xref: /openbmc/linux/fs/xfs/xfs_file.c (revision c0e297dc)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		mutex_lock(&VFS_I(ip)->i_mutex);
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81 
82 /*
83  * xfs_iozero clears the specified range supplied via the page cache (except in
84  * the DAX case). Writes through the page cache will allocate blocks over holes,
85  * though the callers usually map the holes first and avoid them. If a block is
86  * not completely zeroed, then it will be read from disk before being partially
87  * zeroed.
88  *
89  * In the DAX case, we can just directly write to the underlying pages. This
90  * will not allocate blocks, but will avoid holes and unwritten extents and so
91  * not do unnecessary work.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status = 0;
102 
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 		bytes = PAGE_CACHE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		if (IS_DAX(VFS_I(ip))) {
115 			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 						     xfs_get_blocks_direct);
117 			if (status)
118 				break;
119 		} else {
120 			status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 						AOP_FLAG_UNINTERRUPTIBLE,
122 						&page, &fsdata);
123 			if (status)
124 				break;
125 
126 			zero_user(page, offset, bytes);
127 
128 			status = pagecache_write_end(NULL, mapping, pos, bytes,
129 						bytes, page, fsdata);
130 			WARN_ON(status <= 0); /* can't return less than zero! */
131 			status = 0;
132 		}
133 		pos += bytes;
134 		count -= bytes;
135 	} while (count);
136 
137 	return status;
138 }
139 
140 int
141 xfs_update_prealloc_flags(
142 	struct xfs_inode	*ip,
143 	enum xfs_prealloc_flags	flags)
144 {
145 	struct xfs_trans	*tp;
146 	int			error;
147 
148 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 	if (error) {
151 		xfs_trans_cancel(tp);
152 		return error;
153 	}
154 
155 	xfs_ilock(ip, XFS_ILOCK_EXCL);
156 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157 
158 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 		ip->i_d.di_mode &= ~S_ISUID;
160 		if (ip->i_d.di_mode & S_IXGRP)
161 			ip->i_d.di_mode &= ~S_ISGID;
162 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 	}
164 
165 	if (flags & XFS_PREALLOC_SET)
166 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 	if (flags & XFS_PREALLOC_CLEAR)
168 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169 
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 	if (flags & XFS_PREALLOC_SYNC)
172 		xfs_trans_set_sync(tp);
173 	return xfs_trans_commit(tp);
174 }
175 
176 /*
177  * Fsync operations on directories are much simpler than on regular files,
178  * as there is no file data to flush, and thus also no need for explicit
179  * cache flush operations, and there are no non-transaction metadata updates
180  * on directories either.
181  */
182 STATIC int
183 xfs_dir_fsync(
184 	struct file		*file,
185 	loff_t			start,
186 	loff_t			end,
187 	int			datasync)
188 {
189 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
190 	struct xfs_mount	*mp = ip->i_mount;
191 	xfs_lsn_t		lsn = 0;
192 
193 	trace_xfs_dir_fsync(ip);
194 
195 	xfs_ilock(ip, XFS_ILOCK_SHARED);
196 	if (xfs_ipincount(ip))
197 		lsn = ip->i_itemp->ili_last_lsn;
198 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
199 
200 	if (!lsn)
201 		return 0;
202 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 }
204 
205 STATIC int
206 xfs_file_fsync(
207 	struct file		*file,
208 	loff_t			start,
209 	loff_t			end,
210 	int			datasync)
211 {
212 	struct inode		*inode = file->f_mapping->host;
213 	struct xfs_inode	*ip = XFS_I(inode);
214 	struct xfs_mount	*mp = ip->i_mount;
215 	int			error = 0;
216 	int			log_flushed = 0;
217 	xfs_lsn_t		lsn = 0;
218 
219 	trace_xfs_file_fsync(ip);
220 
221 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 	if (error)
223 		return error;
224 
225 	if (XFS_FORCED_SHUTDOWN(mp))
226 		return -EIO;
227 
228 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
229 
230 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 		/*
232 		 * If we have an RT and/or log subvolume we need to make sure
233 		 * to flush the write cache the device used for file data
234 		 * first.  This is to ensure newly written file data make
235 		 * it to disk before logging the new inode size in case of
236 		 * an extending write.
237 		 */
238 		if (XFS_IS_REALTIME_INODE(ip))
239 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 	}
243 
244 	/*
245 	 * All metadata updates are logged, which means that we just have
246 	 * to flush the log up to the latest LSN that touched the inode.
247 	 */
248 	xfs_ilock(ip, XFS_ILOCK_SHARED);
249 	if (xfs_ipincount(ip)) {
250 		if (!datasync ||
251 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
252 			lsn = ip->i_itemp->ili_last_lsn;
253 	}
254 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
255 
256 	if (lsn)
257 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
258 
259 	/*
260 	 * If we only have a single device, and the log force about was
261 	 * a no-op we might have to flush the data device cache here.
262 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
263 	 * an already allocated file and thus do not have any metadata to
264 	 * commit.
265 	 */
266 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
267 	    mp->m_logdev_targp == mp->m_ddev_targp &&
268 	    !XFS_IS_REALTIME_INODE(ip) &&
269 	    !log_flushed)
270 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
271 
272 	return error;
273 }
274 
275 STATIC ssize_t
276 xfs_file_read_iter(
277 	struct kiocb		*iocb,
278 	struct iov_iter		*to)
279 {
280 	struct file		*file = iocb->ki_filp;
281 	struct inode		*inode = file->f_mapping->host;
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	size_t			size = iov_iter_count(to);
285 	ssize_t			ret = 0;
286 	int			ioflags = 0;
287 	xfs_fsize_t		n;
288 	loff_t			pos = iocb->ki_pos;
289 
290 	XFS_STATS_INC(xs_read_calls);
291 
292 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
293 		ioflags |= XFS_IO_ISDIRECT;
294 	if (file->f_mode & FMODE_NOCMTIME)
295 		ioflags |= XFS_IO_INVIS;
