1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 #include <linux/mount.h> 33 34 static const struct vm_operations_struct xfs_file_vm_ops; 35 36 /* 37 * Decide if the given file range is aligned to the size of the fundamental 38 * allocation unit for the file. 39 */ 40 static bool 41 xfs_is_falloc_aligned( 42 struct xfs_inode *ip, 43 loff_t pos, 44 long long int len) 45 { 46 struct xfs_mount *mp = ip->i_mount; 47 uint64_t mask; 48 49 if (XFS_IS_REALTIME_INODE(ip)) { 50 if (!is_power_of_2(mp->m_sb.sb_rextsize)) { 51 u64 rextbytes; 52 u32 mod; 53 54 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); 55 div_u64_rem(pos, rextbytes, &mod); 56 if (mod) 57 return false; 58 div_u64_rem(len, rextbytes, &mod); 59 return mod == 0; 60 } 61 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; 62 } else { 63 mask = mp->m_sb.sb_blocksize - 1; 64 } 65 66 return !((pos | len) & mask); 67 } 68 69 int 70 xfs_update_prealloc_flags( 71 struct xfs_inode *ip, 72 enum xfs_prealloc_flags flags) 73 { 74 struct xfs_trans *tp; 75 int error; 76 77 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 78 0, 0, 0, &tp); 79 if (error) 80 return error; 81 82 xfs_ilock(ip, XFS_ILOCK_EXCL); 83 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 84 85 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 86 VFS_I(ip)->i_mode &= ~S_ISUID; 87 if (VFS_I(ip)->i_mode & S_IXGRP) 88 VFS_I(ip)->i_mode &= ~S_ISGID; 89 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 90 } 91 92 if (flags & XFS_PREALLOC_SET) 93 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 94 if (flags & XFS_PREALLOC_CLEAR) 95 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 96 97 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 98 if (flags & XFS_PREALLOC_SYNC) 99 xfs_trans_set_sync(tp); 100 return xfs_trans_commit(tp); 101 } 102 103 /* 104 * Fsync operations on directories are much simpler than on regular files, 105 * as there is no file data to flush, and thus also no need for explicit 106 * cache flush operations, and there are no non-transaction metadata updates 107 * on directories either. 108 */ 109 STATIC int 110 xfs_dir_fsync( 111 struct file *file, 112 loff_t start, 113 loff_t end, 114 int datasync) 115 { 116 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 117 118 trace_xfs_dir_fsync(ip); 119 return xfs_log_force_inode(ip); 120 } 121 122 static xfs_lsn_t 123 xfs_fsync_lsn( 124 struct xfs_inode *ip, 125 bool datasync) 126 { 127 if (!xfs_ipincount(ip)) 128 return 0; 129 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 130 return 0; 131 return ip->i_itemp->ili_last_lsn; 132 } 133 134 /* 135 * All metadata updates are logged, which means that we just have to flush the 136 * log up to the latest LSN that touched the inode. 137 * 138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 139 * the log force before we clear the ili_fsync_fields field. This ensures that 140 * we don't get a racing sync operation that does not wait for the metadata to 141 * hit the journal before returning. If we race with clearing ili_fsync_fields, 142 * then all that will happen is the log force will do nothing as the lsn will 143 * already be on disk. We can't race with setting ili_fsync_fields because that 144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 145 * shared until after the ili_fsync_fields is cleared. 146 */ 147 static int 148 xfs_fsync_flush_log( 149 struct xfs_inode *ip, 150 bool datasync, 151 int *log_flushed) 152 { 153 int error = 0; 154 xfs_lsn_t lsn; 155 156 xfs_ilock(ip, XFS_ILOCK_SHARED); 157 lsn = xfs_fsync_lsn(ip, datasync); 158 if (lsn) { 159 error = xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, 160 log_flushed); 161 162 spin_lock(&ip->i_itemp->ili_lock); 163 ip->i_itemp->ili_fsync_fields = 0; 164 spin_unlock(&ip->i_itemp->ili_lock); 165 } 166 xfs_iunlock(ip, XFS_ILOCK_SHARED); 167 return error; 168 } 169 170 STATIC int 171 xfs_file_fsync( 172 struct file *file, 173 loff_t start, 174 loff_t end, 175 int datasync) 176 { 177 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 178 struct xfs_mount *mp = ip->i_mount; 179 int error = 0; 180 int log_flushed = 0; 181 182 trace_xfs_file_fsync(ip); 183 184 error = file_write_and_wait_range(file, start, end); 185 if (error) 186 return error; 187 188 if (XFS_FORCED_SHUTDOWN(mp)) 189 return -EIO; 190 191 xfs_iflags_clear(ip, XFS_ITRUNCATED); 192 193 /* 194 * If we have an RT and/or log subvolume we need to make sure to flush 195 * the write cache the device used for file data first. This is to 196 * ensure newly written file data make it to disk before logging the new 197 * inode size in case of an extending write. 