xref: /openbmc/linux/fs/xfs/xfs_file.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 	struct xfs_mount	*mp = ip->i_mount;
84 	xfs_lsn_t		lsn = 0;
85 
86 	trace_xfs_dir_fsync(ip);
87 
88 	xfs_ilock(ip, XFS_ILOCK_SHARED);
89 	if (xfs_ipincount(ip))
90 		lsn = ip->i_itemp->ili_last_lsn;
91 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
92 
93 	if (!lsn)
94 		return 0;
95 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96 }
97 
98 STATIC int
99 xfs_file_fsync(
100 	struct file		*file,
101 	loff_t			start,
102 	loff_t			end,
103 	int			datasync)
104 {
105 	struct inode		*inode = file->f_mapping->host;
106 	struct xfs_inode	*ip = XFS_I(inode);
107 	struct xfs_mount	*mp = ip->i_mount;
108 	int			error = 0;
109 	int			log_flushed = 0;
110 	xfs_lsn_t		lsn = 0;
111 
112 	trace_xfs_file_fsync(ip);
113 
114 	error = file_write_and_wait_range(file, start, end);
115 	if (error)
116 		return error;
117 
118 	if (XFS_FORCED_SHUTDOWN(mp))
119 		return -EIO;
120 
121 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
122 
123 	/*
124 	 * If we have an RT and/or log subvolume we need to make sure to flush
125 	 * the write cache the device used for file data first.  This is to
126 	 * ensure newly written file data make it to disk before logging the new
127 	 * inode size in case of an extending write.
128 	 */
129 	if (XFS_IS_REALTIME_INODE(ip))
130 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
133 
134 	/*
135 	 * All metadata updates are logged, which means that we just have to
136 	 * flush the log up to the latest LSN that touched the inode. If we have
137 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 	 * log force before we clear the ili_fsync_fields field. This ensures
139 	 * that we don't get a racing sync operation that does not wait for the
140 	 * metadata to hit the journal before returning. If we race with
141 	 * clearing the ili_fsync_fields, then all that will happen is the log
142 	 * force will do nothing as the lsn will already be on disk. We can't
143 	 * race with setting ili_fsync_fields because that is done under
144 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 	 * until after the ili_fsync_fields is cleared.
146 	 */
147 	xfs_ilock(ip, XFS_ILOCK_SHARED);
148 	if (xfs_ipincount(ip)) {
149 		if (!datasync ||
150 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 			lsn = ip->i_itemp->ili_last_lsn;
152 	}
153 
154 	if (lsn) {
155 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 		ip->i_itemp->ili_fsync_fields = 0;
157 	}
158 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
159 
160 	/*
161 	 * If we only have a single device, and the log force about was
162 	 * a no-op we might have to flush the data device cache here.
163 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 	 * an already allocated file and thus do not have any metadata to
165 	 * commit.
166 	 */
167 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 	    mp->m_logdev_targp == mp->m_ddev_targp)
169 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
170 
171 	return error;
172 }
173 
174 STATIC ssize_t
175 xfs_file_dio_aio_read(
176 	struct kiocb		*iocb,
177 	struct iov_iter		*to)
178 {
179 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
180 	size_t			count = iov_iter_count(to);
181 	ssize_t			ret;
182 
183 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184 
185 	if (!count)
186 		return 0; /* skip atime */
187 
188 	file_accessed(iocb->ki_filp);
189 
190 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
192 			is_sync_kiocb(iocb));
193 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
194 
195 	return ret;
196 }
197 
198 static noinline ssize_t
199 xfs_file_dax_read(
200 	struct kiocb		*iocb,
201 	struct iov_iter		*to)
202 {
203 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
204 	size_t			count = iov_iter_count(to);
205 	ssize_t			ret = 0;
206 
207 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
208 
209 	if (!count)
210 		return 0; /* skip atime */
211 
212 	if (iocb->ki_flags & IOCB_NOWAIT) {
213 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
214 			return -EAGAIN;
215 	} else {