296 
297 	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
298 		xfs_buftarg_t	*target =
299 			XFS_IS_REALTIME_INODE(ip) ?
300 				mp->m_rtdev_targp : mp->m_ddev_targp;
301 		/* DIO must be aligned to device logical sector size */
302 		if ((pos | size) & target->bt_logical_sectormask) {
303 			if (pos == i_size_read(inode))
304 				return 0;
305 			return -EINVAL;
306 		}
307 	}
308 
309 	n = mp->m_super->s_maxbytes - pos;
310 	if (n <= 0 || size == 0)
311 		return 0;
312 
313 	if (n < size)
314 		size = n;
315 
316 	if (XFS_FORCED_SHUTDOWN(mp))
317 		return -EIO;
318 
319 	/*
320 	 * Locking is a bit tricky here. If we take an exclusive lock
321 	 * for direct IO, we effectively serialise all new concurrent
322 	 * read IO to this file and block it behind IO that is currently in
323 	 * progress because IO in progress holds the IO lock shared. We only
324 	 * need to hold the lock exclusive to blow away the page cache, so
325 	 * only take lock exclusively if the page cache needs invalidation.
326 	 * This allows the normal direct IO case of no page cache pages to
327 	 * proceeed concurrently without serialisation.
328 	 */
329 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
330 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
331 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
332 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
333 
334 		if (inode->i_mapping->nrpages) {
335 			ret = filemap_write_and_wait_range(
336 							VFS_I(ip)->i_mapping,
337 							pos, pos + size - 1);
338 			if (ret) {
339 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
340 				return ret;
341 			}
342 
343 			/*
344 			 * Invalidate whole pages. This can return an error if
345 			 * we fail to invalidate a page, but this should never
346 			 * happen on XFS. Warn if it does fail.
347 			 */
348 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
349 					pos >> PAGE_CACHE_SHIFT,
350 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
351 			WARN_ON_ONCE(ret);
352 			ret = 0;
353 		}
354 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
355 	}
356 
357 	trace_xfs_file_read(ip, size, pos, ioflags);
358 
359 	ret = generic_file_read_iter(iocb, to);
360 	if (ret > 0)
361 		XFS_STATS_ADD(xs_read_bytes, ret);
362 
363 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
364 	return ret;
365 }
366 
367 STATIC ssize_t
368 xfs_file_splice_read(
369 	struct file		*infilp,
370 	loff_t			*ppos,
371 	struct pipe_inode_info	*pipe,
372 	size_t			count,
373 	unsigned int		flags)
374 {
375 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
376 	int			ioflags = 0;
377 	ssize_t			ret;
378 
379 	XFS_STATS_INC(xs_read_calls);
380 
381 	if (infilp->f_mode & FMODE_NOCMTIME)
382 		ioflags |= XFS_IO_INVIS;
383 
384 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 		return -EIO;
386 
387 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
388 
389 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
390 
391 	/* for dax, we need to avoid the page cache */
392 	if (IS_DAX(VFS_I(ip)))
393 		ret = default_file_splice_read(infilp, ppos, pipe, count, flags);
394 	else
395 		ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
396 	if (ret > 0)
397 		XFS_STATS_ADD(xs_read_bytes, ret);
398 
399 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
400 	return ret;
401 }
402 
403 /*
404  * This routine is called to handle zeroing any space in the last block of the
405  * file that is beyond the EOF.  We do this since the size is being increased
406  * without writing anything to that block and we don't want to read the
407  * garbage on the disk.
408  */
409 STATIC int				/* error (positive) */
410 xfs_zero_last_block(
411 	struct xfs_inode	*ip,
412 	xfs_fsize_t		offset,
413 	xfs_fsize_t		isize,
414 	bool			*did_zeroing)
415 {
416 	struct xfs_mount	*mp = ip->i_mount;
417 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
418 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
419 	int			zero_len;
420 	int			nimaps = 1;
421 	int			error = 0;
422 	struct xfs_bmbt_irec	imap;
423 
424 	xfs_ilock(ip, XFS_ILOCK_EXCL);
425 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
426 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
427 	if (error)
428 		return error;
429 
430 	ASSERT(nimaps > 0);
431 
432 	/*
433 	 * If the block underlying isize is just a hole, then there
434 	 * is nothing to zero.
435 	 */
436 	if (imap.br_startblock == HOLESTARTBLOCK)
437 		return 0;
438 
439 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
440 	if (isize + zero_len > offset)
441 		zero_len = offset - isize;
442 	*did_zeroing = true;
443 	return xfs_iozero(ip, isize, zero_len);
444 }
445 
446 /*
447  * Zero any on disk space between the current EOF and the new, larger EOF.
448  *
449  * This handles the normal case of zeroing the remainder of the last block in
450  * the file and the unusual case of zeroing blocks out beyond the size of the
451  * file.  This second case only happens with fixed size extents and when the
452  * system crashes before the inode size was updated but after blocks were
453  * allocated.
454  *
455  * Expects the iolock to be held exclusive, and will take the ilock internally.
456  */
457 int					/* error (positive) */
458 xfs_zero_eof(
459 	struct xfs_inode	*ip,
460 	xfs_off_t		offset,		/* starting I/O offset */
461 	xfs_fsize_t		isize,		/* current inode size */
462 	bool			*did_zeroing)
463 {
464 	struct xfs_mount	*mp = ip->i_mount;
465 	xfs_fileoff_t		start_zero_fsb;
466 	xfs_fileoff_t		end_zero_fsb;
467 	xfs_fileoff_t		zero_count_fsb;
468 	xfs_fileoff_t		last_fsb;
469 	xfs_fileoff_t		zero_off;
470 	xfs_fsize_t		zero_len;
471 	int			nimaps;
472 	int			error = 0;
473 	struct xfs_bmbt_irec	imap;
474 
475 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
476 	ASSERT(offset > isize);
477 
478 	/*
479 	 * First handle zeroing the block on which isize resides.
480 	 *
481 	 * We only zero a part of that block so it is handled specially.
482 	 */
483 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
484 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
485 		if (error)
486 			return error;
487 	}
488 
489 	/*
490 	 * Calculate the range between the new size and the old where blocks
491 	 * needing to be zeroed may exist.
