1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 struct xfs_mount *mp = ip->i_mount; 84 xfs_lsn_t lsn = 0; 85 86 trace_xfs_dir_fsync(ip); 87 88 xfs_ilock(ip, XFS_ILOCK_SHARED); 89 if (xfs_ipincount(ip)) 90 lsn = ip->i_itemp->ili_last_lsn; 91 xfs_iunlock(ip, XFS_ILOCK_SHARED); 92 93 if (!lsn) 94 return 0; 95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 96 } 97 98 STATIC int 99 xfs_file_fsync( 100 struct file *file, 101 loff_t start, 102 loff_t end, 103 int datasync) 104 { 105 struct inode *inode = file->f_mapping->host; 106 struct xfs_inode *ip = XFS_I(inode); 107 struct xfs_mount *mp = ip->i_mount; 108 int error = 0; 109 int log_flushed = 0; 110 xfs_lsn_t lsn = 0; 111 112 trace_xfs_file_fsync(ip); 113 114 error = file_write_and_wait_range(file, start, end); 115 if (error) 116 return error; 117 118 if (XFS_FORCED_SHUTDOWN(mp)) 119 return -EIO; 120 121 xfs_iflags_clear(ip, XFS_ITRUNCATED); 122 123 /* 124 * If we have an RT and/or log subvolume we need to make sure to flush 125 * the write cache the device used for file data first. This is to 126 * ensure newly written file data make it to disk before logging the new 127 * inode size in case of an extending write. 128 */ 129 if (XFS_IS_REALTIME_INODE(ip)) 130 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 131 else if (mp->m_logdev_targp != mp->m_ddev_targp) 132 xfs_blkdev_issue_flush(mp->m_ddev_targp); 133 134 /* 135 * All metadata updates are logged, which means that we just have to 136 * flush the log up to the latest LSN that touched the inode. If we have 137 * concurrent fsync/fdatasync() calls, we need them to all block on the 138 * log force before we clear the ili_fsync_fields field. This ensures 139 * that we don't get a racing sync operation that does not wait for the 140 * metadata to hit the journal before returning. If we race with 141 * clearing the ili_fsync_fields, then all that will happen is the log 142 * force will do nothing as the lsn will already be on disk. We can't 143 * race with setting ili_fsync_fields because that is done under 144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 145 * until after the ili_fsync_fields is cleared. 146 */ 147 xfs_ilock(ip, XFS_ILOCK_SHARED); 148 if (xfs_ipincount(ip)) { 149 if (!datasync || 150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 151 lsn = ip->i_itemp->ili_last_lsn; 152 } 153 154 if (lsn) { 155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 156 ip->i_itemp->ili_fsync_fields = 0; 157 } 158 xfs_iunlock(ip, XFS_ILOCK_SHARED); 159 160 /* 161 * If we only have a single device, and the log force about was 162 * a no-op we might have to flush the data device cache here. 163 * This can only happen for fdatasync/O_DSYNC if we were overwriting 164 * an already allocated file and thus do not have any metadata to 165 * commit. 166 */ 167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 168 mp->m_logdev_targp == mp->m_ddev_targp) 169 xfs_blkdev_issue_flush(mp->m_ddev_targp); 170 171 return error; 172 } 173 174 STATIC ssize_t 175 xfs_file_dio_aio_read( 176 struct kiocb *iocb, 177 struct iov_iter *to) 178 { 179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 180 size_t count = iov_iter_count(to); 181 ssize_t ret; 182 183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 184 185 if (!count) 186 return 0; /* skip atime */ 187 188 file_accessed(iocb->ki_filp); 189 190 if (iocb->ki_flags & IOCB_NOWAIT) { 191 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 192 return -EAGAIN; 193 } else { 194 xfs_ilock(ip, XFS_IOLOCK_SHARED); 195 } 196 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 197 is_sync_kiocb(iocb)); 198 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 199 200 return ret; 201 } 202 203 static noinline ssize_t 204 xfs_file_dax_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 209 size_t count = iov_iter_count(to); 210 ssize_t ret = 0; 211 212 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 if (iocb->ki_flags & IOCB_NOWAIT) { 218 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 219 return -EAGAIN; 220 } else { 221 xfs_ilock(ip, XFS_IOLOCK_SHARED); 222 } 223 224 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 225 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 226 227 file_accessed(iocb->ki_filp); 228 return ret; 229 } 230 231 STATIC ssize_t 232 xfs_file_buffered_aio_read( 233 struct kiocb *iocb, 234 struct iov_iter *to) 235 { 236 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 237 ssize_t ret; 238 239 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 240 