198 */ 199 if (XFS_IS_REALTIME_INODE(ip)) 200 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 201 else if (mp->m_logdev_targp != mp->m_ddev_targp) 202 xfs_blkdev_issue_flush(mp->m_ddev_targp); 203 204 /* 205 * Any inode that has dirty modifications in the log is pinned. The 206 * racy check here for a pinned inode while not catch modifications 207 * that happen concurrently to the fsync call, but fsync semantics 208 * only require to sync previously completed I/O. 209 */ 210 if (xfs_ipincount(ip)) 211 error = xfs_fsync_flush_log(ip, datasync, &log_flushed); 212 213 /* 214 * If we only have a single device, and the log force about was 215 * a no-op we might have to flush the data device cache here. 216 * This can only happen for fdatasync/O_DSYNC if we were overwriting 217 * an already allocated file and thus do not have any metadata to 218 * commit. 219 */ 220 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 221 mp->m_logdev_targp == mp->m_ddev_targp) 222 xfs_blkdev_issue_flush(mp->m_ddev_targp); 223 224 return error; 225 } 226 227 static int 228 xfs_ilock_iocb( 229 struct kiocb *iocb, 230 unsigned int lock_mode) 231 { 232 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 233 234 if (iocb->ki_flags & IOCB_NOWAIT) { 235 if (!xfs_ilock_nowait(ip, lock_mode)) 236 return -EAGAIN; 237 } else { 238 xfs_ilock(ip, lock_mode); 239 } 240 241 return 0; 242 } 243 244 STATIC ssize_t 245 xfs_file_dio_read( 246 struct kiocb *iocb, 247 struct iov_iter *to) 248 { 249 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 250 ssize_t ret; 251 252 trace_xfs_file_direct_read(iocb, to); 253 254 if (!iov_iter_count(to)) 255 return 0; /* skip atime */ 256 257 file_accessed(iocb->ki_filp); 258 259 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 260 if (ret) 261 return ret; 262 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0); 263 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 264 265 return ret; 266 } 267 268 static noinline ssize_t 269 xfs_file_dax_read( 270 struct kiocb *iocb, 271 struct iov_iter *to) 272 { 273 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 274 ssize_t ret = 0; 275 276 trace_xfs_file_dax_read(iocb, to); 277 278 if (!iov_iter_count(to)) 279 return 0; /* skip atime */ 280 281 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 282 if (ret) 283 return ret; 284 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 285 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 286 287 file_accessed(iocb->ki_filp); 288 return ret; 289 } 290 291 STATIC ssize_t 292 xfs_file_buffered_read( 293 struct kiocb *iocb, 294 struct iov_iter *to) 295 { 296 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 297 ssize_t ret; 298 299 trace_xfs_file_buffered_read(iocb, to); 300 301 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 302 if (ret) 303 return ret; 304 ret = generic_file_read_iter(iocb, to); 305 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 306 307 return ret; 308 } 309 310 STATIC ssize_t 311 xfs_file_read_iter( 312 struct kiocb *iocb, 313 struct iov_iter *to) 314 { 315 struct inode *inode = file_inode(iocb->ki_filp); 316 struct xfs_mount *mp = XFS_I(inode)->i_mount; 317 ssize_t ret = 0; 318 319 XFS_STATS_INC(mp, xs_read_calls); 320 321 if (XFS_FORCED_SHUTDOWN(mp)) 322 return -EIO; 323 324 if (IS_DAX(inode)) 325 ret = xfs_file_dax_read(iocb, to); 326 else if (iocb->ki_flags & IOCB_DIRECT) 327 ret = xfs_file_dio_read(iocb, to); 328 else 329 ret = xfs_file_buffered_read(iocb, to); 330 331 if (ret > 0) 332 XFS_STATS_ADD(mp, xs_read_bytes, ret); 333 return ret; 334 } 335 336 /* 337 * Common pre-write limit and setup checks. 338 * 339 * Called with the iolocked held either shared and exclusive according to 340 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 341 * if called for a direct write beyond i_size. 342 */ 343 STATIC ssize_t 344 xfs_file_write_checks( 345 struct kiocb *iocb, 346 struct iov_iter *from, 347 int *iolock) 348 { 349 struct file *file = iocb->ki_filp; 350 struct inode *inode = file->f_mapping->host; 351 struct xfs_inode *ip = XFS_I(inode); 352 ssize_t error = 0; 353 size_t count = iov_iter_count(from); 354 bool drained_dio = false; 355 loff_t isize; 356 357 restart: 358 error = generic_write_checks(iocb, from); 359 if (error <= 0) 360 return error; 361 362 if (iocb->ki_flags & IOCB_NOWAIT) { 363 error = break_layout(inode, false); 364 if (error == -EWOULDBLOCK) 365 error = -EAGAIN; 366 } else { 367 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 368 } 369 370 if (error) 371 return error; 372 373 /* 374 * For changing security info in file_remove_privs() we need i_rwsem 375 * exclusively. 376 */ 377 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 378 xfs_iunlock(ip, *iolock); 379 *iolock = XFS_IOLOCK_EXCL; 380 error = xfs_ilock_iocb(iocb, *iolock); 381 if (error) { 382 *iolock = 0; 383 return error; 384 } 385 goto restart; 386 } 387 /* 388 * If the offset is beyond the size of the file, we need to zero any 389 * blocks that fall between the existing EOF and the start of this 390 * write. If zeroing is needed and we are currently holding the 391 * iolock shared, we need to update it to exclusive which implies 392 * having to redo all checks before. 393 * 394 * We need to serialise against EOF updates that occur in IO 395 * completions here. We want to make sure that nobody is changing the 396 * size while we do this check until we have placed an IO barrier (i.e. 397 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 398 * The spinlock effectively forms a memory barrier once we have the 399 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 400 * and hence be able to correctly determine if we need to run zeroing. 