492 	 *
493 	 * To get the block where the last byte in the file currently resides,
494 	 * we need to subtract one from the size and truncate back to a block
495 	 * boundary.  We subtract 1 in case the size is exactly on a block
496 	 * boundary.
497 	 */
498 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
499 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
500 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
501 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
502 	if (last_fsb == end_zero_fsb) {
503 		/*
504 		 * The size was only incremented on its last block.
505 		 * We took care of that above, so just return.
506 		 */
507 		return 0;
508 	}
509 
510 	ASSERT(start_zero_fsb <= end_zero_fsb);
511 	while (start_zero_fsb <= end_zero_fsb) {
512 		nimaps = 1;
513 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
514 
515 		xfs_ilock(ip, XFS_ILOCK_EXCL);
516 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
517 					  &imap, &nimaps, 0);
518 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
519 		if (error)
520 			return error;
521 
522 		ASSERT(nimaps > 0);
523 
524 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
525 		    imap.br_startblock == HOLESTARTBLOCK) {
526 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
528 			continue;
529 		}
530 
531 		/*
532 		 * There are blocks we need to zero.
533 		 */
534 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
535 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
536 
537 		if ((zero_off + zero_len) > offset)
538 			zero_len = offset - zero_off;
539 
540 		error = xfs_iozero(ip, zero_off, zero_len);
541 		if (error)
542 			return error;
543 
544 		*did_zeroing = true;
545 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
546 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * Common pre-write limit and setup checks.
554  *
555  * Called with the iolocked held either shared and exclusive according to
556  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
557  * if called for a direct write beyond i_size.
558  */
559 STATIC ssize_t
560 xfs_file_aio_write_checks(
561 	struct kiocb		*iocb,
562 	struct iov_iter		*from,
563 	int			*iolock)
564 {
565 	struct file		*file = iocb->ki_filp;
566 	struct inode		*inode = file->f_mapping->host;
567 	struct xfs_inode	*ip = XFS_I(inode);
568 	ssize_t			error = 0;
569 	size_t			count = iov_iter_count(from);
570 
571 restart:
572 	error = generic_write_checks(iocb, from);
573 	if (error <= 0)
574 		return error;
575 
576 	error = xfs_break_layouts(inode, iolock, true);
577 	if (error)
578 		return error;
579 
580 	/* For changing security info in file_remove_privs() we need i_mutex */
581 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
582 		xfs_rw_iunlock(ip, *iolock);
583 		*iolock = XFS_IOLOCK_EXCL;
584 		xfs_rw_ilock(ip, *iolock);
585 		goto restart;
586 	}
587 	/*
588 	 * If the offset is beyond the size of the file, we need to zero any
589 	 * blocks that fall between the existing EOF and the start of this
590 	 * write.  If zeroing is needed and we are currently holding the
591 	 * iolock shared, we need to update it to exclusive which implies
592 	 * having to redo all checks before.
593 	 *
594 	 * We need to serialise against EOF updates that occur in IO
595 	 * completions here. We want to make sure that nobody is changing the
596 	 * size while we do this check until we have placed an IO barrier (i.e.
597 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
598 	 * The spinlock effectively forms a memory barrier once we have the
599 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
600 	 * and hence be able to correctly determine if we need to run zeroing.
601 	 */
602 	spin_lock(&ip->i_flags_lock);
603 	if (iocb->ki_pos > i_size_read(inode)) {
604 		bool	zero = false;
605 
606 		spin_unlock(&ip->i_flags_lock);
607 		if (*iolock == XFS_IOLOCK_SHARED) {
608 			xfs_rw_iunlock(ip, *iolock);
609 			*iolock = XFS_IOLOCK_EXCL;
610 			xfs_rw_ilock(ip, *iolock);
611 			iov_iter_reexpand(from, count);
612 
613 			/*
614 			 * We now have an IO submission barrier in place, but
615 			 * AIO can do EOF updates during IO completion and hence
616 			 * we now need to wait for all of them to drain. Non-AIO
617 			 * DIO will have drained before we are given the
618 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
619 			 * no-op.
620 			 */
621 			inode_dio_wait(inode);
622 			goto restart;
623 		}
624 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
625 		if (error)
626 			return error;
627 	} else
628 		spin_unlock(&ip->i_flags_lock);
629 
630 	/*
631 	 * Updating the timestamps will grab the ilock again from
632 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
633 	 * lock above.  Eventually we should look into a way to avoid
634 	 * the pointless lock roundtrip.
635 	 */
636 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
637 		error = file_update_time(file);
638 		if (error)
639 			return error;
640 	}
641 
642 	/*
643 	 * If we're writing the file then make sure to clear the setuid and
644 	 * setgid bits if the process is not being run by root.  This keeps
645 	 * people from modifying setuid and setgid binaries.
646 	 */
647 	if (!IS_NOSEC(inode))
648 		return file_remove_privs(file);
649 	return 0;
650 }
651 
652 /*
653  * xfs_file_dio_aio_write - handle direct IO writes
654  *
655  * Lock the inode appropriately to prepare for and issue a direct IO write.
656  * By separating it from the buffered write path we remove all the tricky to
657  * follow locking changes and looping.
658  *
659  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
660  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
661  * pages are flushed out.
662  *
663  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
664  * allowing them to be done in parallel with reads and other direct IO writes.
665  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
666  * needs to do sub-block zeroing and that requires serialisation against other
667  * direct IOs to the same block. In this case we need to serialise the
668  * submission of the unaligned IOs so that we don't get racing block zeroing in
669  * the dio layer.  To avoid the problem with aio, we also need to wait for
670  * outstanding IOs to complete so that unwritten extent conversion is completed
671  * before we try to map the overlapping block. This is currently implemented by
672  * hitting it with a big hammer (i.e. inode_dio_wait()).
673  *
674  * Returns with locks held indicated by @iolock and errors indicated by
675  * negative return values.
