xref: /openbmc/linux/fs/xfs/xfs_file.c (revision b58c6630)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 
84 	trace_xfs_dir_fsync(ip);
85 	return xfs_log_force_inode(ip);
86 }
87 
88 STATIC int
89 xfs_file_fsync(
90 	struct file		*file,
91 	loff_t			start,
92 	loff_t			end,
93 	int			datasync)
94 {
95 	struct inode		*inode = file->f_mapping->host;
96 	struct xfs_inode	*ip = XFS_I(inode);
97 	struct xfs_mount	*mp = ip->i_mount;
98 	int			error = 0;
99 	int			log_flushed = 0;
100 	xfs_lsn_t		lsn = 0;
101 
102 	trace_xfs_file_fsync(ip);
103 
104 	error = file_write_and_wait_range(file, start, end);
105 	if (error)
106 		return error;
107 
108 	if (XFS_FORCED_SHUTDOWN(mp))
109 		return -EIO;
110 
111 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
112 
113 	/*
114 	 * If we have an RT and/or log subvolume we need to make sure to flush
115 	 * the write cache the device used for file data first.  This is to
116 	 * ensure newly written file data make it to disk before logging the new
117 	 * inode size in case of an extending write.
118 	 */
119 	if (XFS_IS_REALTIME_INODE(ip))
120 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
121 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
122 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
123 
124 	/*
125 	 * All metadata updates are logged, which means that we just have to
126 	 * flush the log up to the latest LSN that touched the inode. If we have
127 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
128 	 * log force before we clear the ili_fsync_fields field. This ensures
129 	 * that we don't get a racing sync operation that does not wait for the
130 	 * metadata to hit the journal before returning. If we race with
131 	 * clearing the ili_fsync_fields, then all that will happen is the log
132 	 * force will do nothing as the lsn will already be on disk. We can't
133 	 * race with setting ili_fsync_fields because that is done under
134 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
135 	 * until after the ili_fsync_fields is cleared.
136 	 */
137 	xfs_ilock(ip, XFS_ILOCK_SHARED);
138 	if (xfs_ipincount(ip)) {
139 		if (!datasync ||
140 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
141 			lsn = ip->i_itemp->ili_last_lsn;
142 	}
143 
144 	if (lsn) {
145 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
146 		ip->i_itemp->ili_fsync_fields = 0;
147 	}
148 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
149 
150 	/*
151 	 * If we only have a single device, and the log force about was
152 	 * a no-op we might have to flush the data device cache here.
153 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
154 	 * an already allocated file and thus do not have any metadata to
155 	 * commit.
156 	 */
157 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
158 	    mp->m_logdev_targp == mp->m_ddev_targp)
159 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
160 
161 	return error;
162 }
163 
164 STATIC ssize_t
165 xfs_file_dio_aio_read(
166 	struct kiocb		*iocb,
167 	struct iov_iter		*to)
168 {
169 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
170 	size_t			count = iov_iter_count(to);
171 	ssize_t			ret;
172 
173 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
174 
175 	if (!count)
176 		return 0; /* skip atime */
177 
178 	file_accessed(iocb->ki_filp);
179 
180 	if (iocb->ki_flags & IOCB_NOWAIT) {
181 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
182 			return -EAGAIN;
183 	} else {
184 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
185 	}
186 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
187 			is_sync_kiocb(iocb));
188 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
189 
190 	return ret;
191 }
192 
193 static noinline ssize_t
194 xfs_file_dax_read(
195 	struct kiocb		*iocb,
196 	struct iov_iter		*to)
197 {
198 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
199 	size_t			count = iov_iter_count(to);
200 	ssize_t			ret = 0;
201 
202 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
203 
204 	if (!count)
205 		return 0; /* skip atime */
206 
207 	if (iocb->ki_flags & IOCB_NOWAIT) {
208 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
209 			return -EAGAIN;
210 	} else {
211 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
212 	}
213 
214 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
215 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
216 
217 	file_accessed(iocb->ki_filp);
218 	return ret;
219 }
220 
221 STATIC ssize_t
222 xfs_file_buffered_aio_read(
223 	struct kiocb		*iocb,
224 	struct iov_iter		*to)
225 {
226 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
227 	ssize_t			ret;
228 
229 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
230 
231 	if (iocb->ki_flags & IOCB_NOWAIT) {
232 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
233 			return -EAGAIN;
234 	} else {
235 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 	}
237 	ret = generic_file_read_iter(iocb, to);
238 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
239 
240 	return ret;
241 }
242 
243 STATIC ssize_t
244 xfs_file_read_iter(
245 	struct kiocb		*iocb,
246 	struct iov_iter		*to)
247 {
248 	struct inode		*inode = file_inode(iocb->ki_filp);
249 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
250 	ssize_t			ret = 0;
251 
252 	XFS_STATS_INC(mp, xs_read_calls);
253 
254 	if (XFS_FORCED_SHUTDOWN(mp))
255 		return -EIO;
256 
257 	if (IS_DAX(inode))
258 		ret = xfs_file_dax_read(iocb, to);
259 	else if (iocb->ki_flags & IOCB_DIRECT)
260 		ret = xfs_file_dio_aio_read(iocb, to);
261 	else
262 		ret = xfs_file_buffered_aio_read(iocb, to);
263 
264 	if (ret > 0)
265 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
266 	return ret;
267 }
268 
269 /*
270  * Common pre-write limit and setup checks.