241 if (iocb->ki_flags & IOCB_NOWAIT) { 242 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 243 return -EAGAIN; 244 } else { 245 xfs_ilock(ip, XFS_IOLOCK_SHARED); 246 } 247 ret = generic_file_read_iter(iocb, to); 248 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 249 250 return ret; 251 } 252 253 STATIC ssize_t 254 xfs_file_read_iter( 255 struct kiocb *iocb, 256 struct iov_iter *to) 257 { 258 struct inode *inode = file_inode(iocb->ki_filp); 259 struct xfs_mount *mp = XFS_I(inode)->i_mount; 260 ssize_t ret = 0; 261 262 XFS_STATS_INC(mp, xs_read_calls); 263 264 if (XFS_FORCED_SHUTDOWN(mp)) 265 return -EIO; 266 267 if (IS_DAX(inode)) 268 ret = xfs_file_dax_read(iocb, to); 269 else if (iocb->ki_flags & IOCB_DIRECT) 270 ret = xfs_file_dio_aio_read(iocb, to); 271 else 272 ret = xfs_file_buffered_aio_read(iocb, to); 273 274 if (ret > 0) 275 XFS_STATS_ADD(mp, xs_read_bytes, ret); 276 return ret; 277 } 278 279 /* 280 * Common pre-write limit and setup checks. 281 * 282 * Called with the iolocked held either shared and exclusive according to 283 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 284 * if called for a direct write beyond i_size. 285 */ 286 STATIC ssize_t 287 xfs_file_aio_write_checks( 288 struct kiocb *iocb, 289 struct iov_iter *from, 290 int *iolock) 291 { 292 struct file *file = iocb->ki_filp; 293 struct inode *inode = file->f_mapping->host; 294 struct xfs_inode *ip = XFS_I(inode); 295 ssize_t error = 0; 296 size_t count = iov_iter_count(from); 297 bool drained_dio = false; 298 loff_t isize; 299 300 restart: 301 error = generic_write_checks(iocb, from); 302 if (error <= 0) 303 return error; 304 305 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 306 if (error) 307 return error; 308 309 /* 310 * For changing security info in file_remove_privs() we need i_rwsem 311 * exclusively. 312 */ 313 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 314 xfs_iunlock(ip, *iolock); 315 *iolock = XFS_IOLOCK_EXCL; 316 xfs_ilock(ip, *iolock); 317 goto restart; 318 } 319 /* 320 * If the offset is beyond the size of the file, we need to zero any 321 * blocks that fall between the existing EOF and the start of this 322 * write. If zeroing is needed and we are currently holding the 323 * iolock shared, we need to update it to exclusive which implies 324 * having to redo all checks before. 325 * 326 * We need to serialise against EOF updates that occur in IO 327 * completions here. We want to make sure that nobody is changing the 328 * size while we do this check until we have placed an IO barrier (i.e. 329 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 330 * The spinlock effectively forms a memory barrier once we have the 331 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 332 * and hence be able to correctly determine if we need to run zeroing. 333 */ 334 spin_lock(&ip->i_flags_lock); 335 isize = i_size_read(inode); 336 if (iocb->ki_pos > isize) { 337 spin_unlock(&ip->i_flags_lock); 338 if (!drained_dio) { 339 if (*iolock == XFS_IOLOCK_SHARED) { 340 xfs_iunlock(ip, *iolock); 341 *iolock = XFS_IOLOCK_EXCL; 342 xfs_ilock(ip, *iolock); 343 iov_iter_reexpand(from, count); 344 } 345 /* 346 * We now have an IO submission barrier in place, but 347 * AIO can do EOF updates during IO completion and hence 348 * we now need to wait for all of them to drain. Non-AIO 349 * DIO will have drained before we are given the 350 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 351 * no-op. 352 */ 353 inode_dio_wait(inode); 354 drained_dio = true; 355 goto restart; 356 } 357 358 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 359 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 360 NULL, &xfs_buffered_write_iomap_ops); 361 if (error) 362 return error; 363 } else 364 spin_unlock(&ip->i_flags_lock); 365 366 /* 367 * Updating the timestamps will grab the ilock again from 368 * xfs_fs_dirty_inode, so we have to call it after dropping the 369 * lock above. Eventually we should look into a way to avoid 370 * the pointless lock roundtrip. 371 */ 372 return file_modified(file); 373 } 374 375 static int 376 xfs_dio_write_end_io( 377 struct kiocb *iocb, 378 ssize_t size, 379 int error, 380 unsigned flags) 381 { 382 struct inode *inode = file_inode(iocb->ki_filp); 383 struct xfs_inode *ip = XFS_I(inode); 384 loff_t offset = iocb->ki_pos; 385 unsigned int nofs_flag; 386 387 trace_xfs_end_io_direct_write(ip, offset, size); 388 389 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 390 return -EIO; 391 392 if (error) 393 return error; 394 if (!size) 395 return 0; 396 397 /* 398 * Capture amount written on completion as we can't reliably account 399 * for it on submission. 