216 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
217 	}
218 
219 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
220 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
221 
222 	file_accessed(iocb->ki_filp);
223 	return ret;
224 }
225 
226 STATIC ssize_t
227 xfs_file_buffered_aio_read(
228 	struct kiocb		*iocb,
229 	struct iov_iter		*to)
230 {
231 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
232 	ssize_t			ret;
233 
234 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
235 
236 	if (iocb->ki_flags & IOCB_NOWAIT) {
237 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
238 			return -EAGAIN;
239 	} else {
240 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
241 	}
242 	ret = generic_file_read_iter(iocb, to);
243 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
244 
245 	return ret;
246 }
247 
248 STATIC ssize_t
249 xfs_file_read_iter(
250 	struct kiocb		*iocb,
251 	struct iov_iter		*to)
252 {
253 	struct inode		*inode = file_inode(iocb->ki_filp);
254 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
255 	ssize_t			ret = 0;
256 
257 	XFS_STATS_INC(mp, xs_read_calls);
258 
259 	if (XFS_FORCED_SHUTDOWN(mp))
260 		return -EIO;
261 
262 	if (IS_DAX(inode))
263 		ret = xfs_file_dax_read(iocb, to);
264 	else if (iocb->ki_flags & IOCB_DIRECT)
265 		ret = xfs_file_dio_aio_read(iocb, to);
266 	else
267 		ret = xfs_file_buffered_aio_read(iocb, to);
268 
269 	if (ret > 0)
270 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
271 	return ret;
272 }
273 
274 /*
275  * Common pre-write limit and setup checks.
276  *
277  * Called with the iolocked held either shared and exclusive according to
278  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
279  * if called for a direct write beyond i_size.
280  */
281 STATIC ssize_t
282 xfs_file_aio_write_checks(
283 	struct kiocb		*iocb,
284 	struct iov_iter		*from,
285 	int			*iolock)
286 {
287 	struct file		*file = iocb->ki_filp;
288 	struct inode		*inode = file->f_mapping->host;
289 	struct xfs_inode	*ip = XFS_I(inode);
290 	ssize_t			error = 0;
291 	size_t			count = iov_iter_count(from);
292 	bool			drained_dio = false;
293 	loff_t			isize;
294 
295 restart:
296 	error = generic_write_checks(iocb, from);
297 	if (error <= 0)
298 		return error;
299 
300 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
301 	if (error)
302 		return error;
303 
304 	/*
305 	 * For changing security info in file_remove_privs() we need i_rwsem
306 	 * exclusively.
307 	 */
308 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
309 		xfs_iunlock(ip, *iolock);
310 		*iolock = XFS_IOLOCK_EXCL;
311 		xfs_ilock(ip, *iolock);
312 		goto restart;
313 	}
314 	/*
315 	 * If the offset is beyond the size of the file, we need to zero any
316 	 * blocks that fall between the existing EOF and the start of this
317 	 * write.  If zeroing is needed and we are currently holding the
318 	 * iolock shared, we need to update it to exclusive which implies
319 	 * having to redo all checks before.
320 	 *
321 	 * We need to serialise against EOF updates that occur in IO
322 	 * completions here. We want to make sure that nobody is changing the
323 	 * size while we do this check until we have placed an IO barrier (i.e.
324 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
325 	 * The spinlock effectively forms a memory barrier once we have the
326 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
327 	 * and hence be able to correctly determine if we need to run zeroing.
328 	 */
329 	spin_lock(&ip->i_flags_lock);
330 	isize = i_size_read(inode);
331 	if (iocb->ki_pos > isize) {
332 		spin_unlock(&ip->i_flags_lock);
333 		if (!drained_dio) {
334 			if (*iolock == XFS_IOLOCK_SHARED) {
335 				xfs_iunlock(ip, *iolock);
336 				*iolock = XFS_IOLOCK_EXCL;
337 				xfs_ilock(ip, *iolock);
338 				iov_iter_reexpand(from, count);
339 			}
340 			/*
341 			 * We now have an IO submission barrier in place, but
342 			 * AIO can do EOF updates during IO completion and hence
343 			 * we now need to wait for all of them to drain. Non-AIO
344 			 * DIO will have drained before we are given the
345 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
346 			 * no-op.
