
1213 		error = xfs_dir3_data_readahead(ip, 0, 0);
1214 	xfs_iunlock(ip, mode);
1215 	return error;
1216 }
1217 
1218 STATIC int
1219 xfs_file_release(
1220 	struct inode	*inode,
1221 	struct file	*filp)
1222 {
1223 	return xfs_release(XFS_I(inode));
1224 }
1225 
1226 STATIC int
1227 xfs_file_readdir(
1228 	struct file	*file,
1229 	struct dir_context *ctx)
1230 {
1231 	struct inode	*inode = file_inode(file);
1232 	xfs_inode_t	*ip = XFS_I(inode);
1233 	size_t		bufsize;
1234 
1235 	/*
1236 	 * The Linux API doesn't pass down the total size of the buffer
1237 	 * we read into down to the filesystem.  With the filldir concept
1238 	 * it's not needed for correct information, but the XFS dir2 leaf
1239 	 * code wants an estimate of the buffer size to calculate it's
1240 	 * readahead window and size the buffers used for mapping to
1241 	 * physical blocks.
1242 	 *
1243 	 * Try to give it an estimate that's good enough, maybe at some
1244 	 * point we can change the ->readdir prototype to include the
1245 	 * buffer size.  For now we use the current glibc buffer size.
1246 	 */
1247 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1248 
1249 	return xfs_readdir(NULL, ip, ctx, bufsize);
1250 }
1251 
1252 STATIC loff_t
1253 xfs_file_llseek(
1254 	struct file	*file,
1255 	loff_t		offset,
1256 	int		whence)
1257 {
1258 	struct inode		*inode = file->f_mapping->host;
1259 
1260 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1261 		return -EIO;
1262 
1263 	switch (whence) {
1264 	default:
1265 		return generic_file_llseek(file, offset, whence);
1266 	case SEEK_HOLE:
1267 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1268 		break;
1269 	case SEEK_DATA:
1270 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1271 		break;
1272 	}
1273 
1274 	if (offset < 0)
1275 		return offset;
1276 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1277 }
1278 
1279 /*
1280  * Locking for serialisation of IO during page faults. This results in a lock
1281  * ordering of:
1282  *
1283  * mmap_lock (MM)
1284  *   sb_start_pagefault(vfs, freeze)
1285  *     i_mmaplock (XFS - truncate serialisation)
1286  *       page_lock (MM)
1287  *         i_lock (XFS - extent map serialisation)
1288  */
1289 static vm_fault_t
1290 __xfs_filemap_fault(
1291 	struct vm_fault		*vmf,
1292 	enum page_entry_size	pe_size,
1293 	bool			write_fault)
1294 {
1295 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1296 	struct xfs_inode	*ip = XFS_I(inode);
1297 	vm_fault_t		ret;
1298 
1299 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1300 
1301 	if (write_fault) {
1302 		sb_start_pagefault(inode->i_sb);
1303 		file_update_time(vmf->vma->vm_file);
1304 	}
1305 
1306 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1307 	if (IS_DAX(inode)) {
1308 		pfn_t pfn;
1309 
1310 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1311 				(write_fault && !vmf->cow_page) ?
1312 				 &xfs_direct_write_iomap_ops :
1313 				 &xfs_read_iomap_ops);
1314 		if (ret & VM_FAULT_NEEDDSYNC)
1315 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1316 	} else {
1317 		if (write_fault)
1318 			ret = iomap_page_mkwrite(vmf,
1319 					&xfs_buffered_write_iomap_ops);
1320 		else
1321 			ret = filemap_fault(vmf);
1322 	}
1323 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1324 
1325 	if (write_fault)
1326 		sb_end_pagefault(inode->i_sb);
1327 	return ret;
1328 }
1329 
1330 static inline bool
1331 xfs_is_write_fault(
1332 	struct vm_fault		*vmf)
1333 {
1334 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1335 	       (vmf->vma->vm_flags & VM_SHARED);
1336 }
1337 
1338 static vm_fault_t
1339 xfs_filemap_fault(
1340 	struct vm_fault		*vmf)
1341 {
1342 	/* DAX can shortcut the normal fault path on write faults! */
1343 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1344 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1345 			xfs_is_write_fault(vmf));
1346 }
1347 
1348 static vm_fault_t
1349 xfs_filemap_huge_fault(
1350 	struct vm_fault		*vmf,
1351 	enum page_entry_size	pe_size)
1352 {
1353 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1354 		return VM_FAULT_FALLBACK;
1355 
1356 	/* DAX can shortcut the normal fault path on write faults! */
1357 	return __xfs_filemap_fault(vmf, pe_size,
1358 			xfs_is_write_fault(vmf));
1359 }
1360 
1361 static vm_fault_t
1362 xfs_filemap_page_mkwrite(
1363 	struct vm_fault		*vmf)
1364 {
1365 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1366 }
1367 
1368 /*
1369  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1370  * on write faults. In reality, it needs to serialise against truncate and
1371  * prepare memory for writing so handle is as standard write fault.