400 */ 401 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 402 403 /* 404 * We can allocate memory here while doing writeback on behalf of 405 * memory reclaim. To avoid memory allocation deadlocks set the 406 * task-wide nofs context for the following operations. 407 */ 408 nofs_flag = memalloc_nofs_save(); 409 410 if (flags & IOMAP_DIO_COW) { 411 error = xfs_reflink_end_cow(ip, offset, size); 412 if (error) 413 goto out; 414 } 415 416 /* 417 * Unwritten conversion updates the in-core isize after extent 418 * conversion but before updating the on-disk size. Updating isize any 419 * earlier allows a racing dio read to find unwritten extents before 420 * they are converted. 421 */ 422 if (flags & IOMAP_DIO_UNWRITTEN) { 423 error = xfs_iomap_write_unwritten(ip, offset, size, true); 424 goto out; 425 } 426 427 /* 428 * We need to update the in-core inode size here so that we don't end up 429 * with the on-disk inode size being outside the in-core inode size. We 430 * have no other method of updating EOF for AIO, so always do it here 431 * if necessary. 432 * 433 * We need to lock the test/set EOF update as we can be racing with 434 * other IO completions here to update the EOF. Failing to serialise 435 * here can result in EOF moving backwards and Bad Things Happen when 436 * that occurs. 437 */ 438 spin_lock(&ip->i_flags_lock); 439 if (offset + size > i_size_read(inode)) { 440 i_size_write(inode, offset + size); 441 spin_unlock(&ip->i_flags_lock); 442 error = xfs_setfilesize(ip, offset, size); 443 } else { 444 spin_unlock(&ip->i_flags_lock); 445 } 446 447 out: 448 memalloc_nofs_restore(nofs_flag); 449 return error; 450 } 451 452 static const struct iomap_dio_ops xfs_dio_write_ops = { 453 .end_io = xfs_dio_write_end_io, 454 }; 455 456 /* 457 * xfs_file_dio_aio_write - handle direct IO writes 458 * 459 * Lock the inode appropriately to prepare for and issue a direct IO write. 460 * By separating it from the buffered write path we remove all the tricky to 461 * follow locking changes and looping. 462 * 463 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 464 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 465 * pages are flushed out. 466 * 467 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 468 * allowing them to be done in parallel with reads and other direct IO writes. 469 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 470 * needs to do sub-block zeroing and that requires serialisation against other 471 * direct IOs to the same block. In this case we need to serialise the 472 * submission of the unaligned IOs so that we don't get racing block zeroing in 473 * the dio layer. To avoid the problem with aio, we also need to wait for 474 * outstanding IOs to complete so that unwritten extent conversion is completed 475 * before we try to map the overlapping block. This is currently implemented by 476 * hitting it with a big hammer (i.e. inode_dio_wait()). 477 * 478 * Returns with locks held indicated by @iolock and errors indicated by 479 * negative return values. 480 */ 481 STATIC ssize_t 482 xfs_file_dio_aio_write( 483 struct kiocb *iocb, 484 struct iov_iter *from) 485 { 486 struct file *file = iocb->ki_filp; 487 struct address_space *mapping = file->f_mapping; 488 struct inode *inode = mapping->host; 489 struct xfs_inode *ip = XFS_I(inode); 490 struct xfs_mount *mp = ip->i_mount; 491 ssize_t ret = 0; 492 int unaligned_io = 0; 493 int iolock; 494 size_t count = iov_iter_count(from); 495 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 496 497 /* DIO must be aligned to device logical sector size */ 498 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 499 return -EINVAL; 500 501 /* 502 * Don't take the exclusive iolock here unless the I/O is unaligned to 503 * the file system block size. We don't need to consider the EOF 504 * extension case here because xfs_file_aio_write_checks() will relock 505 * the inode as necessary for EOF zeroing cases and fill out the new 506 * inode size as appropriate. 507 */ 508 if ((iocb->ki_pos & mp->m_blockmask) || 509 ((iocb->ki_pos + count) & mp->m_blockmask)) { 510 unaligned_io = 1; 511 512 /* 513 * We can't properly handle unaligned direct I/O to reflink 514 * files yet, as we can't unshare a partial block. 