401 */ 402 spin_lock(&ip->i_flags_lock); 403 isize = i_size_read(inode); 404 if (iocb->ki_pos > isize) { 405 spin_unlock(&ip->i_flags_lock); 406 407 if (iocb->ki_flags & IOCB_NOWAIT) 408 return -EAGAIN; 409 410 if (!drained_dio) { 411 if (*iolock == XFS_IOLOCK_SHARED) { 412 xfs_iunlock(ip, *iolock); 413 *iolock = XFS_IOLOCK_EXCL; 414 xfs_ilock(ip, *iolock); 415 iov_iter_reexpand(from, count); 416 } 417 /* 418 * We now have an IO submission barrier in place, but 419 * AIO can do EOF updates during IO completion and hence 420 * we now need to wait for all of them to drain. Non-AIO 421 * DIO will have drained before we are given the 422 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 423 * no-op. 424 */ 425 inode_dio_wait(inode); 426 drained_dio = true; 427 goto restart; 428 } 429 430 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 431 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 432 NULL, &xfs_buffered_write_iomap_ops); 433 if (error) 434 return error; 435 } else 436 spin_unlock(&ip->i_flags_lock); 437 438 return file_modified(file); 439 } 440 441 static int 442 xfs_dio_write_end_io( 443 struct kiocb *iocb, 444 ssize_t size, 445 int error, 446 unsigned flags) 447 { 448 struct inode *inode = file_inode(iocb->ki_filp); 449 struct xfs_inode *ip = XFS_I(inode); 450 loff_t offset = iocb->ki_pos; 451 unsigned int nofs_flag; 452 453 trace_xfs_end_io_direct_write(ip, offset, size); 454 455 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 456 return -EIO; 457 458 if (error) 459 return error; 460 if (!size) 461 return 0; 462 463 /* 464 * Capture amount written on completion as we can't reliably account 465 * for it on submission. 466 */ 467 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 468 469 /* 470 * We can allocate memory here while doing writeback on behalf of 471 * memory reclaim. To avoid memory allocation deadlocks set the 472 * task-wide nofs context for the following operations. 473 */ 474 nofs_flag = memalloc_nofs_save(); 475 476 if (flags & IOMAP_DIO_COW) { 477 error = xfs_reflink_end_cow(ip, offset, size); 478 if (error) 479 goto out; 480 } 481 482 /* 483 * Unwritten conversion updates the in-core isize after extent 484 * conversion but before updating the on-disk size. Updating isize any 485 * earlier allows a racing dio read to find unwritten extents before 486 * they are converted. 487 */ 488 if (flags & IOMAP_DIO_UNWRITTEN) { 489 error = xfs_iomap_write_unwritten(ip, offset, size, true); 490 goto out; 491 } 492 493 /* 494 * We need to update the in-core inode size here so that we don't end up 495 * with the on-disk inode size being outside the in-core inode size. We 496 * have no other method of updating EOF for AIO, so always do it here 497 * if necessary. 498 * 499 * We need to lock the test/set EOF update as we can be racing with 500 * other IO completions here to update the EOF. Failing to serialise 501 * here can result in EOF moving backwards and Bad Things Happen when 502 * that occurs. 503 */ 504 spin_lock(&ip->i_flags_lock); 505 if (offset + size > i_size_read(inode)) { 506 i_size_write(inode, offset + size); 507 spin_unlock(&ip->i_flags_lock); 508 error = xfs_setfilesize(ip, offset, size); 509 } else { 510 spin_unlock(&ip->i_flags_lock); 511 } 512 513 out: 514 memalloc_nofs_restore(nofs_flag); 515 return error; 516 } 517 518 static const struct iomap_dio_ops xfs_dio_write_ops = { 519 .end_io = xfs_dio_write_end_io, 520 }; 521 522 /* 523 * Handle block aligned direct I/O writes 524 */ 525 static noinline ssize_t 526 xfs_file_dio_write_aligned( 527 struct xfs_inode *ip, 528 struct kiocb *iocb, 529 struct iov_iter *from) 530 { 531 int iolock = XFS_IOLOCK_SHARED; 532 ssize_t ret; 533 534 ret = xfs_ilock_iocb(iocb, iolock); 535 if (ret) 536 return ret; 537 ret = xfs_file_write_checks(iocb, from, &iolock); 538 if (ret) 539 goto out_unlock; 540 541 /* 542 * We don't need to hold the IOLOCK exclusively across the IO, so demote 543 * the iolock back to shared if we had to take the exclusive lock in 544 * xfs_file_write_checks() for other reasons. 545 */ 546 if (iolock == XFS_IOLOCK_EXCL) { 547 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 548 iolock = XFS_IOLOCK_SHARED; 549 } 550 trace_xfs_file_direct_write(iocb, from); 551 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 552 &xfs_dio_write_ops, 0); 553 out_unlock: 554 if (iolock) 555 xfs_iunlock(ip, iolock); 556 return ret; 557 } 558 559 /* 560 * Handle block unaligned direct I/O writes 561 * 562 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 563 * them to be done in parallel with reads and other direct I/O writes. However, 564 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 565 * to do sub-block zeroing and that requires serialisation against other direct 566 * I/O to the same block. In this case we need to serialise the submission of 567 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 568 * In the case where sub-block zeroing is not required, we can do concurrent 569 * sub-block dios to the same block successfully. 