271  *
272  * Called with the iolocked held either shared and exclusive according to
273  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
274  * if called for a direct write beyond i_size.
275  */
276 STATIC ssize_t
277 xfs_file_aio_write_checks(
278 	struct kiocb		*iocb,
279 	struct iov_iter		*from,
280 	int			*iolock)
281 {
282 	struct file		*file = iocb->ki_filp;
283 	struct inode		*inode = file->f_mapping->host;
284 	struct xfs_inode	*ip = XFS_I(inode);
285 	ssize_t			error = 0;
286 	size_t			count = iov_iter_count(from);
287 	bool			drained_dio = false;
288 	loff_t			isize;
289 
290 restart:
291 	error = generic_write_checks(iocb, from);
292 	if (error <= 0)
293 		return error;
294 
295 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
296 	if (error)
297 		return error;
298 
299 	/*
300 	 * For changing security info in file_remove_privs() we need i_rwsem
301 	 * exclusively.
302 	 */
303 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
304 		xfs_iunlock(ip, *iolock);
305 		*iolock = XFS_IOLOCK_EXCL;
306 		xfs_ilock(ip, *iolock);
307 		goto restart;
308 	}
309 	/*
310 	 * If the offset is beyond the size of the file, we need to zero any
311 	 * blocks that fall between the existing EOF and the start of this
312 	 * write.  If zeroing is needed and we are currently holding the
313 	 * iolock shared, we need to update it to exclusive which implies
314 	 * having to redo all checks before.
315 	 *
316 	 * We need to serialise against EOF updates that occur in IO
317 	 * completions here. We want to make sure that nobody is changing the
318 	 * size while we do this check until we have placed an IO barrier (i.e.
319 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
320 	 * The spinlock effectively forms a memory barrier once we have the
321 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
322 	 * and hence be able to correctly determine if we need to run zeroing.
323 	 */
324 	spin_lock(&ip->i_flags_lock);
325 	isize = i_size_read(inode);
326 	if (iocb->ki_pos > isize) {
327 		spin_unlock(&ip->i_flags_lock);
328 		if (!drained_dio) {
329 			if (*iolock == XFS_IOLOCK_SHARED) {
330 				xfs_iunlock(ip, *iolock);
331 				*iolock = XFS_IOLOCK_EXCL;
332 				xfs_ilock(ip, *iolock);
333 				iov_iter_reexpand(from, count);
334 			}
335 			/*
336 			 * We now have an IO submission barrier in place, but
337 			 * AIO can do EOF updates during IO completion and hence
338 			 * we now need to wait for all of them to drain. Non-AIO
339 			 * DIO will have drained before we are given the
340 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
341 			 * no-op.
342 			 */
343 			inode_dio_wait(inode);
344 			drained_dio = true;
345 			goto restart;
346 		}
347 
348 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
349 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
350 				NULL, &xfs_buffered_write_iomap_ops);
351 		if (error)
352 			return error;
353 	} else
354 		spin_unlock(&ip->i_flags_lock);
355 
356 	/*
357 	 * Updating the timestamps will grab the ilock again from
358 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
359 	 * lock above.  Eventually we should look into a way to avoid
360 	 * the pointless lock roundtrip.
361 	 */
362 	return file_modified(file);
363 }
364 
365 static int
366 xfs_dio_write_end_io(
367 	struct kiocb		*iocb,
368 	ssize_t			size,
369 	int			error,
370 	unsigned		flags)
371 {
372 	struct inode		*inode = file_inode(iocb->ki_filp);
373 	struct xfs_inode	*ip = XFS_I(inode);
374 	loff_t			offset = iocb->ki_pos;
375 	unsigned int		nofs_flag;
376 
377 	trace_xfs_end_io_direct_write(ip, offset, size);
378 
379 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
380 		return -EIO;
381 
382 	if (error)
383 		return error;
384 	if (!size)
385 		return 0;
386 
387 	/*
388 	 * Capture amount written on completion as we can't reliably account
389 	 * for it on submission.
390 	 */
391 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
392 
393 	/*
394 	 * We can allocate memory here while doing writeback on behalf of
395 	 * memory reclaim.  To avoid memory allocation deadlocks set the
396 	 * task-wide nofs context for the following operations.
397 	 */
398 	nofs_flag = memalloc_nofs_save();
399 
400 	if (flags & IOMAP_DIO_COW) {
401 		error = xfs_reflink_end_cow(ip, offset, size);
402 		if (error)
403 			goto out;
404 	}
405 
406 	/*
407 	 * Unwritten conversion updates the in-core isize after extent
408 	 * conversion but before updating the on-disk size. Updating isize any
409 	 * earlier allows a racing dio read to find unwritten extents before
410 	 * they are converted.