515 */ 516 if (xfs_is_cow_inode(ip)) { 517 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 518 return -EREMCHG; 519 } 520 iolock = XFS_IOLOCK_EXCL; 521 } else { 522 iolock = XFS_IOLOCK_SHARED; 523 } 524 525 if (iocb->ki_flags & IOCB_NOWAIT) { 526 /* unaligned dio always waits, bail */ 527 if (unaligned_io) 528 return -EAGAIN; 529 if (!xfs_ilock_nowait(ip, iolock)) 530 return -EAGAIN; 531 } else { 532 xfs_ilock(ip, iolock); 533 } 534 535 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 536 if (ret) 537 goto out; 538 count = iov_iter_count(from); 539 540 /* 541 * If we are doing unaligned IO, we can't allow any other overlapping IO 542 * in-flight at the same time or we risk data corruption. Wait for all 543 * other IO to drain before we submit. If the IO is aligned, demote the 544 * iolock if we had to take the exclusive lock in 545 * xfs_file_aio_write_checks() for other reasons. 546 */ 547 if (unaligned_io) { 548 inode_dio_wait(inode); 549 } else if (iolock == XFS_IOLOCK_EXCL) { 550 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 551 iolock = XFS_IOLOCK_SHARED; 552 } 553 554 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 555 /* 556 * If unaligned, this is the only IO in-flight. Wait on it before we 557 * release the iolock to prevent subsequent overlapping IO. 558 */ 559 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 560 &xfs_dio_write_ops, 561 is_sync_kiocb(iocb) || unaligned_io); 562 out: 563 xfs_iunlock(ip, iolock); 564 565 /* 566 * No fallback to buffered IO on errors for XFS, direct IO will either 567 * complete fully or fail. 568 */ 569 ASSERT(ret < 0 || ret == count); 570 return ret; 571 } 572 573 static noinline ssize_t 574 xfs_file_dax_write( 575 struct kiocb *iocb, 576 struct iov_iter *from) 577 { 578 struct inode *inode = iocb->ki_filp->f_mapping->host; 579 struct xfs_inode *ip = XFS_I(inode); 580 int iolock = XFS_IOLOCK_EXCL; 581 ssize_t ret, error = 0; 582 size_t count; 583 loff_t pos; 584 585 if (iocb->ki_flags & IOCB_NOWAIT) { 586 if (!xfs_ilock_nowait(ip, iolock)) 587 return -EAGAIN; 588 } else { 589 xfs_ilock(ip, iolock); 590 } 591 592 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 593 if (ret) 594 goto out; 595 596 pos = iocb->ki_pos; 597 count = iov_iter_count(from); 598 599 trace_xfs_file_dax_write(ip, count, pos); 600 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); 601 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 602 i_size_write(inode, iocb->ki_pos); 603 error = xfs_setfilesize(ip, pos, ret); 604 } 605 out: 606 xfs_iunlock(ip, iolock); 607 if (error) 608 return error; 609 610 if (ret > 0) { 611 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 612 613 /* Handle various SYNC-type writes */ 614 ret = generic_write_sync(iocb, ret); 615 } 616 return ret; 617 } 618 619 STATIC ssize_t 620 xfs_file_buffered_aio_write( 621 struct kiocb *iocb, 622 struct iov_iter *from) 623 { 624 struct file *file = iocb->ki_filp; 625 struct address_space *mapping = file->f_mapping; 626 struct inode *inode = mapping->host; 627 struct xfs_inode *ip = XFS_I(inode); 628 ssize_t ret; 629 int enospc = 0; 630 int iolock; 631 632 if (iocb->ki_flags & IOCB_NOWAIT) 633 return -EOPNOTSUPP; 634 635 write_retry: 636 iolock = XFS_IOLOCK_EXCL; 637 xfs_ilock(ip, iolock); 638 639 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 640 if (ret) 641 goto out; 642 643 /* We can write back this queue in page reclaim */ 644 current->backing_dev_info = inode_to_bdi(inode); 645 646 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 647 ret = iomap_file_buffered_write(iocb, from, 648 &xfs_buffered_write_iomap_ops); 649 if (likely(ret >= 0)) 650 iocb->ki_pos += ret; 651 652 /* 653 * If we hit a space limit, try to free up some lingering preallocated 654 * space before returning an error. In the case of ENOSPC, first try to 655 * write back all dirty inodes to free up some of the excess reserved 656 * metadata space. This reduces the chances that the eofblocks scan 657 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 658 * also behaves as a filter to prevent too many eofblocks scans from 659 * running at the same time. 660 */ 661 if (ret == -EDQUOT && !enospc) { 662 xfs_iunlock(ip, iolock); 663 enospc = xfs_inode_free_quota_eofblocks(ip); 664 if (enospc) 665 goto write_retry; 666 enospc = xfs_inode_free_quota_cowblocks(ip); 667 if (enospc) 668 goto write_retry; 669 iolock = 0; 670 } else if (ret == -ENOSPC && !enospc) { 671 struct xfs_eofblocks eofb = {0}; 672 673 enospc = 1; 674 xfs_flush_inodes(ip->i_mount); 675 676 xfs_iunlock(ip, iolock); 677 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 678 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 679 