570 * 571 * Optimistically submit the I/O using the shared lock first, but use the 572 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 573 * if block allocation or partial block zeroing would be required. In that case 574 * we try again with the exclusive lock. 575 */ 576 static noinline ssize_t 577 xfs_file_dio_write_unaligned( 578 struct xfs_inode *ip, 579 struct kiocb *iocb, 580 struct iov_iter *from) 581 { 582 size_t isize = i_size_read(VFS_I(ip)); 583 size_t count = iov_iter_count(from); 584 int iolock = XFS_IOLOCK_SHARED; 585 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 586 ssize_t ret; 587 588 /* 589 * Extending writes need exclusivity because of the sub-block zeroing 590 * that the DIO code always does for partial tail blocks beyond EOF, so 591 * don't even bother trying the fast path in this case. 592 */ 593 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 594 retry_exclusive: 595 if (iocb->ki_flags & IOCB_NOWAIT) 596 return -EAGAIN; 597 iolock = XFS_IOLOCK_EXCL; 598 flags = IOMAP_DIO_FORCE_WAIT; 599 } 600 601 ret = xfs_ilock_iocb(iocb, iolock); 602 if (ret) 603 return ret; 604 605 /* 606 * We can't properly handle unaligned direct I/O to reflink files yet, 607 * as we can't unshare a partial block. 608 */ 609 if (xfs_is_cow_inode(ip)) { 610 trace_xfs_reflink_bounce_dio_write(iocb, from); 611 ret = -ENOTBLK; 612 goto out_unlock; 613 } 614 615 ret = xfs_file_write_checks(iocb, from, &iolock); 616 if (ret) 617 goto out_unlock; 618 619 /* 620 * If we are doing exclusive unaligned I/O, this must be the only I/O 621 * in-flight. Otherwise we risk data corruption due to unwritten extent 622 * conversions from the AIO end_io handler. Wait for all other I/O to 623 * drain first. 624 */ 625 if (flags & IOMAP_DIO_FORCE_WAIT) 626 inode_dio_wait(VFS_I(ip)); 627 628 trace_xfs_file_direct_write(iocb, from); 629 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 630 &xfs_dio_write_ops, flags); 631 632 /* 633 * Retry unaligned I/O with exclusive blocking semantics if the DIO 634 * layer rejected it for mapping or locking reasons. If we are doing 635 * nonblocking user I/O, propagate the error. 636 */ 637 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 638 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 639 xfs_iunlock(ip, iolock); 640 goto retry_exclusive; 641 } 642 643 out_unlock: 644 if (iolock) 645 xfs_iunlock(ip, iolock); 646 return ret; 647 } 648 649 static ssize_t 650 xfs_file_dio_write( 651 struct kiocb *iocb, 652 struct iov_iter *from) 653 { 654 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 655 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 656 size_t count = iov_iter_count(from); 657 658 /* direct I/O must be aligned to device logical sector size */ 659 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 660 return -EINVAL; 661 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 662 return xfs_file_dio_write_unaligned(ip, iocb, from); 663 return xfs_file_dio_write_aligned(ip, iocb, from); 664 } 665 666 static noinline ssize_t 667 xfs_file_dax_write( 668 struct kiocb *iocb, 669 struct iov_iter *from) 670 { 671 struct inode *inode = iocb->ki_filp->f_mapping->host; 672 struct xfs_inode *ip = XFS_I(inode); 673 int iolock = XFS_IOLOCK_EXCL; 674 ssize_t ret, error = 0; 675 loff_t pos; 676 677 ret = xfs_ilock_iocb(iocb, iolock); 678 if (ret) 679 return ret; 680 ret = xfs_file_write_checks(iocb, from, &iolock); 681 if (ret) 682 goto out; 683 684 pos = iocb->ki_pos; 685 686 trace_xfs_file_dax_write(iocb, from); 687 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); 688 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 689 i_size_write(inode, iocb->ki_pos); 690 error = xfs_setfilesize(ip, pos, ret); 691 } 692 out: 693 if (iolock) 694 xfs_iunlock(ip, iolock); 695 if (error) 696 return error; 697 698 if (ret > 0) { 699 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 700 701 /* Handle various SYNC-type writes */ 702 ret = generic_write_sync(iocb, ret); 703 } 704 return ret; 705 } 706 707 STATIC ssize_t 708 xfs_file_buffered_write( 709 struct kiocb *iocb, 710 struct iov_iter *from) 711 { 712 struct file *file = iocb->ki_filp; 713 struct address_space *mapping = file->f_mapping; 714 struct inode *inode = mapping->host; 715 struct xfs_inode *ip = XFS_I(inode); 716 ssize_t ret; 717 bool cleared_space = false; 718 int iolock; 719 720 if (iocb->ki_flags & IOCB_NOWAIT) 721 return -EOPNOTSUPP; 722 723 write_retry: 724 iolock = XFS_IOLOCK_EXCL; 725 xfs_ilock(ip, iolock); 726 727 ret = xfs_file_write_checks(iocb, from, &iolock); 728 if (ret) 729 goto out; 730 731 /* We can write back this queue in page reclaim */ 732 current->backing_dev_info = inode_to_bdi(inode); 733 734 trace_xfs_file_buffered_write(iocb, from); 735 ret = iomap_file_buffered_write(iocb, from, 736 &xfs_buffered_write_iomap_ops); 737 if (likely(ret >= 0)) 738 iocb->ki_pos += ret; 739 740 /* 741 * If we