411 	 */
412 	if (flags & IOMAP_DIO_UNWRITTEN) {
413 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
414 		goto out;
415 	}
416 
417 	/*
418 	 * We need to update the in-core inode size here so that we don't end up
419 	 * with the on-disk inode size being outside the in-core inode size. We
420 	 * have no other method of updating EOF for AIO, so always do it here
421 	 * if necessary.
422 	 *
423 	 * We need to lock the test/set EOF update as we can be racing with
424 	 * other IO completions here to update the EOF. Failing to serialise
425 	 * here can result in EOF moving backwards and Bad Things Happen when
426 	 * that occurs.
427 	 */
428 	spin_lock(&ip->i_flags_lock);
429 	if (offset + size > i_size_read(inode)) {
430 		i_size_write(inode, offset + size);
431 		spin_unlock(&ip->i_flags_lock);
432 		error = xfs_setfilesize(ip, offset, size);
433 	} else {
434 		spin_unlock(&ip->i_flags_lock);
435 	}
436 
437 out:
438 	memalloc_nofs_restore(nofs_flag);
439 	return error;
440 }
441 
442 static const struct iomap_dio_ops xfs_dio_write_ops = {
443 	.end_io		= xfs_dio_write_end_io,
444 };
445 
446 /*
447  * xfs_file_dio_aio_write - handle direct IO writes
448  *
449  * Lock the inode appropriately to prepare for and issue a direct IO write.
450  * By separating it from the buffered write path we remove all the tricky to
451  * follow locking changes and looping.
452  *
453  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
454  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
455  * pages are flushed out.
456  *
457  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
458  * allowing them to be done in parallel with reads and other direct IO writes.
459  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
460  * needs to do sub-block zeroing and that requires serialisation against other
461  * direct IOs to the same block. In this case we need to serialise the
462  * submission of the unaligned IOs so that we don't get racing block zeroing in
463  * the dio layer.  To avoid the problem with aio, we also need to wait for
464  * outstanding IOs to complete so that unwritten extent conversion is completed
465  * before we try to map the overlapping block. This is currently implemented by
466  * hitting it with a big hammer (i.e. inode_dio_wait()).
467  *
468  * Returns with locks held indicated by @iolock and errors indicated by
469  * negative return values.
470  */
471 STATIC ssize_t
472 xfs_file_dio_aio_write(
473 	struct kiocb		*iocb,
474 	struct iov_iter		*from)
475 {
476 	struct file		*file = iocb->ki_filp;
477 	struct address_space	*mapping = file->f_mapping;
478 	struct inode		*inode = mapping->host;
479 	struct xfs_inode	*ip = XFS_I(inode);
480 	struct xfs_mount	*mp = ip->i_mount;
481 	ssize_t			ret = 0;
482 	int			unaligned_io = 0;
483 	int			iolock;
484 	size_t			count = iov_iter_count(from);
485 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
486 
487 	/* DIO must be aligned to device logical sector size */
488 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
489 		return -EINVAL;
490 
491 	/*
492 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
493 	 * the file system block size.  We don't need to consider the EOF
494 	 * extension case here because xfs_file_aio_write_checks() will relock
495 	 * the inode as necessary for EOF zeroing cases and fill out the new
496 	 * inode size as appropriate.
497 	 */
498 	if ((iocb->ki_pos & mp->m_blockmask) ||
499 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
500 		unaligned_io = 1;
501 
502 		/*
503 		 * We can't properly handle unaligned direct I/O to reflink
504 		 * files yet, as we can't unshare a partial block.
505 		 */
506 		if (xfs_is_cow_inode(ip)) {
507 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
508 			return -EREMCHG;
509 		}
510 		iolock = XFS_IOLOCK_EXCL;
511 	} else {
512 		iolock = XFS_IOLOCK_SHARED;
513 	}
514 
515 	if (iocb->ki_flags & IOCB_NOWAIT) {
516 		/* unaligned dio always waits, bail */
517 		if (unaligned_io)
518 			return -EAGAIN;
519 		if (!xfs_ilock_nowait(ip, iolock))
520 			return -EAGAIN;
521 	} else {
522 		xfs_ilock(ip, iolock);
523 	}
524 
525 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
526 	if (ret)
527 		goto out;
528 	count = iov_iter_count(from);
529 
530 	/*
531 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
532 	 * in-flight at the same time or we risk data corruption. Wait for all
533 	 * other IO to drain before we submit. If the IO is aligned, demote the
534 	 * iolock if we had to take the exclusive lock in
535 	 * xfs_file_aio_write_checks() for other reasons.
536 	 */
537 	if (unaligned_io) {
538 		inode_dio_wait(inode);
539 	} else if (iolock == XFS_IOLOCK_EXCL) {
540 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
541 		iolock = XFS_IOLOCK_SHARED;
542 	}
543 
544 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
545 	/*
546 	 * If unaligned, this is the only IO in-flight. Wait on it before we
547 	 * release the iolock to prevent subsequent overlapping IO.