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 680 goto write_retry; 681 } 682 683 current->backing_dev_info = NULL; 684 out: 685 if (iolock) 686 xfs_iunlock(ip, iolock); 687 688 if (ret > 0) { 689 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 690 /* Handle various SYNC-type writes */ 691 ret = generic_write_sync(iocb, ret); 692 } 693 return ret; 694 } 695 696 STATIC ssize_t 697 xfs_file_write_iter( 698 struct kiocb *iocb, 699 struct iov_iter *from) 700 { 701 struct file *file = iocb->ki_filp; 702 struct address_space *mapping = file->f_mapping; 703 struct inode *inode = mapping->host; 704 struct xfs_inode *ip = XFS_I(inode); 705 ssize_t ret; 706 size_t ocount = iov_iter_count(from); 707 708 XFS_STATS_INC(ip->i_mount, xs_write_calls); 709 710 if (ocount == 0) 711 return 0; 712 713 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 714 return -EIO; 715 716 if (IS_DAX(inode)) 717 return xfs_file_dax_write(iocb, from); 718 719 if (iocb->ki_flags & IOCB_DIRECT) { 720 /* 721 * Allow a directio write to fall back to a buffered 722 * write *only* in the case that we're doing a reflink 723 * CoW. In all other directio scenarios we do not 724 * allow an operation to fall back to buffered mode. 725 */ 726 ret = xfs_file_dio_aio_write(iocb, from); 727 if (ret != -EREMCHG) 728 return ret; 729 } 730 731 return xfs_file_buffered_aio_write(iocb, from); 732 } 733 734 static void 735 xfs_wait_dax_page( 736 struct inode *inode) 737 { 738 struct xfs_inode *ip = XFS_I(inode); 739 740 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 741 schedule(); 742 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 743 } 744 745 static int 746 xfs_break_dax_layouts( 747 struct inode *inode, 748 bool *retry) 749 { 750 struct page *page; 751 752 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 753 754 page = dax_layout_busy_page(inode->i_mapping); 755 if (!page) 756 return 0; 757 758 *retry = true; 759 return ___wait_var_event(&page->_refcount, 760 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 761 0, 0, xfs_wait_dax_page(inode)); 762 } 763 764 int 765 xfs_break_layouts( 766 struct inode *inode, 767 uint *iolock, 768 enum layout_break_reason reason) 769 { 770 bool retry; 771 int error; 772 773 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 774 775 do { 776 retry = false; 777 switch (reason) { 778 case BREAK_UNMAP: 779 error = xfs_break_dax_layouts(inode, &retry); 780 if (error || retry) 781 break; 782 /* fall through */ 783 case BREAK_WRITE: 784 error = xfs_break_leased_layouts(inode, iolock, &retry); 785 break; 786 default: 787 WARN_ON_ONCE(1); 788 error = -EINVAL; 789 } 790 } while (error == 0 && retry); 791 792 return error; 793 } 794 795 #define XFS_FALLOC_FL_SUPPORTED \ 796 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 797 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 798 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 799 800 STATIC long 801 xfs_file_fallocate( 802 struct file *file, 803 int mode, 804 loff_t offset, 805 loff_t len) 806 { 807 struct inode *inode = file_inode(file); 808 struct xfs_inode *ip = XFS_I(inode); 809 long error; 810 enum xfs_prealloc_flags flags = 0; 811 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 812 loff_t new_size = 0; 813 bool do_file_insert = false; 814 815 if (!S_ISREG(inode->i_mode)) 816 return -EINVAL; 817 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 818 return -EOPNOTSUPP; 819 820 xfs_ilock(ip, iolock); 821 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 822 if (error) 823 goto out_unlock; 824 825 /* 826 * Must wait for all AIO to complete before we continue as AIO can 827 * change the file size on completion without holding any locks we 828 * currently hold. We must do this first because AIO can update both 829 * the on disk and in memory inode sizes, and the operations that follow 830 * require the in-memory size to be fully up-to-date. 831 */ 832 inode_dio_wait(inode); 833 834 /* 835 * Now AIO and DIO has drained we flush and (if necessary) invalidate 836 * the cached range over the first operation we are about to run. 837 * 838 * We care about zero and collapse here because they both run a hole 839 * punch over the range first. Because that can zero data, and the range 840 * of invalidation for the shift operations is much larger, we still do 841 * the required flush for collapse in xfs_prepare_shift(). 842 * 843 * Insert has the same range requirements as collapse, and we extend the 844 * file first which can zero data. Hence insert has the same 845 * flush/invalidate requirements as collapse and so they are both 846 * handled at the right time by xfs_prepare_shift(). 