347 			 */
348 			inode_dio_wait(inode);
349 			drained_dio = true;
350 			goto restart;
351 		}
352 
353 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
354 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
355 				NULL, &xfs_buffered_write_iomap_ops);
356 		if (error)
357 			return error;
358 	} else
359 		spin_unlock(&ip->i_flags_lock);
360 
361 	/*
362 	 * Updating the timestamps will grab the ilock again from
363 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
364 	 * lock above.  Eventually we should look into a way to avoid
365 	 * the pointless lock roundtrip.
366 	 */
367 	return file_modified(file);
368 }
369 
370 static int
371 xfs_dio_write_end_io(
372 	struct kiocb		*iocb,
373 	ssize_t			size,
374 	int			error,
375 	unsigned		flags)
376 {
377 	struct inode		*inode = file_inode(iocb->ki_filp);
378 	struct xfs_inode	*ip = XFS_I(inode);
379 	loff_t			offset = iocb->ki_pos;
380 	unsigned int		nofs_flag;
381 
382 	trace_xfs_end_io_direct_write(ip, offset, size);
383 
384 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 		return -EIO;
386 
387 	if (error)
388 		return error;
389 	if (!size)
390 		return 0;
391 
392 	/*
393 	 * Capture amount written on completion as we can't reliably account
394 	 * for it on submission.
395 	 */
396 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
397 
398 	/*
399 	 * We can allocate memory here while doing writeback on behalf of
400 	 * memory reclaim.  To avoid memory allocation deadlocks set the
401 	 * task-wide nofs context for the following operations.
402 	 */
403 	nofs_flag = memalloc_nofs_save();
404 
405 	if (flags & IOMAP_DIO_COW) {
406 		error = xfs_reflink_end_cow(ip, offset, size);
407 		if (error)
408 			goto out;
409 	}
410 
411 	/*
412 	 * Unwritten conversion updates the in-core isize after extent
413 	 * conversion but before updating the on-disk size. Updating isize any
414 	 * earlier allows a racing dio read to find unwritten extents before
415 	 * they are converted.
416 	 */
417 	if (flags & IOMAP_DIO_UNWRITTEN) {
418 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
419 		goto out;
420 	}
421 
422 	/*
423 	 * We need to update the in-core inode size here so that we don't end up
424 	 * with the on-disk inode size being outside the in-core inode size. We
425 	 * have no other method of updating EOF for AIO, so always do it here
426 	 * if necessary.
427 	 *
428 	 * We need to lock the test/set EOF update as we can be racing with
429 	 * other IO completions here to update the EOF. Failing to serialise
430 	 * here can result in EOF moving backwards and Bad Things Happen when
431 	 * that occurs.
432 	 */
433 	spin_lock(&ip->i_flags_lock);
434 	if (offset + size > i_size_read(inode)) {
435 		i_size_write(inode, offset + size);
436 		spin_unlock(&ip->i_flags_lock);
437 		error = xfs_setfilesize(ip, offset, size);
438 	} else {
439 		spin_unlock(&ip->i_flags_lock);
440 	}
441 
442 out:
443 	memalloc_nofs_restore(nofs_flag);
444 	return error;
445 }
446 
447 static const struct iomap_dio_ops xfs_dio_write_ops = {
448 	.end_io		= xfs_dio_write_end_io,
449 };
450 
451 /*
452  * xfs_file_dio_aio_write - handle direct IO writes
453  *
454  * Lock the inode appropriately to prepare for and issue a direct IO write.
455  * By separating it from the buffered write path we remove all the tricky to
456  * follow locking changes and looping.
457  *
458  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
459  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
460  * pages are flushed out.
461  *
462  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
463  * allowing them to be done in parallel with reads and other direct IO writes.
464  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
465  * needs to do sub-block zeroing and that requires serialisation against other
466  * direct IOs to the same block. In this case we need to serialise the
467  * submission of the unaligned IOs so that we don't get racing block zeroing in
468  * the dio layer.  To avoid the problem with aio, we also need to wait for
469  * outstanding IOs to complete so that unwritten extent conversion is completed
470  * before we try to map the overlapping block. This is currently implemented by
471  * hitting it with a big hammer (i.e. inode_dio_wait()).