548 	 */
549 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
550 			   &xfs_dio_write_ops,
551 			   is_sync_kiocb(iocb) || unaligned_io);
552 out:
553 	xfs_iunlock(ip, iolock);
554 
555 	/*
556 	 * No fallback to buffered IO on errors for XFS, direct IO will either
557 	 * complete fully or fail.
558 	 */
559 	ASSERT(ret < 0 || ret == count);
560 	return ret;
561 }
562 
563 static noinline ssize_t
564 xfs_file_dax_write(
565 	struct kiocb		*iocb,
566 	struct iov_iter		*from)
567 {
568 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
569 	struct xfs_inode	*ip = XFS_I(inode);
570 	int			iolock = XFS_IOLOCK_EXCL;
571 	ssize_t			ret, error = 0;
572 	size_t			count;
573 	loff_t			pos;
574 
575 	if (iocb->ki_flags & IOCB_NOWAIT) {
576 		if (!xfs_ilock_nowait(ip, iolock))
577 			return -EAGAIN;
578 	} else {
579 		xfs_ilock(ip, iolock);
580 	}
581 
582 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
583 	if (ret)
584 		goto out;
585 
586 	pos = iocb->ki_pos;
587 	count = iov_iter_count(from);
588 
589 	trace_xfs_file_dax_write(ip, count, pos);
590 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
591 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
592 		i_size_write(inode, iocb->ki_pos);
593 		error = xfs_setfilesize(ip, pos, ret);
594 	}
595 out:
596 	xfs_iunlock(ip, iolock);
597 	if (error)
598 		return error;
599 
600 	if (ret > 0) {
601 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
602 
603 		/* Handle various SYNC-type writes */
604 		ret = generic_write_sync(iocb, ret);
605 	}
606 	return ret;
607 }
608 
609 STATIC ssize_t
610 xfs_file_buffered_aio_write(
611 	struct kiocb		*iocb,
612 	struct iov_iter		*from)
613 {
614 	struct file		*file = iocb->ki_filp;
615 	struct address_space	*mapping = file->f_mapping;
616 	struct inode		*inode = mapping->host;
617 	struct xfs_inode	*ip = XFS_I(inode);
618 	ssize_t			ret;
619 	int			enospc = 0;
620 	int			iolock;
621 
622 	if (iocb->ki_flags & IOCB_NOWAIT)
623 		return -EOPNOTSUPP;
624 
625 write_retry:
626 	iolock = XFS_IOLOCK_EXCL;
627 	xfs_ilock(ip, iolock);
628 
629 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
630 	if (ret)
631 		goto out;
632 
633 	/* We can write back this queue in page reclaim */
634 	current->backing_dev_info = inode_to_bdi(inode);
635 
636 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
637 	ret = iomap_file_buffered_write(iocb, from,
638 			&xfs_buffered_write_iomap_ops);
639 	if (likely(ret >= 0))
640 		iocb->ki_pos += ret;
641 
642 	/*
643 	 * If we hit a space limit, try to free up some lingering preallocated
644 	 * space before returning an error. In the case of ENOSPC, first try to
645 	 * write back all dirty inodes to free up some of the excess reserved
646 	 * metadata space. This reduces the chances that the eofblocks scan
647 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
648 	 * also behaves as a filter to prevent too many eofblocks scans from
649 	 * running at the same time.
650 	 */
651 	if (ret == -EDQUOT && !enospc) {
652 		xfs_iunlock(ip, iolock);
653 		enospc = xfs_inode_free_quota_eofblocks(ip);
654 		if (enospc)
655 			goto write_retry;
656 		enospc = xfs_inode_free_quota_cowblocks(ip);
657 		if (enospc)
658 			goto write_retry;
659 		iolock = 0;
660 	} else if (ret == -ENOSPC && !enospc) {
661 		struct xfs_eofblocks eofb = {0};
662 
663 		enospc = 1;
664 		xfs_flush_inodes(ip->i_mount);
665 
666 		xfs_iunlock(ip, iolock);
667 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
668 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
669 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
670 		goto write_retry;
671 	}
672 
673 	current->backing_dev_info = NULL;
674 out:
675 	if (iolock)
676 		xfs_iunlock(ip, iolock);
677 
678 	if (ret > 0) {
679 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
680 		/* Handle various SYNC-type writes */
681 		ret = generic_write_sync(iocb, ret);
682 	}
683 	return ret;
684 }
685 
686 STATIC ssize_t
687 xfs_file_write_iter(
688 	struct kiocb		*iocb,
689 	struct iov_iter		*from)
690 {
691 	struct file		*file = iocb->ki_filp;
692 	struct address_space	*mapping = file->f_mapping;
693 	struct inode		*inode = mapping->host;
694 	struct xfs_inode	*ip = XFS_I(inode);
695 	ssize_t			ret;
696 	size_t			ocount = iov_iter_count(from);
697 
698 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
699 
700 	if (ocount == 0)
701 		return 0;
702 
703 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
704 		return -EIO;
705 
706 	if (IS_DAX(inode))
707 		return xfs_file_dax_write(iocb, from);
708 
709 	if (iocb->ki_flags & IOCB_DIRECT) {
710 		/*
711 		 * Allow a directio write to fall back to a buffered
712 		 * write *only* in the case that we're doing a reflink
713 		 * CoW.  In all other directio scenarios we do not
714 		 * allow an operation to fall back to buffered mode.