676  */
677 STATIC ssize_t
678 xfs_file_dio_aio_write(
679 	struct kiocb		*iocb,
680 	struct iov_iter		*from)
681 {
682 	struct file		*file = iocb->ki_filp;
683 	struct address_space	*mapping = file->f_mapping;
684 	struct inode		*inode = mapping->host;
685 	struct xfs_inode	*ip = XFS_I(inode);
686 	struct xfs_mount	*mp = ip->i_mount;
687 	ssize_t			ret = 0;
688 	int			unaligned_io = 0;
689 	int			iolock;
690 	size_t			count = iov_iter_count(from);
691 	loff_t			pos = iocb->ki_pos;
692 	loff_t			end;
693 	struct iov_iter		data;
694 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
695 					mp->m_rtdev_targp : mp->m_ddev_targp;
696 
697 	/* DIO must be aligned to device logical sector size */
698 	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
699 		return -EINVAL;
700 
701 	/* "unaligned" here means not aligned to a filesystem block */
702 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
703 		unaligned_io = 1;
704 
705 	/*
706 	 * We don't need to take an exclusive lock unless there page cache needs
707 	 * to be invalidated or unaligned IO is being executed. We don't need to
708 	 * consider the EOF extension case here because
709 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
710 	 * EOF zeroing cases and fill out the new inode size as appropriate.
711 	 */
712 	if (unaligned_io || mapping->nrpages)
713 		iolock = XFS_IOLOCK_EXCL;
714 	else
715 		iolock = XFS_IOLOCK_SHARED;
716 	xfs_rw_ilock(ip, iolock);
717 
718 	/*
719 	 * Recheck if there are cached pages that need invalidate after we got
720 	 * the iolock to protect against other threads adding new pages while
721 	 * we were waiting for the iolock.
722 	 */
723 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
724 		xfs_rw_iunlock(ip, iolock);
725 		iolock = XFS_IOLOCK_EXCL;
726 		xfs_rw_ilock(ip, iolock);
727 	}
728 
729 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
730 	if (ret)
731 		goto out;
732 	count = iov_iter_count(from);
733 	pos = iocb->ki_pos;
734 	end = pos + count - 1;
735 
736 	if (mapping->nrpages) {
737 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
738 						   pos, end);
739 		if (ret)
740 			goto out;
741 		/*
742 		 * Invalidate whole pages. This can return an error if
743 		 * we fail to invalidate a page, but this should never
744 		 * happen on XFS. Warn if it does fail.
745 		 */
746 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
747 					pos >> PAGE_CACHE_SHIFT,
748 					end >> PAGE_CACHE_SHIFT);
749 		WARN_ON_ONCE(ret);
750 		ret = 0;
751 	}
752 
753 	/*
754 	 * If we are doing unaligned IO, wait for all other IO to drain,
755 	 * otherwise demote the lock if we had to flush cached pages
756 	 */
757 	if (unaligned_io)
758 		inode_dio_wait(inode);
759 	else if (iolock == XFS_IOLOCK_EXCL) {
760 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
761 		iolock = XFS_IOLOCK_SHARED;
762 	}
763 
764 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
765 
766 	data = *from;
767 	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
768 
769 	/* see generic_file_direct_write() for why this is necessary */
770 	if (mapping->nrpages) {
771 		invalidate_inode_pages2_range(mapping,
772 					      pos >> PAGE_CACHE_SHIFT,
773 					      end >> PAGE_CACHE_SHIFT);
774 	}
775 
776 	if (ret > 0) {
777 		pos += ret;
778 		iov_iter_advance(from, ret);
779 		iocb->ki_pos = pos;
780 	}
781 out:
782 	xfs_rw_iunlock(ip, iolock);
783 
784 	/*
785 	 * No fallback to buffered IO on errors for XFS. DAX can result in
786 	 * partial writes, but direct IO will either complete fully or fail.
787 	 */
788 	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
789 	return ret;
790 }
791 
792 STATIC ssize_t
793 xfs_file_buffered_aio_write(
794 	struct kiocb		*iocb,
795 	struct iov_iter		*from)
796 {
797 	struct file		*file = iocb->ki_filp;
798 	struct address_space	*mapping = file->f_mapping;
799 	struct inode		*inode = mapping->host;
800 	struct xfs_inode	*ip = XFS_I(inode);
801 	ssize_t			ret;
802 	int			enospc = 0;
803 	int			iolock = XFS_IOLOCK_EXCL;
804 
805 	xfs_rw_ilock(ip, iolock);
806 
807 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
808 	if (ret)
809 		goto out;
810 
811 	/* We can write back this queue in page reclaim */
812 	current->backing_dev_info = inode_to_bdi(inode);
813 
814 write_retry:
815 	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
816 				      iocb->ki_pos, 0);
817 	ret = generic_perform_write(file, from, iocb->ki_pos);
818 	if (likely(ret >= 0))
819 		iocb->ki_pos += ret;
820 
821 	/*
822 	 * If we hit a space limit, try to free up some lingering preallocated
823 	 * space before returning an error. In the case of ENOSPC, first try to
824 	 * write back all dirty inodes to free up some of the excess reserved
825 	 * metadata space. This reduces the chances that the eofblocks scan
826 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
827 	 * also behaves as a filter to prevent too many eofblocks scans from
828 	 * running at the same time.