hit a space limit, try to free up some lingering preallocated 742 * space before returning an error. In the case of ENOSPC, first try to 743 * write back all dirty inodes to free up some of the excess reserved 744 * metadata space. This reduces the chances that the eofblocks scan 745 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 746 * also behaves as a filter to prevent too many eofblocks scans from 747 * running at the same time. Use a synchronous scan to increase the 748 * effectiveness of the scan. 749 */ 750 if (ret == -EDQUOT && !cleared_space) { 751 xfs_iunlock(ip, iolock); 752 xfs_blockgc_free_quota(ip, XFS_EOF_FLAGS_SYNC); 753 cleared_space = true; 754 goto write_retry; 755 } else if (ret == -ENOSPC && !cleared_space) { 756 struct xfs_eofblocks eofb = {0}; 757 758 cleared_space = true; 759 xfs_flush_inodes(ip->i_mount); 760 761 xfs_iunlock(ip, iolock); 762 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 763 xfs_blockgc_free_space(ip->i_mount, &eofb); 764 goto write_retry; 765 } 766 767 current->backing_dev_info = NULL; 768 out: 769 if (iolock) 770 xfs_iunlock(ip, iolock); 771 772 if (ret > 0) { 773 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 774 /* Handle various SYNC-type writes */ 775 ret = generic_write_sync(iocb, ret); 776 } 777 return ret; 778 } 779 780 STATIC ssize_t 781 xfs_file_write_iter( 782 struct kiocb *iocb, 783 struct iov_iter *from) 784 { 785 struct file *file = iocb->ki_filp; 786 struct address_space *mapping = file->f_mapping; 787 struct inode *inode = mapping->host; 788 struct xfs_inode *ip = XFS_I(inode); 789 ssize_t ret; 790 size_t ocount = iov_iter_count(from); 791 792 XFS_STATS_INC(ip->i_mount, xs_write_calls); 793 794 if (ocount == 0) 795 return 0; 796 797 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 798 return -EIO; 799 800 if (IS_DAX(inode)) 801 return xfs_file_dax_write(iocb, from); 802 803 if (iocb->ki_flags & IOCB_DIRECT) { 804 /* 805 * Allow a directio write to fall back to a buffered 806 * write *only* in the case that we're doing a reflink 807 * CoW. In all other directio scenarios we do not 808 * allow an operation to fall back to buffered mode. 809 */ 810 ret = xfs_file_dio_write(iocb, from); 811 if (ret != -ENOTBLK) 812 return ret; 813 } 814 815 return xfs_file_buffered_write(iocb, from); 816 } 817 818 static void 819 xfs_wait_dax_page( 820 struct inode *inode) 821 { 822 struct xfs_inode *ip = XFS_I(inode); 823 824 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 825 schedule(); 826 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 827 } 828 829 static int 830 xfs_break_dax_layouts( 831 struct inode *inode, 832 bool *retry) 833 { 834 struct page *page; 835 836 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 837 838 page = dax_layout_busy_page(inode->i_mapping); 839 if (!page) 840 return 0; 841 842 *retry = true; 843 return ___wait_var_event(&page->_refcount, 844 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 845 0, 0, xfs_wait_dax_page(inode)); 846 } 847 848 int 849 xfs_break_layouts( 850 struct inode *inode, 851 uint *iolock, 852 enum layout_break_reason reason) 853 { 854 bool retry; 855 int error; 856 857 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 858 859 do { 860 retry = false; 861 switch (reason) { 862 case BREAK_UNMAP: 863 error = xfs_break_dax_layouts(inode, &retry); 864 if (error || retry) 865 break; 866 /* fall through */ 867 case BREAK_WRITE: 868 error = xfs_break_leased_layouts(inode, iolock, &retry); 869 break; 870 default: 871 WARN_ON_ONCE(1); 872 error = -EINVAL; 873 } 874 } while (error == 0 && retry); 875 876 return error; 877 } 878 879 #define XFS_FALLOC_FL_SUPPORTED \ 880 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 881 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 882 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 883 884 STATIC long 885 xfs_file_fallocate( 886 struct file *file, 887 int mode, 888 loff_t offset, 889 loff_t len) 890 { 891 struct inode *inode = file_inode(file); 892 struct xfs_inode *ip = XFS_I(inode); 893 long error; 894 enum xfs_prealloc_flags flags = 0; 895 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 896 loff_t new_size = 0; 897 bool do_file_insert = false; 898 899 if (!S_ISREG(inode->i_mode)) 900 return -EINVAL; 901 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 902 return -EOPNOTSUPP; 903 904 xfs_ilock(ip, iolock); 905 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 906 if (error) 907 goto out_unlock; 908 909 /* 910 * Must wait for all AIO to complete before we continue as AIO can 911 * change the file size on completion without holding any locks we 912 * currently hold. We must do this first because AIO can update both 913 * the on disk and in memory inode sizes, and the operations that follow 914 * require the in-memory size to be fully up-to-date. 915 */ 916 inode_dio_wait(inode); 917 918 /* 919 * Now AIO and DIO has drained we flush and (if necessary) invalidate 920 * the cached range over the first operation we are about to run. 921 * 922 * We care about zero and collapse here because they both run a hole 923 * punch over the range first. Because that can zero data, and the range 924 * of invalidation for the shift operations is much larger, we still do 925 * the required flush for collapse in xfs_prepare_shift(). 