715 		 */
716 		ret = xfs_file_dio_aio_write(iocb, from);
717 		if (ret != -EREMCHG)
718 			return ret;
719 	}
720 
721 	return xfs_file_buffered_aio_write(iocb, from);
722 }
723 
724 static void
725 xfs_wait_dax_page(
726 	struct inode		*inode)
727 {
728 	struct xfs_inode        *ip = XFS_I(inode);
729 
730 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
731 	schedule();
732 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
733 }
734 
735 static int
736 xfs_break_dax_layouts(
737 	struct inode		*inode,
738 	bool			*retry)
739 {
740 	struct page		*page;
741 
742 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
743 
744 	page = dax_layout_busy_page(inode->i_mapping);
745 	if (!page)
746 		return 0;
747 
748 	*retry = true;
749 	return ___wait_var_event(&page->_refcount,
750 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
751 			0, 0, xfs_wait_dax_page(inode));
752 }
753 
754 int
755 xfs_break_layouts(
756 	struct inode		*inode,
757 	uint			*iolock,
758 	enum layout_break_reason reason)
759 {
760 	bool			retry;
761 	int			error;
762 
763 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
764 
765 	do {
766 		retry = false;
767 		switch (reason) {
768 		case BREAK_UNMAP:
769 			error = xfs_break_dax_layouts(inode, &retry);
770 			if (error || retry)
771 				break;
772 			/* fall through */
773 		case BREAK_WRITE:
774 			error = xfs_break_leased_layouts(inode, iolock, &retry);
775 			break;
776 		default:
777 			WARN_ON_ONCE(1);
778 			error = -EINVAL;
779 		}
780 	} while (error == 0 && retry);
781 
782 	return error;
783 }
784 
785 #define	XFS_FALLOC_FL_SUPPORTED						\
786 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
787 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
788 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
789 
790 STATIC long
791 xfs_file_fallocate(
792 	struct file		*file,
793 	int			mode,
794 	loff_t			offset,
795 	loff_t			len)
796 {
797 	struct inode		*inode = file_inode(file);
798 	struct xfs_inode	*ip = XFS_I(inode);
799 	long			error;
800 	enum xfs_prealloc_flags	flags = 0;
801 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
802 	loff_t			new_size = 0;
803 	bool			do_file_insert = false;
804 
805 	if (!S_ISREG(inode->i_mode))
806 		return -EINVAL;
807 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
808 		return -EOPNOTSUPP;
809 
810 	xfs_ilock(ip, iolock);
811 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
812 	if (error)
813 		goto out_unlock;
814 
815 	/*
816 	 * Must wait for all AIO to complete before we continue as AIO can
817 	 * change the file size on completion without holding any locks we
818 	 * currently hold. We must do this first because AIO can update both
819 	 * the on disk and in memory inode sizes, and the operations that follow
820 	 * require the in-memory size to be fully up-to-date.
821 	 */
822 	inode_dio_wait(inode);
823 
824 	/*
825 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
826 	 * the cached range over the first operation we are about to run.
827 	 *
828 	 * We care about zero and collapse here because they both run a hole
829 	 * punch over the range first. Because that can zero data, and the range
830 	 * of invalidation for the shift operations is much larger, we still do
831 	 * the required flush for collapse in xfs_prepare_shift().
832 	 *
833 	 * Insert has the same range requirements as collapse, and we extend the
834 	 * file first which can zero data. Hence insert has the same
835 	 * flush/invalidate requirements as collapse and so they are both
836 	 * handled at the right time by xfs_prepare_shift().
837 	 */
838 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
839 		    FALLOC_FL_COLLAPSE_RANGE)) {
840 		error = xfs_flush_unmap_range(ip, offset, len);
841 		if (error)
842 			goto out_unlock;
843 	}
844 
845 	if (mode & FALLOC_FL_PUNCH_HOLE) {
846 		error = xfs_free_file_space(ip, offset, len);
847 		if (error)
848 			goto out_unlock;
849 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
850 		unsigned int blksize_mask = i_blocksize(inode) - 1;
851 
852 		if (offset & blksize_mask || len & blksize_mask) {
853 			error = -EINVAL;
854 			goto out_unlock;
855 		}
856 
857 		/*
858 		 * There is no need to overlap collapse range with EOF,
859 		 * in which case it is effectively a truncate operation
860 		 */
861 		if (offset + len >= i_size_read(inode)) {
862 			error = -EINVAL;
863 			goto out_unlock;
864 		}
865 
866 		new_size = i_size_read(inode) - len;
867 
868 		error = xfs_collapse_file_space(ip, offset, len);
869 		if (error)
870 			goto out_unlock;
871 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
872 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
873 		loff_t		isize = i_size_read(inode);
874 
875 		if (offset & blksize_mask || len & blksize_mask) {
876 			error = -EINVAL;
877 			goto out_unlock;
878 		}
879 
880 		/*
881 		 * New inode size must not exceed ->s_maxbytes, accounting for
882 		 * possible signed overflow.