472  *
473  * Returns with locks held indicated by @iolock and errors indicated by
474  * negative return values.
475  */
476 STATIC ssize_t
477 xfs_file_dio_aio_write(
478 	struct kiocb		*iocb,
479 	struct iov_iter		*from)
480 {
481 	struct file		*file = iocb->ki_filp;
482 	struct address_space	*mapping = file->f_mapping;
483 	struct inode		*inode = mapping->host;
484 	struct xfs_inode	*ip = XFS_I(inode);
485 	struct xfs_mount	*mp = ip->i_mount;
486 	ssize_t			ret = 0;
487 	int			unaligned_io = 0;
488 	int			iolock;
489 	size_t			count = iov_iter_count(from);
490 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
491 
492 	/* DIO must be aligned to device logical sector size */
493 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
494 		return -EINVAL;
495 
496 	/*
497 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 	 * the file system block size.  We don't need to consider the EOF
499 	 * extension case here because xfs_file_aio_write_checks() will relock
500 	 * the inode as necessary for EOF zeroing cases and fill out the new
501 	 * inode size as appropriate.
502 	 */
503 	if ((iocb->ki_pos & mp->m_blockmask) ||
504 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 		unaligned_io = 1;
506 
507 		/*
508 		 * We can't properly handle unaligned direct I/O to reflink
509 		 * files yet, as we can't unshare a partial block.
510 		 */
511 		if (xfs_is_cow_inode(ip)) {
512 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 			return -EREMCHG;
514 		}
515 		iolock = XFS_IOLOCK_EXCL;
516 	} else {
517 		iolock = XFS_IOLOCK_SHARED;
518 	}
519 
520 	if (iocb->ki_flags & IOCB_NOWAIT) {
521 		/* unaligned dio always waits, bail */
522 		if (unaligned_io)
523 			return -EAGAIN;
524 		if (!xfs_ilock_nowait(ip, iolock))
525 			return -EAGAIN;
526 	} else {
527 		xfs_ilock(ip, iolock);
528 	}
529 
530 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
531 	if (ret)
532 		goto out;
533 	count = iov_iter_count(from);
534 
535 	/*
536 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 	 * in-flight at the same time or we risk data corruption. Wait for all
538 	 * other IO to drain before we submit. If the IO is aligned, demote the
539 	 * iolock if we had to take the exclusive lock in
540 	 * xfs_file_aio_write_checks() for other reasons.
541 	 */
542 	if (unaligned_io) {
543 		inode_dio_wait(inode);
544 	} else if (iolock == XFS_IOLOCK_EXCL) {
545 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 		iolock = XFS_IOLOCK_SHARED;
547 	}
548 
549 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
550 	/*
551 	 * If unaligned, this is the only IO in-flight. Wait on it before we
552 	 * release the iolock to prevent subsequent overlapping IO.
553 	 */
554 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
555 			   &xfs_dio_write_ops,
556 			   is_sync_kiocb(iocb) || unaligned_io);
557 out:
558 	xfs_iunlock(ip, iolock);
559 
560 	/*
561 	 * No fallback to buffered IO on errors for XFS, direct IO will either
562 	 * complete fully or fail.