829 	 */
830 	if (ret == -EDQUOT && !enospc) {
831 		enospc = xfs_inode_free_quota_eofblocks(ip);
832 		if (enospc)
833 			goto write_retry;
834 	} else if (ret == -ENOSPC && !enospc) {
835 		struct xfs_eofblocks eofb = {0};
836 
837 		enospc = 1;
838 		xfs_flush_inodes(ip->i_mount);
839 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
840 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
841 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
842 		goto write_retry;
843 	}
844 
845 	current->backing_dev_info = NULL;
846 out:
847 	xfs_rw_iunlock(ip, iolock);
848 	return ret;
849 }
850 
851 STATIC ssize_t
852 xfs_file_write_iter(
853 	struct kiocb		*iocb,
854 	struct iov_iter		*from)
855 {
856 	struct file		*file = iocb->ki_filp;
857 	struct address_space	*mapping = file->f_mapping;
858 	struct inode		*inode = mapping->host;
859 	struct xfs_inode	*ip = XFS_I(inode);
860 	ssize_t			ret;
861 	size_t			ocount = iov_iter_count(from);
862 
863 	XFS_STATS_INC(xs_write_calls);
864 
865 	if (ocount == 0)
866 		return 0;
867 
868 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
869 		return -EIO;
870 
871 	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
872 		ret = xfs_file_dio_aio_write(iocb, from);
873 	else
874 		ret = xfs_file_buffered_aio_write(iocb, from);
875 
876 	if (ret > 0) {
877 		ssize_t err;
878 
879 		XFS_STATS_ADD(xs_write_bytes, ret);
880 
881 		/* Handle various SYNC-type writes */
882 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
883 		if (err < 0)
884 			ret = err;
885 	}
886 	return ret;
887 }
888 
889 #define	XFS_FALLOC_FL_SUPPORTED						\
890 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
891 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
892 		 FALLOC_FL_INSERT_RANGE)
893 
894 STATIC long
895 xfs_file_fallocate(
896 	struct file		*file,
897 	int			mode,
898 	loff_t			offset,
899 	loff_t			len)
900 {
901 	struct inode		*inode = file_inode(file);
902 	struct xfs_inode	*ip = XFS_I(inode);
903 	long			error;
904 	enum xfs_prealloc_flags	flags = 0;
905 	uint			iolock = XFS_IOLOCK_EXCL;
906 	loff_t			new_size = 0;
907 	bool			do_file_insert = 0;
908 
909 	if (!S_ISREG(inode->i_mode))
910 		return -EINVAL;
911 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
912 		return -EOPNOTSUPP;
913 
914 	xfs_ilock(ip, iolock);
915 	error = xfs_break_layouts(inode, &iolock, false);
916 	if (error)
917 		goto out_unlock;
918 
919 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
920 	iolock |= XFS_MMAPLOCK_EXCL;
921 
922 	if (mode & FALLOC_FL_PUNCH_HOLE) {
923 		error = xfs_free_file_space(ip, offset, len);
924 		if (error)
925 			goto out_unlock;
926 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
927 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
928 
929 		if (offset & blksize_mask || len & blksize_mask) {
930 			error = -EINVAL;
931 			goto out_unlock;
932 		}
933 
934 		/*
935 		 * There is no need to overlap collapse range with EOF,
936 		 * in which case it is effectively a truncate operation
937 		 */
938 		if (offset + len >= i_size_read(inode)) {
939 			error = -EINVAL;
940 			goto out_unlock;
941 		}
942 
943 		new_size = i_size_read(inode) - len;
944 
945 		error = xfs_collapse_file_space(ip, offset, len);
946 		if (error)
947 			goto out_unlock;
948 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
949 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
950 
951 		new_size = i_size_read(inode) + len;
952 		if (offset & blksize_mask || len & blksize_mask) {
953 			error = -EINVAL;
954 			goto out_unlock;
955 		}
956 
957 		/* check the new inode size does not wrap through zero */
958 		if (new_size > inode->i_sb->s_maxbytes) {
959 			error = -EFBIG;
960 			goto out_unlock;
961 		}
962 
963 		/* Offset should be less than i_size */
964 		if (offset >= i_size_read(inode)) {
965 			error = -EINVAL;
966 			goto out_unlock;
967 		}
968 		do_file_insert = 1;
969 	} else {
970 		flags |= XFS_PREALLOC_SET;
971 
972 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
973 		    offset + len > i_size_read(inode)) {
974 			new_size = offset + len;
975 			error = inode_newsize_ok(inode, new_size);
976 			if (error)
977 				goto out_unlock;
978 		}
979 
980 		if (mode & FALLOC_FL_ZERO_RANGE)
981 			error = xfs_zero_file_space(ip, offset, len);
982 		else
983 			error = xfs_alloc_file_space(ip, offset, len,
984 						     XFS_BMAPI_PREALLOC);
985 		if (error)
986 			goto out_unlock;
987 	}
988 
989 	if (file->f_flags & O_DSYNC)
990 		flags |= XFS_PREALLOC_SYNC;
991 
992 	error = xfs_update_prealloc_flags(ip, flags);
993 	if (error)
994 		goto out_unlock;
995 
996 	/* Change file size if needed */
997 	if (new_size) {
998 		struct iattr iattr;
999 
1000 		iattr.ia_valid = ATTR_SIZE;
1001 		iattr.ia_size = new_size;
1002 		error = xfs_setattr_size(ip, &iattr);
1003 		if (error)
1004 			goto out_unlock;
1005 	}
1006 
1007 	/*
1008 	 * Perform hole insertion now that the file size has been
1009 	 * updated so that if we crash during the operation we don't
1010 	 * leave shifted extents past EOF and hence losing access to
1011 	 * the data that is contained within them.
1012 	 */
1013 	if (do_file_insert)
1014 		error = xfs_insert_file_space(ip, offset, len);
1015 
1016 out_unlock:
1017 	xfs_iunlock(ip, iolock);
1018 	return error;
1019 }
1020 
1021 
1022 STATIC int
1023 xfs_file_open(
1024 	struct inode	*inode,
1025 	struct file	*file)
1026 {
1027 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1028 		return -EFBIG;
1029 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1030 		return -EIO;
1031 	return 0;
1032 }
1033 
1034 STATIC int
1035 xfs_dir_open(
1036 	struct inode	*inode,
1037 	struct file	*file)
1038 {
1039 	struct xfs_inode *ip = XFS_I(inode);
1040 	int		mode;
1041 	int		error;
1042 
1043 	error = xfs_file_open(inode, file);
1044 	if (error)
1045 		return error;
1046 
1047 	/*
1048 	 * If there are any blocks, read-ahead block 0 as we're almost
1049 	 * certain to have the next operation be a read there.