883 		 */
884 		if (inode->i_sb->s_maxbytes - isize < len) {
885 			error = -EFBIG;
886 			goto out_unlock;
887 		}
888 		new_size = isize + len;
889 
890 		/* Offset should be less than i_size */
891 		if (offset >= isize) {
892 			error = -EINVAL;
893 			goto out_unlock;
894 		}
895 		do_file_insert = true;
896 	} else {
897 		flags |= XFS_PREALLOC_SET;
898 
899 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
900 		    offset + len > i_size_read(inode)) {
901 			new_size = offset + len;
902 			error = inode_newsize_ok(inode, new_size);
903 			if (error)
904 				goto out_unlock;
905 		}
906 
907 		if (mode & FALLOC_FL_ZERO_RANGE) {
908 			/*
909 			 * Punch a hole and prealloc the range.  We use a hole
910 			 * punch rather than unwritten extent conversion for two
911 			 * reasons:
912 			 *
913 			 *   1.) Hole punch handles partial block zeroing for us.
914 			 *   2.) If prealloc returns ENOSPC, the file range is
915 			 *       still zero-valued by virtue of the hole punch.
916 			 */
917 			unsigned int blksize = i_blocksize(inode);
918 
919 			trace_xfs_zero_file_space(ip);
920 
921 			error = xfs_free_file_space(ip, offset, len);
922 			if (error)
923 				goto out_unlock;
924 
925 			len = round_up(offset + len, blksize) -
926 			      round_down(offset, blksize);
927 			offset = round_down(offset, blksize);
928 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
929 			error = xfs_reflink_unshare(ip, offset, len);
930 			if (error)
931 				goto out_unlock;
932 		} else {
933 			/*
934 			 * If always_cow mode we can't use preallocations and
935 			 * thus should not create them.
936 			 */
937 			if (xfs_is_always_cow_inode(ip)) {
938 				error = -EOPNOTSUPP;
939 				goto out_unlock;
940 			}
941 		}
942 
943 		if (!xfs_is_always_cow_inode(ip)) {
944 			error = xfs_alloc_file_space(ip, offset, len,
945 						     XFS_BMAPI_PREALLOC);
946 			if (error)
947 				goto out_unlock;
948 		}
949 	}
950 
951 	if (file->f_flags & O_DSYNC)
952 		flags |= XFS_PREALLOC_SYNC;
953 
954 	error = xfs_update_prealloc_flags(ip, flags);
955 	if (error)
956 		goto out_unlock;
957 
958 	/* Change file size if needed */
959 	if (new_size) {
960 		struct iattr iattr;
961 
962 		iattr.ia_valid = ATTR_SIZE;
963 		iattr.ia_size = new_size;
964 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
965 		if (error)
966 			goto out_unlock;
967 	}
968 
969 	/*
970 	 * Perform hole insertion now that the file size has been
971 	 * updated so that if we crash during the operation we don't
972 	 * leave shifted extents past EOF and hence losing access to
973 	 * the data that is contained within them.
974 	 */
975 	if (do_file_insert)
976 		error = xfs_insert_file_space(ip, offset, len);
977 
978 out_unlock:
979 	xfs_iunlock(ip, iolock);
980 	return error;
981 }
982 
983 STATIC int
984 xfs_file_fadvise(
985 	struct file	*file,
986 	loff_t		start,
987 	loff_t		end,
988 	int		advice)
989 {
990 	struct xfs_inode *ip = XFS_I(file_inode(file));
991 	int ret;
992 	int lockflags = 0;
993 
994 	/*
995 	 * Operations creating pages in page cache need protection from hole
996 	 * punching and similar ops
997 	 */
998 	if (advice == POSIX_FADV_WILLNEED) {
999 		lockflags = XFS_IOLOCK_SHARED;
1000 		xfs_ilock(ip, lockflags);
1001 	}
1002 	ret = generic_fadvise(file, start, end, advice);
1003 	if (lockflags)
1004 		xfs_iunlock(ip, lockflags);
1005 	return ret;
1006 }
1007 
1008 STATIC loff_t
1009 xfs_file_remap_range(
1010 	struct file		*file_in,
1011 	loff_t			pos_in,
1012 	struct file		*file_out,
1013 	loff_t			pos_out,
1014 	loff_t			len,
1015 	unsigned int		remap_flags)
1016 {
1017 	struct inode		*inode_in = file_inode(file_in);
1018 	struct xfs_inode	*src = XFS_I(inode_in);
1019 	struct inode		*inode_out = file_inode(file_out);
1020 	struct xfs_inode	*dest = XFS_I(inode_out);
1021 	struct xfs_mount	*mp = src->i_mount;
1022 	loff_t			remapped = 0;
1023 	xfs_extlen_t		cowextsize;
1024 	int			ret;
1025 
1026 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1027 		return -EINVAL;
1028 
1029 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1030 		return -EOPNOTSUPP;
1031 
1032 	if (XFS_FORCED_SHUTDOWN(mp))
1033 		return -EIO;
1034 
1035 	/* Prepare and then clone file data. */
1036 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1037 			&len, remap_flags);
1038 	if (ret < 0 || len == 0)
1039 		return ret;
1040 
1041 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1042 
1043 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1044 			&remapped);
1045 	if (ret)
1046 		goto out_unlock;
1047 
1048 	/*
1049 	 * Carry the cowextsize hint from src to dest if we're sharing the
1050 	 * entire source file to the entire destination file, the source file
1051 	 * has a cowextsize hint, and the destination file does not.