563 	 */
564 	ASSERT(ret < 0 || ret == count);
565 	return ret;
566 }
567 
568 static noinline ssize_t
569 xfs_file_dax_write(
570 	struct kiocb		*iocb,
571 	struct iov_iter		*from)
572 {
573 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
574 	struct xfs_inode	*ip = XFS_I(inode);
575 	int			iolock = XFS_IOLOCK_EXCL;
576 	ssize_t			ret, error = 0;
577 	size_t			count;
578 	loff_t			pos;
579 
580 	if (iocb->ki_flags & IOCB_NOWAIT) {
581 		if (!xfs_ilock_nowait(ip, iolock))
582 			return -EAGAIN;
583 	} else {
584 		xfs_ilock(ip, iolock);
585 	}
586 
587 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
588 	if (ret)
589 		goto out;
590 
591 	pos = iocb->ki_pos;
592 	count = iov_iter_count(from);
593 
594 	trace_xfs_file_dax_write(ip, count, pos);
595 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
596 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
597 		i_size_write(inode, iocb->ki_pos);
598 		error = xfs_setfilesize(ip, pos, ret);
599 	}
600 out:
601 	xfs_iunlock(ip, iolock);
602 	if (error)
603 		return error;
604 
605 	if (ret > 0) {
606 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
607 
608 		/* Handle various SYNC-type writes */
609 		ret = generic_write_sync(iocb, ret);
610 	}
611 	return ret;
612 }
613 
614 STATIC ssize_t
615 xfs_file_buffered_aio_write(
616 	struct kiocb		*iocb,
617 	struct iov_iter		*from)
618 {
619 	struct file		*file = iocb->ki_filp;
620 	struct address_space	*mapping = file->f_mapping;
621 	struct inode		*inode = mapping->host;
622 	struct xfs_inode	*ip = XFS_I(inode);
623 	ssize_t			ret;
624 	int			enospc = 0;
625 	int			iolock;
626 
627 	if (iocb->ki_flags & IOCB_NOWAIT)
628 		return -EOPNOTSUPP;
629 
630 write_retry:
631 	iolock = XFS_IOLOCK_EXCL;
632 	xfs_ilock(ip, iolock);
633 
634 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
635 	if (ret)
636 		goto out;
637 
638 	/* We can write back this queue in page reclaim */
639 	current->backing_dev_info = inode_to_bdi(inode);
640 
641 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
642 	ret = iomap_file_buffered_write(iocb, from,
643 			&xfs_buffered_write_iomap_ops);
644 	if (likely(ret >= 0))
645 		iocb->ki_pos += ret;
646 
647 	/*
648 	 * If we hit a space limit, try to free up some lingering preallocated
649 	 * space before returning an error. In the case of ENOSPC, first try to
650 	 * write back all dirty inodes to free up some of the excess reserved
651 	 * metadata space. This reduces the chances that the eofblocks scan
652 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
653 	 * also behaves as a filter to prevent too many eofblocks scans from
654 	 * running at the same time.
655 	 */
656 	if (ret == -EDQUOT && !enospc) {
657 		xfs_iunlock(ip, iolock);
658 		enospc = xfs_inode_free_quota_eofblocks(ip);
659 		if (enospc)
660 			goto write_retry;
661 		enospc = xfs_inode_free_quota_cowblocks(ip);
662 		if (enospc)
663 			goto write_retry;
664 		iolock = 0;
665 	} else if (ret == -ENOSPC && !enospc) {
666 		struct xfs_eofblocks eofb = {0};
667 
668 		enospc = 1;
669 		xfs_flush_inodes(ip->i_mount);
670 
671 		xfs_iunlock(ip, iolock);
672 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
673 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
674 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
675 		goto write_retry;
676 	}
677 
678 	current->backing_dev_info = NULL;
679 out:
680 	if (iolock)
681 		xfs_iunlock(ip, iolock);
682 
683 	if (ret > 0) {
684 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
685 		/* Handle various SYNC-type writes */
686 		ret = generic_write_sync(iocb, ret);
687 	}
688 	return ret;
689 }
690 
691 STATIC ssize_t
692 xfs_file_write_iter(
693 	struct kiocb		*iocb,
694 	struct iov_iter		*from)
695 {
696 	struct file		*file = iocb->ki_filp;
697 	struct address_space	*mapping = file->f_mapping;
698 	struct inode		*inode = mapping->host;
699 	struct xfs_inode	*ip = XFS_I(inode);
700 	ssize_t			ret;
701 	size_t			ocount = iov_iter_count(from);
702 
703 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
704 
705 	if (ocount == 0)
706 		return 0;
707 
708 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
709 		return -EIO;
710 
711 	if (IS_DAX(inode))
712 		return xfs_file_dax_write(iocb, from);
713 
714 	if (iocb->ki_flags & IOCB_DIRECT) {
715 		/*
716 		 * Allow a directio write to fall back to a buffered
717 		 * write *only* in the case that we're doing a reflink
718 		 * CoW.  In all other directio scenarios we do not
719 		 * allow an operation to fall back to buffered mode.