1372  */
1373 static vm_fault_t
1374 xfs_filemap_pfn_mkwrite(
1375 	struct vm_fault		*vmf)
1376 {
1377 
1378 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1379 }
1380 
1381 static vm_fault_t
1382 xfs_filemap_map_pages(
1383 	struct vm_fault		*vmf,
1384 	pgoff_t			start_pgoff,
1385 	pgoff_t			end_pgoff)
1386 {
1387 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1388 	vm_fault_t ret;
1389 
1390 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1391 	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1392 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1393 	return ret;
1394 }
1395 
1396 static const struct vm_operations_struct xfs_file_vm_ops = {
1397 	.fault		= xfs_filemap_fault,
1398 	.huge_fault	= xfs_filemap_huge_fault,
1399 	.map_pages	= xfs_filemap_map_pages,
1400 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1401 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1402 };
1403 
1404 STATIC int
1405 xfs_file_mmap(
1406 	struct file		*file,
1407 	struct vm_area_struct	*vma)
1408 {
1409 	struct inode		*inode = file_inode(file);
1410 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1411 
1412 	/*
1413 	 * We don't support synchronous mappings for non-DAX files and
1414 	 * for DAX files if underneath dax_device is not synchronous.
1415 	 */
1416 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1417 		return -EOPNOTSUPP;
1418 
1419 	file_accessed(file);
1420 	vma->vm_ops = &xfs_file_vm_ops;
1421 	if (IS_DAX(inode))
1422 		vma->vm_flags |= VM_HUGEPAGE;
1423 	return 0;
1424 }
1425 
1426 const struct file_operations xfs_file_operations = {
1427 	.llseek		= xfs_file_llseek,
1428 	.read_iter	= xfs_file_read_iter,
1429 	.write_iter	= xfs_file_write_iter,
1430 	.splice_read	= generic_file_splice_read,
1431 	.splice_write	= iter_file_splice_write,
1432 	.iopoll		= iomap_dio_iopoll,
1433 	.unlocked_ioctl	= xfs_file_ioctl,
1434 #ifdef CONFIG_COMPAT
1435 	.compat_ioctl	= xfs_file_compat_ioctl,
1436 #endif
1437 	.mmap		= xfs_file_mmap,
1438 	.mmap_supported_flags = MAP_SYNC,
1439 	.open		= xfs_file_open,
1440 	.release	= xfs_file_release,
1441 	.fsync		= xfs_file_fsync,
1442 	.get_unmapped_area = thp_get_unmapped_area,
1443 	.fallocate	= xfs_file_fallocate,
1444 	.fadvise	= xfs_file_fadvise,
1445 	.remap_file_range = xfs_file_remap_range,
1446 };
1447 
1448 const struct file_operations xfs_dir_file_operations = {
1449 	.open		= xfs_dir_open,
1450 	.read		= generic_read_dir,
1451 	.iterate_shared	= xfs_file_readdir,
1452 	.llseek		= generic_file_llseek,
1453 	.unlocked_ioctl	= xfs_file_ioctl,
1454 #ifdef CONFIG_COMPAT
1455 	.compat_ioctl	= xfs_file_compat_ioctl,
1456 #endif
1457 	.fsync		= xfs_dir_fsync,
1458 };
1459