1052 	 */
1053 	cowextsize = 0;
1054 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1055 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1056 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1057 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1058 		cowextsize = src->i_d.di_cowextsize;
1059 
1060 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1061 			remap_flags);
1062 	if (ret)
1063 		goto out_unlock;
1064 
1065 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1066 		xfs_log_force_inode(dest);
1067 out_unlock:
1068 	xfs_reflink_remap_unlock(file_in, file_out);
1069 	if (ret)
1070 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1071 	return remapped > 0 ? remapped : ret;
1072 }
1073 
1074 STATIC int
1075 xfs_file_open(
1076 	struct inode	*inode,
1077 	struct file	*file)
1078 {
1079 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1080 		return -EFBIG;
1081 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1082 		return -EIO;
1083 	file->f_mode |= FMODE_NOWAIT;
1084 	return 0;
1085 }
1086 
1087 STATIC int
1088 xfs_dir_open(
1089 	struct inode	*inode,
1090 	struct file	*file)
1091 {
1092 	struct xfs_inode *ip = XFS_I(inode);
1093 	int		mode;
1094 	int		error;
1095 
1096 	error = xfs_file_open(inode, file);
1097 	if (error)
1098 		return error;
1099 
1100 	/*
1101 	 * If there are any blocks, read-ahead block 0 as we're almost
1102 	 * certain to have the next operation be a read there.
1103 	 */
1104 	mode = xfs_ilock_data_map_shared(ip);
1105 	if (ip->i_d.di_nextents > 0)
1106 		error = xfs_dir3_data_readahead(ip, 0, 0);
1107 	xfs_iunlock(ip, mode);
1108 	return error;
1109 }
1110 
1111 STATIC int
1112 xfs_file_release(
1113 	struct inode	*inode,
1114 	struct file	*filp)
1115 {
1116 	return xfs_release(XFS_I(inode));
1117 }
1118 
1119 STATIC int
1120 xfs_file_readdir(
1121 	struct file	*file,
1122 	struct dir_context *ctx)
1123 {
1124 	struct inode	*inode = file_inode(file);
1125 	xfs_inode_t	*ip = XFS_I(inode);
1126 	size_t		bufsize;
1127 
1128 	/*
1129 	 * The Linux API doesn't pass down the total size of the buffer
1130 	 * we read into down to the filesystem.  With the filldir concept
1131 	 * it's not needed for correct information, but the XFS dir2 leaf
1132 	 * code wants an estimate of the buffer size to calculate it's
1133 	 * readahead window and size the buffers used for mapping to
1134 	 * physical blocks.
1135 	 *
1136 	 * Try to give it an estimate that's good enough, maybe at some
1137 	 * point we can change the ->readdir prototype to include the
1138 	 * buffer size.  For now we use the current glibc buffer size.
1139 	 */
1140 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1141 
1142 	return xfs_readdir(NULL, ip, ctx, bufsize);
1143 }
1144 
1145 STATIC loff_t
1146 xfs_file_llseek(
1147 	struct file	*file,
1148 	loff_t		offset,
1149 	int		whence)
1150 {
1151 	struct inode		*inode = file->f_mapping->host;
1152 
1153 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1154 		return -EIO;
1155 
1156 	switch (whence) {
1157 	default:
1158 		return generic_file_llseek(file, offset, whence);
1159 	case SEEK_HOLE:
1160 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1161 		break;
1162 	case SEEK_DATA:
1163 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1164 		break;
1165 	}
1166 
1167 	if (offset < 0)
1168 		return offset;
1169 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1170 }
1171 
1172 /*
1173  * Locking for serialisation of IO during page faults. This results in a lock
1174  * ordering of:
1175  *
1176  * mmap_sem (MM)
1177  *   sb_start_pagefault(vfs, freeze)
1178  *     i_mmaplock (XFS - truncate serialisation)
1179  *       page_lock (MM)
1180  *         i_lock (XFS - extent map serialisation)
1181  */
1182 static vm_fault_t
1183 __xfs_filemap_fault(
1184 	struct vm_fault		*vmf,
1185 	enum page_entry_size	pe_size,
1186 	bool			write_fault)
1187 {
1188 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1189 	struct xfs_inode	*ip = XFS_I(inode);
1190 	vm_fault_t		ret;
1191 
1192 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1193 
1194 	if (write_fault) {
1195 		sb_start_pagefault(inode->i_sb);
1196 		file_update_time(vmf->vma->vm_file);
1197 	}
1198 
1199 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1200 	if (IS_DAX(inode)) {
1201 		pfn_t pfn;
1202 
1203 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1204 				(write_fault && !vmf->cow_page) ?