1050 	 */
1051 	mode = xfs_ilock_data_map_shared(ip);
1052 	if (ip->i_d.di_nextents > 0)
1053 		xfs_dir3_data_readahead(ip, 0, -1);
1054 	xfs_iunlock(ip, mode);
1055 	return 0;
1056 }
1057 
1058 STATIC int
1059 xfs_file_release(
1060 	struct inode	*inode,
1061 	struct file	*filp)
1062 {
1063 	return xfs_release(XFS_I(inode));
1064 }
1065 
1066 STATIC int
1067 xfs_file_readdir(
1068 	struct file	*file,
1069 	struct dir_context *ctx)
1070 {
1071 	struct inode	*inode = file_inode(file);
1072 	xfs_inode_t	*ip = XFS_I(inode);
1073 	size_t		bufsize;
1074 
1075 	/*
1076 	 * The Linux API doesn't pass down the total size of the buffer
1077 	 * we read into down to the filesystem.  With the filldir concept
1078 	 * it's not needed for correct information, but the XFS dir2 leaf
1079 	 * code wants an estimate of the buffer size to calculate it's
1080 	 * readahead window and size the buffers used for mapping to
1081 	 * physical blocks.
1082 	 *
1083 	 * Try to give it an estimate that's good enough, maybe at some
1084 	 * point we can change the ->readdir prototype to include the
1085 	 * buffer size.  For now we use the current glibc buffer size.
1086 	 */
1087 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1088 
1089 	return xfs_readdir(ip, ctx, bufsize);
1090 }
1091 
1092 /*
1093  * This type is designed to indicate the type of offset we would like
1094  * to search from page cache for xfs_seek_hole_data().
1095  */
1096 enum {
1097 	HOLE_OFF = 0,
1098 	DATA_OFF,
1099 };
1100 
1101 /*
1102  * Lookup the desired type of offset from the given page.
1103  *
1104  * On success, return true and the offset argument will point to the
1105  * start of the region that was found.  Otherwise this function will
1106  * return false and keep the offset argument unchanged.
1107  */
1108 STATIC bool
1109 xfs_lookup_buffer_offset(
1110 	struct page		*page,
1111 	loff_t			*offset,
1112 	unsigned int		type)
1113 {
1114 	loff_t			lastoff = page_offset(page);
1115 	bool			found = false;
1116 	struct buffer_head	*bh, *head;
1117 
1118 	bh = head = page_buffers(page);
1119 	do {
1120 		/*
1121 		 * Unwritten extents that have data in the page
1122 		 * cache covering them can be identified by the
1123 		 * BH_Unwritten state flag.  Pages with multiple
1124 		 * buffers might have a mix of holes, data and
1125 		 * unwritten extents - any buffer with valid
1126 		 * data in it should have BH_Uptodate flag set
1127 		 * on it.
1128 		 */
1129 		if (buffer_unwritten(bh) ||
1130 		    buffer_uptodate(bh)) {
1131 			if (type == DATA_OFF)
1132 				found = true;
1133 		} else {
1134 			if (type == HOLE_OFF)
1135 				found = true;
1136 		}
1137 
1138 		if (found) {
1139 			*offset = lastoff;
1140 			break;
1141 		}
1142 		lastoff += bh->b_size;
1143 	} while ((bh = bh->b_this_page) != head);
1144 
1145 	return found;
1146 }
1147 
1148 /*
1149  * This routine is called to find out and return a data or hole offset
1150  * from the page cache for unwritten extents according to the desired
1151  * type for xfs_seek_hole_data().
1152  *
1153  * The argument offset is used to tell where we start to search from the
1154  * page cache.  Map is used to figure out the end points of the range to
1155  * lookup pages.
1156  *
1157  * Return true if the desired type of offset was found, and the argument
1158  * offset is filled with that address.  Otherwise, return false and keep
1159  * offset unchanged.
1160  */
1161 STATIC bool
1162 xfs_find_get_desired_pgoff(
1163 	struct inode		*inode,
1164 	struct xfs_bmbt_irec	*map,
1165 	unsigned int		type,
1166 	loff_t			*offset)
1167 {
1168 	struct xfs_inode	*ip = XFS_I(inode);
1169 	struct xfs_mount	*mp = ip->i_mount;
1170 	struct pagevec		pvec;
1171 	pgoff_t			index;
1172 	pgoff_t			end;
1173 	loff_t			endoff;
1174 	loff_t			startoff = *offset;
1175 	loff_t			lastoff = startoff;
1176 	bool			found = false;
1177 
1178 	pagevec_init(&pvec, 0);
1179 
1180 	index = startoff >> PAGE_CACHE_SHIFT;
1181 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1182 	end = endoff >> PAGE_CACHE_SHIFT;
1183 	do {
1184 		int		want;
1185 		unsigned	nr_pages;
1186 		unsigned int	i;
1187 
1188 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1189 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1190 					  want);
1191 		/*
1192 		 * No page mapped into given range.  If we are searching holes
1193 		 * and if this is the first time we got into the loop, it means
1194 		 * that the given offset is landed in a hole, return it.
1195 		 *
1196 		 * If we have already stepped through some block buffers to find
1197 		 * holes but they all contains data.  In this case, the last
1198 		 * offset is already updated and pointed to the end of the last
1199 		 * mapped page, if it does not reach the endpoint to search,
1200 		 * that means there should be a hole between them.
1201 		 */
1202 		if (nr_pages == 0) {
1203 			/* Data search found nothing */
1204 			if (type == DATA_OFF)
1205 				break;
1206 
1207 			ASSERT(type == HOLE_OFF);
1208 			if (lastoff == startoff || lastoff < endoff) {
1209 				found = true;
1210 				*offset = lastoff;
1211 			}
1212 			break;
1213 		}
1214 
1215 		/*
1216 		 * At lease we found one page.  If this is the first time we
1217 		 * step into the loop, and if the first page index offset is
1218 		 * greater than the given search offset, a hole was found.