720 		 */
721 		ret = xfs_file_dio_aio_write(iocb, from);
722 		if (ret != -EREMCHG)
723 			return ret;
724 	}
725 
726 	return xfs_file_buffered_aio_write(iocb, from);
727 }
728 
729 static void
730 xfs_wait_dax_page(
731 	struct inode		*inode)
732 {
733 	struct xfs_inode        *ip = XFS_I(inode);
734 
735 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
736 	schedule();
737 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
738 }
739 
740 static int
741 xfs_break_dax_layouts(
742 	struct inode		*inode,
743 	bool			*retry)
744 {
745 	struct page		*page;
746 
747 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
748 
749 	page = dax_layout_busy_page(inode->i_mapping);
750 	if (!page)
751 		return 0;
752 
753 	*retry = true;
754 	return ___wait_var_event(&page->_refcount,
755 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
756 			0, 0, xfs_wait_dax_page(inode));
757 }
758 
759 int
760 xfs_break_layouts(
761 	struct inode		*inode,
762 	uint			*iolock,
763 	enum layout_break_reason reason)
764 {
765 	bool			retry;
766 	int			error;
767 
768 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
769 
770 	do {
771 		retry = false;
772 		switch (reason) {
773 		case BREAK_UNMAP:
774 			error = xfs_break_dax_layouts(inode, &retry);
775 			if (error || retry)
776 				break;
777 			/* fall through */
778 		case BREAK_WRITE:
779 			error = xfs_break_leased_layouts(inode, iolock, &retry);
780 			break;
781 		default:
782 			WARN_ON_ONCE(1);
783 			error = -EINVAL;
784 		}
785 	} while (error == 0 && retry);
786 
787 	return error;
788 }
789 
790 #define	XFS_FALLOC_FL_SUPPORTED						\
791 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
792 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
793 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
794 
795 STATIC long
796 xfs_file_fallocate(
797 	struct file		*file,
798 	int			mode,
799 	loff_t			offset,
800 	loff_t			len)
801 {
802 	struct inode		*inode = file_inode(file);
803 	struct xfs_inode	*ip = XFS_I(inode);
804 	long			error;
805 	enum xfs_prealloc_flags	flags = 0;
806 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
807 	loff_t			new_size = 0;
808 	bool			do_file_insert = false;
809 
810 	if (!S_ISREG(inode->i_mode))
811 		return -EINVAL;
812 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
813 		return -EOPNOTSUPP;
814 
815 	xfs_ilock(ip, iolock);
816 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
817 	if (error)
818 		goto out_unlock;
819 
820 	/*
821 	 * Must wait for all AIO to complete before we continue as AIO can
822 	 * change the file size on completion without holding any locks we
823 	 * currently hold. We must do this first because AIO can update both
824 	 * the on disk and in memory inode sizes, and the operations that follow
825 	 * require the in-memory size to be fully up-to-date.
826 	 */
827 	inode_dio_wait(inode);
828 
829 	/*
830 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
831 	 * the cached range over the first operation we are about to run.
832 	 *
833 	 * We care about zero and collapse here because they both run a hole
834 	 * punch over the range first. Because that can zero data, and the range
835 	 * of invalidation for the shift operations is much larger, we still do
836 	 * the required flush for collapse in xfs_prepare_shift().
837 	 *
838 	 * Insert has the same range requirements as collapse, and we extend the
839 	 * file first which can zero data. Hence insert has the same
840 	 * flush/invalidate requirements as collapse and so they are both
841 	 * handled at the right time by xfs_prepare_shift().