1205 				 &xfs_direct_write_iomap_ops :
1206 				 &xfs_read_iomap_ops);
1207 		if (ret & VM_FAULT_NEEDDSYNC)
1208 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1209 	} else {
1210 		if (write_fault)
1211 			ret = iomap_page_mkwrite(vmf,
1212 					&xfs_buffered_write_iomap_ops);
1213 		else
1214 			ret = filemap_fault(vmf);
1215 	}
1216 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1217 
1218 	if (write_fault)
1219 		sb_end_pagefault(inode->i_sb);
1220 	return ret;
1221 }
1222 
1223 static vm_fault_t
1224 xfs_filemap_fault(
1225 	struct vm_fault		*vmf)
1226 {
1227 	/* DAX can shortcut the normal fault path on write faults! */
1228 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1229 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1230 			(vmf->flags & FAULT_FLAG_WRITE));
1231 }
1232 
1233 static vm_fault_t
1234 xfs_filemap_huge_fault(
1235 	struct vm_fault		*vmf,
1236 	enum page_entry_size	pe_size)
1237 {
1238 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1239 		return VM_FAULT_FALLBACK;
1240 
1241 	/* DAX can shortcut the normal fault path on write faults! */
1242 	return __xfs_filemap_fault(vmf, pe_size,
1243 			(vmf->flags & FAULT_FLAG_WRITE));
1244 }
1245 
1246 static vm_fault_t
1247 xfs_filemap_page_mkwrite(
1248 	struct vm_fault		*vmf)
1249 {
1250 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1251 }
1252 
1253 /*
1254  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1255  * on write faults. In reality, it needs to serialise against truncate and
1256  * prepare memory for writing so handle is as standard write fault.
1257  */
1258 static vm_fault_t
1259 xfs_filemap_pfn_mkwrite(
1260 	struct vm_fault		*vmf)
1261 {
1262 
1263 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1264 }
1265 
1266 static const struct vm_operations_struct xfs_file_vm_ops = {
1267 	.fault		= xfs_filemap_fault,
1268 	.huge_fault	= xfs_filemap_huge_fault,
1269 	.map_pages	= filemap_map_pages,
1270 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1271 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1272 };
1273 
1274 STATIC int
1275 xfs_file_mmap(
1276 	struct file		*file,
1277 	struct vm_area_struct	*vma)
1278 {
1279 	struct inode		*inode = file_inode(file);
1280 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1281 
1282 	/*
1283 	 * We don't support synchronous mappings for non-DAX files and
1284 	 * for DAX files if underneath dax_device is not synchronous.
1285 	 */
1286 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1287 		return -EOPNOTSUPP;
1288 
1289 	file_accessed(file);
1290 	vma->vm_ops = &xfs_file_vm_ops;
1291 	if (IS_DAX(inode))
1292 		vma->vm_flags |= VM_HUGEPAGE;
1293 	return 0;
1294 }
1295 
1296 const struct file_operations xfs_file_operations = {
1297 	.llseek		= xfs_file_llseek,
1298 	.read_iter	= xfs_file_read_iter,
1299 	.write_iter	= xfs_file_write_iter,
1300 	.splice_read	= generic_file_splice_read,
1301 	.splice_write	= iter_file_splice_write,
1302 	.iopoll		= iomap_dio_iopoll,
1303 	.unlocked_ioctl	= xfs_file_ioctl,
1304 #ifdef CONFIG_COMPAT
1305 	.compat_ioctl	= xfs_file_compat_ioctl,
1306 #endif
1307 	.mmap		= xfs_file_mmap,
1308 	.mmap_supported_flags = MAP_SYNC,
1309 	.open		= xfs_file_open,
1310 	.release	= xfs_file_release,
1311 	.fsync		= xfs_file_fsync,
1312 	.get_unmapped_area = thp_get_unmapped_area,
1313 	.fallocate	= xfs_file_fallocate,
1314 	.fadvise	= xfs_file_fadvise,
1315 	.remap_file_range = xfs_file_remap_range,
1316 };
1317 
1318 const struct file_operations xfs_dir_file_operations = {
1319 	.open		= xfs_dir_open,
1320 	.read		= generic_read_dir,
1321 	.iterate_shared	= xfs_file_readdir,
1322 	.llseek		= generic_file_llseek,
1323 	.unlocked_ioctl	= xfs_file_ioctl,
1324 #ifdef CONFIG_COMPAT
1325 	.compat_ioctl	= xfs_file_compat_ioctl,
1326 #endif
1327 	.fsync		= xfs_dir_fsync,
1328 };
1329