847 */ 848 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 849 FALLOC_FL_COLLAPSE_RANGE)) { 850 error = xfs_flush_unmap_range(ip, offset, len); 851 if (error) 852 goto out_unlock; 853 } 854 855 if (mode & FALLOC_FL_PUNCH_HOLE) { 856 error = xfs_free_file_space(ip, offset, len); 857 if (error) 858 goto out_unlock; 859 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 860 unsigned int blksize_mask = i_blocksize(inode) - 1; 861 862 if (offset & blksize_mask || len & blksize_mask) { 863 error = -EINVAL; 864 goto out_unlock; 865 } 866 867 /* 868 * There is no need to overlap collapse range with EOF, 869 * in which case it is effectively a truncate operation 870 */ 871 if (offset + len >= i_size_read(inode)) { 872 error = -EINVAL; 873 goto out_unlock; 874 } 875 876 new_size = i_size_read(inode) - len; 877 878 error = xfs_collapse_file_space(ip, offset, len); 879 if (error) 880 goto out_unlock; 881 } else if (mode & FALLOC_FL_INSERT_RANGE) { 882 unsigned int blksize_mask = i_blocksize(inode) - 1; 883 loff_t isize = i_size_read(inode); 884 885 if (offset & blksize_mask || len & blksize_mask) { 886 error = -EINVAL; 887 goto out_unlock; 888 } 889 890 /* 891 * New inode size must not exceed ->s_maxbytes, accounting for 892 * possible signed overflow. 893 */ 894 if (inode->i_sb->s_maxbytes - isize < len) { 895 error = -EFBIG; 896 goto out_unlock; 897 } 898 new_size = isize + len; 899 900 /* Offset should be less than i_size */ 901 if (offset >= isize) { 902 error = -EINVAL; 903 goto out_unlock; 904 } 905 do_file_insert = true; 906 } else { 907 flags |= XFS_PREALLOC_SET; 908 909 if (!(mode & FALLOC_FL_KEEP_SIZE) && 910 offset + len > i_size_read(inode)) { 911 new_size = offset + len; 912 error = inode_newsize_ok(inode, new_size); 913 if (error) 914 goto out_unlock; 915 } 916 917 if (mode & FALLOC_FL_ZERO_RANGE) { 918 /* 919 * Punch a hole and prealloc the range. We use a hole 920 * punch rather than unwritten extent conversion for two 921 * reasons: 922 * 923 * 1.) Hole punch handles partial block zeroing for us. 924 * 2.) If prealloc returns ENOSPC, the file range is 925 * still zero-valued by virtue of the hole punch. 926 */ 927 unsigned int blksize = i_blocksize(inode); 928 929 trace_xfs_zero_file_space(ip); 930 931 error = xfs_free_file_space(ip, offset, len); 932 if (error) 933 goto out_unlock; 934 935 len = round_up(offset + len, blksize) - 936 round_down(offset, blksize); 937 offset = round_down(offset, blksize); 938 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 939 error = xfs_reflink_unshare(ip, offset, len); 940 if (error) 941 goto out_unlock; 942 } else { 943 /* 944 * If always_cow mode we can't use preallocations and 945 * thus should not create them. 946 */ 947 if (xfs_is_always_cow_inode(ip)) { 948 error = -EOPNOTSUPP; 949 goto out_unlock; 950 } 951 } 952 953 if (!xfs_is_always_cow_inode(ip)) { 954 error = xfs_alloc_file_space(ip, offset, len, 955 XFS_BMAPI_PREALLOC); 956 if (error) 957 goto out_unlock; 958 } 959 } 960 961 if (file->f_flags & O_DSYNC) 962 flags |= XFS_PREALLOC_SYNC; 963 964 error = xfs_update_prealloc_flags(ip, flags); 965 if (error) 966 goto out_unlock; 967 968 /* Change file size if needed */ 969 if (new_size) { 970 struct iattr iattr; 971 972 iattr.ia_valid = ATTR_SIZE; 973 iattr.ia_size = new_size; 974 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 975 if (error) 976 goto out_unlock; 977 } 978 979 /* 980 * Perform hole insertion now that the file size has been 981 * updated so that if we crash during the operation we don't 982 * leave shifted extents past EOF and hence losing access to 983 * the data that is contained within them. 984 */ 985 if (do_file_insert) 986 error = xfs_insert_file_space(ip, offset, len); 987 988 out_unlock: 989 xfs_iunlock(ip, iolock); 990 return error; 991 } 992 993 STATIC int 994 xfs_file_fadvise( 995 struct file *file, 996 loff_t start, 997 loff_t end, 998 int advice) 999 { 1000 struct xfs_inode *ip = XFS_I(file_inode(file)); 1001 int ret; 1002 int lockflags = 0; 1003 1004 /* 1005 * Operations creating pages in page cache need protection from hole 1006 * punching and similar ops 1007 */ 1008 if (advice == POSIX_FADV_WILLNEED) { 1009 lockflags = XFS_IOLOCK_SHARED; 1010 xfs_ilock(ip, lockflags); 1011 } 1012 ret = generic_fadvise(file, start, end, advice); 1013 if (lockflags) 1014 xfs_iunlock(ip, lockflags); 1015 return ret; 1016 } 1017 1018 STATIC loff_t 1019 xfs_file_remap_range( 1020 