842 	 */
843 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
844 		    FALLOC_FL_COLLAPSE_RANGE)) {
845 		error = xfs_flush_unmap_range(ip, offset, len);
846 		if (error)
847 			goto out_unlock;
848 	}
849 
850 	if (mode & FALLOC_FL_PUNCH_HOLE) {
851 		error = xfs_free_file_space(ip, offset, len);
852 		if (error)
853 			goto out_unlock;
854 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
855 		unsigned int blksize_mask = i_blocksize(inode) - 1;
856 
857 		if (offset & blksize_mask || len & blksize_mask) {
858 			error = -EINVAL;
859 			goto out_unlock;
860 		}
861 
862 		/*
863 		 * There is no need to overlap collapse range with EOF,
864 		 * in which case it is effectively a truncate operation
865 		 */
866 		if (offset + len >= i_size_read(inode)) {
867 			error = -EINVAL;
868 			goto out_unlock;
869 		}
870 
871 		new_size = i_size_read(inode) - len;
872 
873 		error = xfs_collapse_file_space(ip, offset, len);
874 		if (error)
875 			goto out_unlock;
876 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
877 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
878 		loff_t		isize = i_size_read(inode);
879 
880 		if (offset & blksize_mask || len & blksize_mask) {
881 			error = -EINVAL;
882 			goto out_unlock;
883 		}
884 
885 		/*
886 		 * New inode size must not exceed ->s_maxbytes, accounting for
887 		 * possible signed overflow.
888 		 */
889 		if (inode->i_sb->s_maxbytes - isize < len) {
890 			error = -EFBIG;
891 			goto out_unlock;
892 		}
893 		new_size = isize + len;
894 
895 		/* Offset should be less than i_size */
896 		if (offset >= isize) {
897 			error = -EINVAL;
898 			goto out_unlock;
899 		}
900 		do_file_insert = true;
901 	} else {
902 		flags |= XFS_PREALLOC_SET;
903 
904 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
905 		    offset + len > i_size_read(inode)) {
906 			new_size = offset + len;
907 			error = inode_newsize_ok(inode, new_size);
908 			if (error)
909 				goto out_unlock;
910 		}
911 
912 		if (mode & FALLOC_FL_ZERO_RANGE) {
913 			/*
914 			 * Punch a hole and prealloc the range.  We use a hole
915 			 * punch rather than unwritten extent conversion for two
916 			 * reasons:
917 			 *
918 			 *   1.) Hole punch handles partial block zeroing for us.
919 			 *   2.) If prealloc returns ENOSPC, the file range is
920 			 *       still zero-valued by virtue of the hole punch.
921 			 */
922 			unsigned int blksize = i_blocksize(inode);
923 
924 			trace_xfs_zero_file_space(ip);
925 
926 			error = xfs_free_file_space(ip, offset, len);
927 			if (error)
928 				goto out_unlock;
929 
930 			len = round_up(offset + len, blksize) -
931 			      round_down(offset, blksize);
932 			offset = round_down(offset, blksize);
933 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
934 			error = xfs_reflink_unshare(ip, offset, len);
935 			if (error)
936 				goto out_unlock;
937 		} else {
938 			/*
939 			 * If always_cow mode we can't use preallocations and
940 			 * thus should not create them.
941 			 */
942 			if (xfs_is_always_cow_inode(ip)) {
943 				error = -EOPNOTSUPP;
944 				goto out_unlock;
945 			}
946 		}
947 
948 		if (!xfs_is_always_cow_inode(ip)) {
949 			error = xfs_alloc_file_space(ip, offset, len,
950 						     XFS_BMAPI_PREALLOC);
951 			if (error)
952 				goto out_unlock;
953 		}
954 	}
955 
956 	if (file->f_flags & O_DSYNC)
957 		flags |= XFS_PREALLOC_SYNC;
958 
959 	error = xfs_update_prealloc_flags(ip, flags);
960 	if (error)
961 		goto out_unlock;
962 
963 	/* Change file size if needed */
964 	if (new_size) {
965 		struct iattr iattr;
966 
967 		iattr.ia_valid = ATTR_SIZE;
968 		iattr.ia_size = new_size;
969 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
970 		if (error)
971 			goto out_unlock;
972 	}
973 
974 	/*
975 	 * Perform hole insertion now that the file size has been
976 	 * updated so that if we crash during the operation we don't
977 	 * leave shifted extents past EOF and hence losing access to
978 	 * the data that is contained within them.