1219 		 */
1220 		if (type == HOLE_OFF && lastoff == startoff &&
1221 		    lastoff < page_offset(pvec.pages[0])) {
1222 			found = true;
1223 			break;
1224 		}
1225 
1226 		for (i = 0; i < nr_pages; i++) {
1227 			struct page	*page = pvec.pages[i];
1228 			loff_t		b_offset;
1229 
1230 			/*
1231 			 * At this point, the page may be truncated or
1232 			 * invalidated (changing page->mapping to NULL),
1233 			 * or even swizzled back from swapper_space to tmpfs
1234 			 * file mapping. However, page->index will not change
1235 			 * because we have a reference on the page.
1236 			 *
1237 			 * Searching done if the page index is out of range.
1238 			 * If the current offset is not reaches the end of
1239 			 * the specified search range, there should be a hole
1240 			 * between them.
1241 			 */
1242 			if (page->index > end) {
1243 				if (type == HOLE_OFF && lastoff < endoff) {
1244 					*offset = lastoff;
1245 					found = true;
1246 				}
1247 				goto out;
1248 			}
1249 
1250 			lock_page(page);
1251 			/*
1252 			 * Page truncated or invalidated(page->mapping == NULL).
1253 			 * We can freely skip it and proceed to check the next
1254 			 * page.
1255 			 */
1256 			if (unlikely(page->mapping != inode->i_mapping)) {
1257 				unlock_page(page);
1258 				continue;
1259 			}
1260 
1261 			if (!page_has_buffers(page)) {
1262 				unlock_page(page);
1263 				continue;
1264 			}
1265 
1266 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1267 			if (found) {
1268 				/*
1269 				 * The found offset may be less than the start
1270 				 * point to search if this is the first time to
1271 				 * come here.
1272 				 */
1273 				*offset = max_t(loff_t, startoff, b_offset);
1274 				unlock_page(page);
1275 				goto out;
1276 			}
1277 
1278 			/*
1279 			 * We either searching data but nothing was found, or
1280 			 * searching hole but found a data buffer.  In either
1281 			 * case, probably the next page contains the desired
1282 			 * things, update the last offset to it so.
1283 			 */
1284 			lastoff = page_offset(page) + PAGE_SIZE;
1285 			unlock_page(page);
1286 		}
1287 
1288 		/*
1289 		 * The number of returned pages less than our desired, search
1290 		 * done.  In this case, nothing was found for searching data,
1291 		 * but we found a hole behind the last offset.
1292 		 */
1293 		if (nr_pages < want) {
1294 			if (type == HOLE_OFF) {
1295 				*offset = lastoff;
1296 				found = true;
1297 			}
1298 			break;
1299 		}
1300 
1301 		index = pvec.pages[i - 1]->index + 1;
1302 		pagevec_release(&pvec);
1303 	} while (index <= end);
1304 
1305 out:
1306 	pagevec_release(&pvec);
1307 	return found;
1308 }
1309 
1310 STATIC loff_t
1311 xfs_seek_hole_data(
1312 	struct file		*file,
1313 	loff_t			start,
1314 	int			whence)
1315 {
1316 	struct inode		*inode = file->f_mapping->host;
1317 	struct xfs_inode	*ip = XFS_I(inode);
1318 	struct xfs_mount	*mp = ip->i_mount;
1319 	loff_t			uninitialized_var(offset);
1320 	xfs_fsize_t		isize;
1321 	xfs_fileoff_t		fsbno;
1322 	xfs_filblks_t		end;
1323 	uint			lock;
1324 	int			error;
1325 
1326 	if (XFS_FORCED_SHUTDOWN(mp))
1327 		return -EIO;
1328 
1329 	lock = xfs_ilock_data_map_shared(ip);
1330 
1331 	isize = i_size_read(inode);
1332 	if (start >= isize) {
1333 		error = -ENXIO;
1334 		goto out_unlock;
1335 	}
1336 
1337 	/*
1338 	 * Try to read extents from the first block indicated
1339 	 * by fsbno to the end block of the file.
1340 	 */
1341 	fsbno = XFS_B_TO_FSBT(mp, start);
1342 	end = XFS_B_TO_FSB(mp, isize);
1343 
1344 	for (;;) {
1345 		struct xfs_bmbt_irec	map[2];
1346 		int			nmap = 2;
1347 		unsigned int		i;
1348 
1349 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1350 				       XFS_BMAPI_ENTIRE);
1351 		if (error)
1352 			goto out_unlock;
1353 
1354 		/* No extents at given offset, must be beyond EOF */
1355 		if (nmap == 0) {
1356 			error = -ENXIO;
1357 			goto out_unlock;
1358 		}
1359 
1360 		for (i = 0; i < nmap; i++) {
1361 			offset = max_t(loff_t, start,
1362 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1363 
1364 			/* Landed in the hole we wanted? */
1365 			if (whence == SEEK_HOLE &&
1366 			    map[i].br_startblock == HOLESTARTBLOCK)
1367 				goto out;
1368 
1369 			/* Landed in the data extent we wanted? */
1370 			if (whence == SEEK_DATA &&
1371 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1372 			     (map[i].br_state == XFS_EXT_NORM &&
1373 			      !isnullstartblock(map[i].br_startblock))))
1374 				goto out;
1375 
1376 			/*
1377 			 * Landed in an unwritten extent, try to search
1378 			 * for hole or data from page cache.
1379 			 */
1380 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1381 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1382 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1383 							&offset))
1384 					goto out;
1385 			}
1386 		}
1387 
1388 		/*
1389 		 * We only received one extent out of the two requested. This
1390 		 * means we've hit EOF and didn't find what we are looking for.
1391 		 */
1392 		if (nmap == 1) {
1393 			/*
1394 			 * If we were looking for a hole, set offset to
1395 			 * the end of the file (i.e., there is an implicit
1396 			 * hole at the end of any file).
1397 		 	 */
1398 			if (whence == SEEK_HOLE) {
1399 				offset = isize;
1400 				break;
1401 			}
1402 			/*
1403 			 * If we were looking for data, it's nowhere to be found
1404 			 */
1405 			ASSERT(whence == SEEK_DATA);
1406 			error = -ENXIO;
1407 			goto out_unlock;
1408 		}
1409 
1410 		ASSERT(i > 1);
1411 
1412 		/*
1413 		 * Nothing was found, proceed to the next round of search
1414 		 * if the next reading offset is not at or beyond EOF.