struct file *file_in, 1021 loff_t pos_in, 1022 struct file *file_out, 1023 loff_t pos_out, 1024 loff_t len, 1025 unsigned int remap_flags) 1026 { 1027 struct inode *inode_in = file_inode(file_in); 1028 struct xfs_inode *src = XFS_I(inode_in); 1029 struct inode *inode_out = file_inode(file_out); 1030 struct xfs_inode *dest = XFS_I(inode_out); 1031 struct xfs_mount *mp = src->i_mount; 1032 loff_t remapped = 0; 1033 xfs_extlen_t cowextsize; 1034 int ret; 1035 1036 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1037 return -EINVAL; 1038 1039 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 1040 return -EOPNOTSUPP; 1041 1042 if (XFS_FORCED_SHUTDOWN(mp)) 1043 return -EIO; 1044 1045 /* Prepare and then clone file data. */ 1046 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1047 &len, remap_flags); 1048 if (ret < 0 || len == 0) 1049 return ret; 1050 1051 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1052 1053 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1054 &remapped); 1055 if (ret) 1056 goto out_unlock; 1057 1058 /* 1059 * Carry the cowextsize hint from src to dest if we're sharing the 1060 * entire source file to the entire destination file, the source file 1061 * has a cowextsize hint, and the destination file does not. 1062 */ 1063 cowextsize = 0; 1064 if (pos_in == 0 && len == i_size_read(inode_in) && 1065 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1066 pos_out == 0 && len >= i_size_read(inode_out) && 1067 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1068 cowextsize = src->i_d.di_cowextsize; 1069 1070 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1071 remap_flags); 1072 1073 out_unlock: 1074 xfs_reflink_remap_unlock(file_in, file_out); 1075 if (ret) 1076 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1077 return remapped > 0 ? remapped : ret; 1078 } 1079 1080 STATIC int 1081 xfs_file_open( 1082 struct inode *inode, 1083 struct file *file) 1084 { 1085 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1086 return -EFBIG; 1087 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1088 return -EIO; 1089 file->f_mode |= FMODE_NOWAIT; 1090 return 0; 1091 } 1092 1093 STATIC int 1094 xfs_dir_open( 1095 struct inode *inode, 1096 struct file *file) 1097 { 1098 struct xfs_inode *ip = XFS_I(inode); 1099 int mode; 1100 int error; 1101 1102 error = xfs_file_open(inode, file); 1103 if (error) 1104 return error; 1105 1106 /* 1107 * If there are any blocks, read-ahead block 0 as we're almost 1108 * certain to have the next operation be a read there. 1109 */ 1110 mode = xfs_ilock_data_map_shared(ip); 1111 if (ip->i_d.di_nextents > 0) 1112 error = xfs_dir3_data_readahead(ip, 0, 0); 1113 xfs_iunlock(ip, mode); 1114 return error; 1115 } 1116 1117 STATIC int 1118 xfs_file_release( 1119 struct inode *inode, 1120 struct file *filp) 1121 { 1122 return xfs_release(XFS_I(inode)); 1123 } 1124 1125 STATIC int 1126 xfs_file_readdir( 1127 struct file *file, 1128 struct dir_context *ctx) 1129 { 1130 struct inode *inode = file_inode(file); 1131 xfs_inode_t *ip = XFS_I(inode); 1132 size_t bufsize; 1133 1134 /* 1135 * The Linux API doesn't pass down the total size of the buffer 1136 * we read into down to the filesystem. With the filldir concept 1137 * it's not needed for correct information, but the XFS dir2 leaf 1138 * code wants an estimate of the buffer size to calculate it's 1139 * readahead window and size the buffers used for mapping to 1140 * physical blocks. 1141 * 1142 * Try to give it an estimate that's good enough, maybe at some 1143 * point we can change the ->readdir prototype to include the 1144 * buffer size. For now we use the current glibc buffer size. 1145 */ 1146 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1147 1148 return xfs_readdir(NULL, ip, ctx, bufsize); 1149 } 1150 1151 STATIC loff_t 1152 xfs_file_llseek( 1153 struct file *file, 1154 loff_t offset, 1155 int whence) 1156 { 1157 struct inode *inode = file->f_mapping->host; 1158 1159 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1160 return -EIO; 1161 1162 switch (whence) { 1163 default: 1164 return generic_file_llseek(file, offset, whence); 1165 case SEEK_HOLE: 1166 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1167 break; 1168 case SEEK_DATA: 1169 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1170 break; 1171 } 1172 1173 if (offset < 0) 1174 return offset; 1175 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1176 } 1177 1178 /* 1179 * Locking for serialisation of IO during page faults. This results in a lock 1180 * ordering