926 * 927 * Insert has the same range requirements as collapse, and we extend the 928 * file first which can zero data. Hence insert has the same 929 * flush/invalidate requirements as collapse and so they are both 930 * handled at the right time by xfs_prepare_shift(). 931 */ 932 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 933 FALLOC_FL_COLLAPSE_RANGE)) { 934 error = xfs_flush_unmap_range(ip, offset, len); 935 if (error) 936 goto out_unlock; 937 } 938 939 if (mode & FALLOC_FL_PUNCH_HOLE) { 940 error = xfs_free_file_space(ip, offset, len); 941 if (error) 942 goto out_unlock; 943 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 944 if (!xfs_is_falloc_aligned(ip, offset, len)) { 945 error = -EINVAL; 946 goto out_unlock; 947 } 948 949 /* 950 * There is no need to overlap collapse range with EOF, 951 * in which case it is effectively a truncate operation 952 */ 953 if (offset + len >= i_size_read(inode)) { 954 error = -EINVAL; 955 goto out_unlock; 956 } 957 958 new_size = i_size_read(inode) - len; 959 960 error = xfs_collapse_file_space(ip, offset, len); 961 if (error) 962 goto out_unlock; 963 } else if (mode & FALLOC_FL_INSERT_RANGE) { 964 loff_t isize = i_size_read(inode); 965 966 if (!xfs_is_falloc_aligned(ip, offset, len)) { 967 error = -EINVAL; 968 goto out_unlock; 969 } 970 971 /* 972 * New inode size must not exceed ->s_maxbytes, accounting for 973 * possible signed overflow. 974 */ 975 if (inode->i_sb->s_maxbytes - isize < len) { 976 error = -EFBIG; 977 goto out_unlock; 978 } 979 new_size = isize + len; 980 981 /* Offset should be less than i_size */ 982 if (offset >= isize) { 983 error = -EINVAL; 984 goto out_unlock; 985 } 986 do_file_insert = true; 987 } else { 988 flags |= XFS_PREALLOC_SET; 989 990 if (!(mode & FALLOC_FL_KEEP_SIZE) && 991 offset + len > i_size_read(inode)) { 992 new_size = offset + len; 993 error = inode_newsize_ok(inode, new_size); 994 if (error) 995 goto out_unlock; 996 } 997 998 if (mode & FALLOC_FL_ZERO_RANGE) { 999 /* 1000 * Punch a hole and prealloc the range. We use a hole 1001 * punch rather than unwritten extent conversion for two 1002 * reasons: 1003 * 1004 * 1.) Hole punch handles partial block zeroing for us. 1005 * 2.) If prealloc returns ENOSPC, the file range is 1006 * still zero-valued by virtue of the hole punch. 1007 */ 1008 unsigned int blksize = i_blocksize(inode); 1009 1010 trace_xfs_zero_file_space(ip); 1011 1012 error = xfs_free_file_space(ip, offset, len); 1013 if (error) 1014 goto out_unlock; 1015 1016 len = round_up(offset + len, blksize) - 1017 round_down(offset, blksize); 1018 offset = round_down(offset, blksize); 1019 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 1020 error = xfs_reflink_unshare(ip, offset, len); 1021 if (error) 1022 goto out_unlock; 1023 } else { 1024 /* 1025 * If always_cow mode we can't use preallocations and 1026 * thus should not create them. 1027 */ 1028 if (xfs_is_always_cow_inode(ip)) { 1029 error = -EOPNOTSUPP; 1030 goto out_unlock; 1031 } 1032 } 1033 1034 if (!xfs_is_always_cow_inode(ip)) { 1035 error = xfs_alloc_file_space(ip, offset, len, 1036 XFS_BMAPI_PREALLOC); 1037 if (error) 1038 goto out_unlock; 1039 } 1040 } 1041 1042 if (file->f_flags & O_DSYNC) 1043 flags |= XFS_PREALLOC_SYNC; 1044 1045 error = xfs_update_prealloc_flags(ip, flags); 1046 if (error) 1047 goto out_unlock; 1048 1049 /* Change file size if needed */ 1050 if (new_size) { 1051 struct iattr iattr; 1052 1053 iattr.ia_valid = ATTR_SIZE; 1054 iattr.ia_size = new_size; 1055 error = xfs_vn_setattr_size(file_mnt_user_ns(file), 1056 file_dentry(file), &iattr); 1057 if (error) 1058 goto out_unlock; 1059 } 1060 1061 /* 1062 * Perform hole insertion now that the file size has been 1063 * updated so that if we crash during the operation we don't 1064 * leave shifted extents past EOF and hence losing access to 1065 * the data that is contained within them. 1066 */ 1067 if (do_file_insert) 1068 error = xfs_insert_file_space(ip, offset, len); 1069 1070 out_unlock: 1071 xfs_iunlock(ip, iolock); 1072 return error; 1073 } 1074 1075 STATIC int 1076 xfs_file_fadvise( 1077 struct file *file, 1078 loff_t start, 1079 loff_t end, 1080 int advice) 1081 { 1082 struct xfs_inode *ip = XFS_I(file_inode(file)); 1083 int ret; 1084 int lockflags = 0; 1085 1086 /* 1087 * Operations creating pages in page cache need protection from hole 1088 * punching and similar ops 1089 */ 1090 if (advice == POSIX_FADV_WILLNEED) { 1091 lockflags = XFS_IOLOCK_SHARED; 1092 xfs_ilock(ip, lockflags); 1093 } 1094 ret = generic_fadvise(file, start, end, advice); 1095 if (lockflags) 1096 xfs_iunlock(ip, lockflags); 1097 return ret; 1098 } 1099 1100 /* Does this file, inode, or mount want synchronous writes? */ 1101 static inline bool xfs_file_sync_writes(struct file *filp) 1102 { 1103 struct xfs_inode *ip = XFS_I(file_inode(filp)); 1104 1105 if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC) 1106 return true; 1107 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 1108 return true; 1109 if (IS_SYNC(file_inode(filp))) 1110 return true; 1111 1112 return false; 1113 } 1114 1115 STATIC loff_t 1116 xfs_file_remap_range( 1117 struct file *file_in, 1118 loff_t pos_in, 1119 struct file *file_out, 1120 loff_t pos_out, 1121 loff_t len, 1122 unsigned int remap_flags) 1123 { 1124 struct inode *inode_in = file_inode(file_in); 1125 struct xfs_inode *src = XFS_I(inode_in); 1126 struct inode *inode_out = file_inode(file_out); 1127 struct xfs_inode *dest = XFS_I(inode_out); 1128 struct xfs_mount *mp = src->i_mount; 1129 loff_t remapped = 0; 1130 xfs_extlen_t cowextsize; 1131 int ret; 1132 1133 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1134 return -EINVAL; 1135 1136 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 1137 return -EOPNOTSUPP; 1138 1139 if (XFS_FORCED_SHUTDOWN(mp)) 1140 return -EIO; 1141 1142 /* Prepare and then clone file data. */ 1143 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1144 &len, remap_flags); 1145 if (ret || len == 0) 1146 return ret; 1147 1148 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1149 1150 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1151 &remapped); 1152 if (ret) 1153 goto out_unlock; 1154 1155 /* 1156 * Carry the cowextsize hint from src to dest if we're sharing the 1157 * entire source file to the entire destination file, the source file 1158 * has a cowextsize hint, and the destination file does not. 1159 */ 1160 cowextsize = 0; 1161 if (pos_in == 0 && len == i_size_read(inode_in) && 1162 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1163 pos_out == 0 && len >= i_size_read(inode_out) && 1164 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1165 cowextsize = src->i_d.di_cowextsize; 1166 1167 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1168 remap_flags); 1169 if (ret) 1170 goto out_unlock; 1171 1172 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1173 xfs_log_force_inode(dest); 1174 out_unlock: 1175 xfs_iunlock2_io_mmap(src, dest); 1176 if (ret) 1177 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1178 return remapped > 0 ? remapped : ret; 1179 } 1180 1181 STATIC int 1182 xfs_file_open( 1183 struct inode *inode, 1184 struct file *file) 1185 { 1186 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1187 return -EFBIG; 1188 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1189 return -EIO; 1190 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 1191 return 0; 1192 } 1193 1194 STATIC int 1195 xfs_dir_open( 1196 struct inode *inode, 1197 struct file *file) 1198 { 1199 struct xfs_inode *ip = XFS_I(inode); 1200 int mode; 1201 int error; 1202 1203 error = xfs_file_open(inode, file); 1204 if (error) 1205 return error; 1206 1207 /* 1208 * If there are any blocks, read-ahead block 0 as we're almost 1209 * certain to have the next operation be a read there. 1210 */ 1211 mode = xfs_ilock_data_map_shared(ip); 1212 if (ip->i_df.if_nextents > 0) 1213 error = xfs_dir3_data_readahead(ip, 0, 0); 1214 xfs_iunlock(ip, mode); 1215 return error; 1216 } 1217 1218 STATIC int 1219 xfs_file_release( 1220 struct inode *inode, 1221 struct file *filp) 1222 { 1223 return xfs_release(XFS_I(inode)); 1224 } 1225 1226 STATIC int 1227 xfs_file_readdir( 1228 struct file *file, 1229 struct dir_context *ctx) 1230 { 1231 struct inode *inode = file_inode(file); 1232 xfs_inode_t *ip = XFS_I(inode); 1233 size_t bufsize; 1234 1235 /* 1236 * The Linux API doesn't pass down the total size of the buffer 1237 * we read into down to the filesystem. With the filldir concept 1238 * it's not needed for correct information, but the XFS dir2 leaf 1239 * code wants an estimate of the buffer size to calculate it's 1240 * readahead window and size the buffers used for mapping to 1241 * physical blocks. 1242 * 1243 * Try to give it an estimate that's good enough, maybe at some 1244 * point we can change the ->readdir prototype to include the 1245 * buffer size. For now we use the current glibc buffer size. 1246 */ 1247 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1248 1249 return xfs_readdir(NULL, ip, ctx, bufsize); 1250 } 1251 1252 STATIC loff_t 1253 xfs_file_llseek( 1254 struct file *file, 1255 loff_t offset, 1256 int whence) 1257 { 1258 struct inode *inode = file->f_mapping->host; 1259 1260 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1261 return -EIO; 1262 1263 switch (whence) { 1264 default: 1265 return generic_file_llseek(file, offset, whence); 1266 case SEEK_HOLE: 1267 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1268 break; 1269 case SEEK_DATA: 1270 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1271 break; 1272 } 1273 1274 if (offset < 0) 1275 return offset; 1276 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1277 } 1278 1279 /* 1280 * Locking for serialisation of IO during page faults. This results in a lock 1281 * ordering of: 1282 * 1283 * mmap_lock (MM) 1284 * sb_start_pagefault(vfs, freeze) 