1415 		 */
1416 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417 		start = XFS_FSB_TO_B(mp, fsbno);
1418 		if (start >= isize) {
1419 			if (whence == SEEK_HOLE) {
1420 				offset = isize;
1421 				break;
1422 			}
1423 			ASSERT(whence == SEEK_DATA);
1424 			error = -ENXIO;
1425 			goto out_unlock;
1426 		}
1427 	}
1428 
1429 out:
1430 	/*
1431 	 * If at this point we have found the hole we wanted, the returned
1432 	 * offset may be bigger than the file size as it may be aligned to
1433 	 * page boundary for unwritten extents.  We need to deal with this
1434 	 * situation in particular.
1435 	 */
1436 	if (whence == SEEK_HOLE)
1437 		offset = min_t(loff_t, offset, isize);
1438 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1439 
1440 out_unlock:
1441 	xfs_iunlock(ip, lock);
1442 
1443 	if (error)
1444 		return error;
1445 	return offset;
1446 }
1447 
1448 STATIC loff_t
1449 xfs_file_llseek(
1450 	struct file	*file,
1451 	loff_t		offset,
1452 	int		whence)
1453 {
1454 	switch (whence) {
1455 	case SEEK_END:
1456 	case SEEK_CUR:
1457 	case SEEK_SET:
1458 		return generic_file_llseek(file, offset, whence);
1459 	case SEEK_HOLE:
1460 	case SEEK_DATA:
1461 		return xfs_seek_hole_data(file, offset, whence);
1462 	default:
1463 		return -EINVAL;
1464 	}
1465 }
1466 
1467 /*
1468  * Locking for serialisation of IO during page faults. This results in a lock
1469  * ordering of:
1470  *
1471  * mmap_sem (MM)
1472  *   sb_start_pagefault(vfs, freeze)
1473  *     i_mmap_lock (XFS - truncate serialisation)
1474  *       page_lock (MM)
1475  *         i_lock (XFS - extent map serialisation)
1476  */
1477 
1478 /*
1479  * mmap()d file has taken write protection fault and is being made writable. We
1480  * can set the page state up correctly for a writable page, which means we can
1481  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1482  * mapping.
1483  */
1484 STATIC int
1485 xfs_filemap_page_mkwrite(
1486 	struct vm_area_struct	*vma,
1487 	struct vm_fault		*vmf)
1488 {
1489 	struct inode		*inode = file_inode(vma->vm_file);
1490 	int			ret;
1491 
1492 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1493 
1494 	sb_start_pagefault(inode->i_sb);
1495 	file_update_time(vma->vm_file);
1496 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1497 
1498 	if (IS_DAX(inode)) {
1499 		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct,
1500 				    xfs_end_io_dax_write);
1501 	} else {
1502 		ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);
1503 		ret = block_page_mkwrite_return(ret);
1504 	}
1505 
1506 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1507 	sb_end_pagefault(inode->i_sb);
1508 
1509 	return ret;
1510 }
1511 
1512 STATIC int
1513 xfs_filemap_fault(
1514 	struct vm_area_struct	*vma,
1515 	struct vm_fault		*vmf)
1516 {
1517 	struct inode		*inode = file_inode(vma->vm_file);
1518 	int			ret;
1519 
1520 	trace_xfs_filemap_fault(XFS_I(inode));
1521 
1522 	/* DAX can shortcut the normal fault path on write faults! */
1523 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1524 		return xfs_filemap_page_mkwrite(vma, vmf);
1525 
1526 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1527 	if (IS_DAX(inode)) {
1528 		/*
1529 		 * we do not want to trigger unwritten extent conversion on read
1530 		 * faults - that is unnecessary overhead and would also require
1531 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1532 		 * ioend for conversion on read-only mappings.
1533 		 */
1534 		ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL);
1535 	} else
1536 		ret = filemap_fault(vma, vmf);
1537 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1538 
1539 	return ret;
1540 }
1541 
1542 static const struct vm_operations_struct xfs_file_vm_ops = {
1543 	.fault		= xfs_filemap_fault,
1544 	.map_pages	= filemap_map_pages,
1545 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1546 };
1547 
1548 STATIC int
1549 xfs_file_mmap(
1550 	struct file	*filp,
1551 	struct vm_area_struct *vma)
1552 {
1553 	file_accessed(filp);
1554 	vma->vm_ops = &xfs_file_vm_ops;
1555 	if (IS_DAX(file_inode(filp)))
1556 		vma->vm_flags |= VM_MIXEDMAP;
1557 	return 0;
1558 }
1559 
1560 const struct file_operations xfs_file_operations = {
1561 	.llseek		= xfs_file_llseek,
1562 	.read_iter	= xfs_file_read_iter,
1563 	.write_iter	= xfs_file_write_iter,
1564 	.splice_read	= xfs_file_splice_read,
1565 	.splice_write	= iter_file_splice_write,
1566 	.unlocked_ioctl	= xfs_file_ioctl,
1567 #ifdef CONFIG_COMPAT
1568 	.compat_ioctl	= xfs_file_compat_ioctl,
1569 #endif
1570 	.mmap		= xfs_file_mmap,
1571 	.open		= xfs_file_open,
1572 	.release	= xfs_file_release,
1573 	.fsync		= xfs_file_fsync,
1574 	.fallocate	= xfs_file_fallocate,
1575 };
1576 
1577 const struct file_operations xfs_dir_file_operations = {
1578 	.open		= xfs_dir_open,
1579 	.read		= generic_read_dir,
1580 	.iterate	= xfs_file_readdir,
1581 	.llseek		= generic_file_llseek,
1582 	.unlocked_ioctl	= xfs_file_ioctl,
1583 #ifdef CONFIG_COMPAT
1584 	.compat_ioctl	= xfs_file_compat_ioctl,
1585 #endif
1586 	.fsync		= xfs_dir_fsync,
1587 };
1588