of: 1181 * 1182 * mmap_sem (MM) 1183 * sb_start_pagefault(vfs, freeze) 1184 * i_mmaplock (XFS - truncate serialisation) 1185 * page_lock (MM) 1186 * i_lock (XFS - extent map serialisation) 1187 */ 1188 static vm_fault_t 1189 __xfs_filemap_fault( 1190 struct vm_fault *vmf, 1191 enum page_entry_size pe_size, 1192 bool write_fault) 1193 { 1194 struct inode *inode = file_inode(vmf->vma->vm_file); 1195 struct xfs_inode *ip = XFS_I(inode); 1196 vm_fault_t ret; 1197 1198 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1199 1200 if (write_fault) { 1201 sb_start_pagefault(inode->i_sb); 1202 file_update_time(vmf->vma->vm_file); 1203 } 1204 1205 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1206 if (IS_DAX(inode)) { 1207 pfn_t pfn; 1208 1209 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, 1210 (write_fault && !vmf->cow_page) ? 1211 &xfs_direct_write_iomap_ops : 1212 &xfs_read_iomap_ops); 1213 if (ret & VM_FAULT_NEEDDSYNC) 1214 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1215 } else { 1216 if (write_fault) 1217 ret = iomap_page_mkwrite(vmf, 1218 &xfs_buffered_write_iomap_ops); 1219 else 1220 ret = filemap_fault(vmf); 1221 } 1222 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1223 1224 if (write_fault) 1225 sb_end_pagefault(inode->i_sb); 1226 return ret; 1227 } 1228 1229 static vm_fault_t 1230 xfs_filemap_fault( 1231 struct vm_fault *vmf) 1232 { 1233 /* DAX can shortcut the normal fault path on write faults! */ 1234 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1235 IS_DAX(file_inode(vmf->vma->vm_file)) && 1236 (vmf->flags & FAULT_FLAG_WRITE)); 1237 } 1238 1239 static vm_fault_t 1240 xfs_filemap_huge_fault( 1241 struct vm_fault *vmf, 1242 enum page_entry_size pe_size) 1243 { 1244 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1245 return VM_FAULT_FALLBACK; 1246 1247 /* DAX can shortcut the normal fault path on write faults! */ 1248 return __xfs_filemap_fault(vmf, pe_size, 1249 (vmf->flags & FAULT_FLAG_WRITE)); 1250 } 1251 1252 static vm_fault_t 1253 xfs_filemap_page_mkwrite( 1254 struct vm_fault *vmf) 1255 { 1256 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1257 } 1258 1259 /* 1260 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1261 * on write faults. In reality, it needs to serialise against truncate and 1262 * prepare memory for writing so handle is as standard write fault. 1263 */ 1264 static vm_fault_t 1265 xfs_filemap_pfn_mkwrite( 1266 struct vm_fault *vmf) 1267 { 1268 1269 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1270 } 1271 1272 static const struct vm_operations_struct xfs_file_vm_ops = { 1273 .fault = xfs_filemap_fault, 1274 .huge_fault = xfs_filemap_huge_fault, 1275 .map_pages = filemap_map_pages, 1276 .page_mkwrite = xfs_filemap_page_mkwrite, 1277 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1278 }; 1279 1280 STATIC int 1281 xfs_file_mmap( 1282 struct file *file, 1283 struct vm_area_struct *vma) 1284 { 1285 struct inode *inode = file_inode(file); 1286 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1287 1288 /* 1289 * We don't support synchronous mappings for non-DAX files and 1290 * for DAX files if underneath dax_device is not synchronous. 1291 */ 1292 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1293 return -EOPNOTSUPP; 1294 1295 file_accessed(file); 1296 vma->vm_ops = &xfs_file_vm_ops; 1297 if (IS_DAX(inode)) 1298 vma->vm_flags |= VM_HUGEPAGE; 1299 return 0; 1300 } 1301 1302 const struct file_operations xfs_file_operations = { 1303 .llseek = xfs_file_llseek, 1304 .read_iter = xfs_file_read_iter, 1305 .write_iter = xfs_file_write_iter, 1306 .splice_read = generic_file_splice_read, 1307 .splice_write = iter_file_splice_write, 1308 .iopoll = iomap_dio_iopoll, 1309 .unlocked_ioctl = xfs_file_ioctl, 1310 #ifdef CONFIG_COMPAT 1311 .compat_ioctl = xfs_file_compat_ioctl, 1312 #endif 1313 .mmap = xfs_file_mmap, 1314 .mmap_supported_flags = MAP_SYNC, 1315 .open = xfs_file_open, 1316 .release = xfs_file_release, 1317 .fsync = xfs_file_fsync, 1318 .get_unmapped_area = thp_get_unmapped_area, 1319 .fallocate = xfs_file_fallocate, 1320 .fadvise = xfs_file_fadvise, 1321 .remap_file_range = xfs_file_remap_range, 1322 }; 1323 1324 const struct file_operations xfs_dir_file_operations = { 1325 .open = xfs_dir_open, 1326 .read = generic_read_dir, 1327 .iterate_shared = xfs_file_readdir, 1328 .llseek = generic_file_llseek, 1329 .unlocked_ioctl = xfs_file_ioctl, 1330 #ifdef CONFIG_COMPAT 1331 .compat_ioctl = xfs_file_compat_ioctl, 1332 #endif 1333 .fsync = xfs_dir_fsync, 1334 }; 1335