1285 * i_mmaplock (XFS - truncate serialisation) 1286 * page_lock (MM) 1287 * i_lock (XFS - extent map serialisation) 1288 */ 1289 static vm_fault_t 1290 __xfs_filemap_fault( 1291 struct vm_fault *vmf, 1292 enum page_entry_size pe_size, 1293 bool write_fault) 1294 { 1295 struct inode *inode = file_inode(vmf->vma->vm_file); 1296 struct xfs_inode *ip = XFS_I(inode); 1297 vm_fault_t ret; 1298 1299 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1300 1301 if (write_fault) { 1302 sb_start_pagefault(inode->i_sb); 1303 file_update_time(vmf->vma->vm_file); 1304 } 1305 1306 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1307 if (IS_DAX(inode)) { 1308 pfn_t pfn; 1309 1310 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, 1311 (write_fault && !vmf->cow_page) ? 1312 &xfs_direct_write_iomap_ops : 1313 &xfs_read_iomap_ops); 1314 if (ret & VM_FAULT_NEEDDSYNC) 1315 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1316 } else { 1317 if (write_fault) 1318 ret = iomap_page_mkwrite(vmf, 1319 &xfs_buffered_write_iomap_ops); 1320 else 1321 ret = filemap_fault(vmf); 1322 } 1323 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1324 1325 if (write_fault) 1326 sb_end_pagefault(inode->i_sb); 1327 return ret; 1328 } 1329 1330 static inline bool 1331 xfs_is_write_fault( 1332 struct vm_fault *vmf) 1333 { 1334 return (vmf->flags & FAULT_FLAG_WRITE) && 1335 (vmf->vma->vm_flags & VM_SHARED); 1336 } 1337 1338 static vm_fault_t 1339 xfs_filemap_fault( 1340 struct vm_fault *vmf) 1341 { 1342 /* DAX can shortcut the normal fault path on write faults! */ 1343 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1344 IS_DAX(file_inode(vmf->vma->vm_file)) && 1345 xfs_is_write_fault(vmf)); 1346 } 1347 1348 static vm_fault_t 1349 xfs_filemap_huge_fault( 1350 struct vm_fault *vmf, 1351 enum page_entry_size pe_size) 1352 { 1353 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1354 return VM_FAULT_FALLBACK; 1355 1356 /* DAX can shortcut the normal fault path on write faults! */ 1357 return __xfs_filemap_fault(vmf, pe_size, 1358 xfs_is_write_fault(vmf)); 1359 } 1360 1361 static vm_fault_t 1362 xfs_filemap_page_mkwrite( 1363 struct vm_fault *vmf) 1364 { 1365 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1366 } 1367 1368 /* 1369 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1370 * on write faults. In reality, it needs to serialise against truncate and 1371 * prepare memory for writing so handle is as standard write fault. 1372 */ 1373 static vm_fault_t 1374 xfs_filemap_pfn_mkwrite( 1375 struct vm_fault *vmf) 1376 { 1377 1378 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1379 } 1380 1381 static vm_fault_t 1382 xfs_filemap_map_pages( 1383 struct vm_fault *vmf, 1384 pgoff_t start_pgoff, 1385 pgoff_t end_pgoff) 1386 { 1387 struct inode *inode = file_inode(vmf->vma->vm_file); 1388 vm_fault_t ret; 1389 1390 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1391 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff); 1392 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1393 return ret; 1394 } 1395 1396 static const struct vm_operations_struct xfs_file_vm_ops = { 1397 .fault = xfs_filemap_fault, 1398 .huge_fault = xfs_filemap_huge_fault, 1399 .map_pages = xfs_filemap_map_pages, 1400 .page_mkwrite = xfs_filemap_page_mkwrite, 1401 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1402 }; 1403 1404 STATIC int 1405 xfs_file_mmap( 1406 struct file *file, 1407 struct vm_area_struct *vma) 1408 { 1409 struct inode *inode = file_inode(file); 1410 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1411 1412 /* 1413 * We don't support synchronous mappings for non-DAX files and 1414 * for DAX files if underneath dax_device is not synchronous. 1415 */ 1416 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1417 return -EOPNOTSUPP; 1418 1419 file_accessed(file); 1420 vma->vm_ops = &xfs_file_vm_ops; 1421 if (IS_DAX(inode)) 1422 vma->vm_flags |= VM_HUGEPAGE; 1423 return 0; 1424 } 1425 1426 const struct file_operations xfs_file_operations = { 1427 .llseek = xfs_file_llseek, 1428 .read_iter = xfs_file_read_iter, 1429 .write_iter = xfs_file_write_iter, 1430 .splice_read = generic_file_splice_read, 1431 .splice_write = iter_file_splice_write, 1432 .iopoll = iomap_dio_iopoll, 1433 .unlocked_ioctl = xfs_file_ioctl, 1434 #ifdef CONFIG_COMPAT 1435 .compat_ioctl = xfs_file_compat_ioctl, 1436 #endif 1437 .mmap = xfs_file_mmap, 1438 .mmap_supported_flags = MAP_SYNC, 1439 .open = xfs_file_open, 1440 .release = xfs_file_release, 1441 .fsync = xfs_file_fsync, 1442 .get_unmapped_area = thp_get_unmapped_area, 1443 .fallocate = xfs_file_fallocate, 1444 .fadvise = xfs_file_fadvise, 1445 .remap_file_range = xfs_file_remap_range, 1446 }; 1447 1448 const struct file_operations xfs_dir_file_operations = { 1449 .open = xfs_dir_open, 1450 .read = generic_read_dir, 1451 .iterate_shared = xfs_file_readdir, 1452 .llseek = generic_file_llseek, 1453 .unlocked_ioctl = xfs_file_ioctl, 1454 #ifdef CONFIG_COMPAT 1455 .compat_ioctl = xfs_file_compat_ioctl, 1456 #endif 1457 .fsync = xfs_dir_fsync, 1458 }; 1459