979 	 */
980 	if (do_file_insert)
981 		error = xfs_insert_file_space(ip, offset, len);
982 
983 out_unlock:
984 	xfs_iunlock(ip, iolock);
985 	return error;
986 }
987 
988 STATIC int
989 xfs_file_fadvise(
990 	struct file	*file,
991 	loff_t		start,
992 	loff_t		end,
993 	int		advice)
994 {
995 	struct xfs_inode *ip = XFS_I(file_inode(file));
996 	int ret;
997 	int lockflags = 0;
998 
999 	/*
1000 	 * Operations creating pages in page cache need protection from hole
1001 	 * punching and similar ops
1002 	 */
1003 	if (advice == POSIX_FADV_WILLNEED) {
1004 		lockflags = XFS_IOLOCK_SHARED;
1005 		xfs_ilock(ip, lockflags);
1006 	}
1007 	ret = generic_fadvise(file, start, end, advice);
1008 	if (lockflags)
1009 		xfs_iunlock(ip, lockflags);
1010 	return ret;
1011 }
1012 
1013 STATIC loff_t
1014 xfs_file_remap_range(
1015 	struct file		*file_in,
1016 	loff_t			pos_in,
1017 	struct file		*file_out,
1018 	loff_t			pos_out,
1019 	loff_t			len,
1020 	unsigned int		remap_flags)
1021 {
1022 	struct inode		*inode_in = file_inode(file_in);
1023 	struct xfs_inode	*src = XFS_I(inode_in);
1024 	struct inode		*inode_out = file_inode(file_out);
1025 	struct xfs_inode	*dest = XFS_I(inode_out);
1026 	struct xfs_mount	*mp = src->i_mount;
1027 	loff_t			remapped = 0;
1028 	xfs_extlen_t		cowextsize;
1029 	int			ret;
1030 
1031 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1032 		return -EINVAL;
1033 
1034 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1035 		return -EOPNOTSUPP;
1036 
1037 	if (XFS_FORCED_SHUTDOWN(mp))
1038 		return -EIO;
1039 
1040 	/* Prepare and then clone file data. */
1041 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1042 			&len, remap_flags);
1043 	if (ret < 0 || len == 0)
1044 		return ret;
1045 
1046 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1047 
1048 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1049 			&remapped);
1050 	if (ret)
1051 		goto out_unlock;
1052 
1053 	/*
1054 	 * Carry the cowextsize hint from src to dest if we're sharing the
1055 	 * entire source file to the entire destination file, the source file
1056 	 * has a cowextsize hint, and the destination file does not.
1057 	 */
1058 	cowextsize = 0;
1059 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1060 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1061 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1062 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1063 		cowextsize = src->i_d.di_cowextsize;
1064 
1065 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1066 			remap_flags);
1067 
1068 out_unlock:
1069 	xfs_reflink_remap_unlock(file_in, file_out);
1070 	if (ret)
1071 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1072 	return remapped > 0 ? remapped : ret;
1073 }
1074 
1075 STATIC int
1076 xfs_file_open(
1077 	struct inode	*inode,
1078 	struct file	*file)
1079 {
1080 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1081 		return -EFBIG;
1082 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1083 		return -EIO;
1084 	file->f_mode |= FMODE_NOWAIT;
1085 	return 0;
1086 }
1087 
1088 STATIC int
1089 xfs_dir_open(
1090 	struct inode	*inode,
1091 	struct file	*file)
1092 {
1093 	struct xfs_inode *ip = XFS_I(inode);
1094 	int		mode;
1095 	int		error;
1096 
1097 	error = xfs_file_open(inode, file);
1098 	if (error)
1099 		return error;
1100 
1101 	/*
1102 	 * If there are any blocks, read-ahead block 0 as we're almost
1103 	 * certain to have the next operation be a read there.
1104 	 */
1105 	mode = xfs_ilock_data_map_shared(ip);
1106 	if (ip->i_d.di_nextents > 0)
1107 		error = xfs_dir3_data_readahead(ip, 0, 0);
1108 	xfs_iunlock(ip, mode);
1109 	return error;
1110 }
1111 
1112 STATIC int
1113 xfs_file_release(
1114 	struct inode	*inode,
1115 	struct file	*filp)
1116 {
1117 	return xfs_release(XFS_I(inode));
1118 }
1119 
1120 STATIC int
1121 xfs_file_readdir(
1122 	struct file	*file,
1123 	struct dir_context *ctx)
1124 {
1125 	struct inode	*inode = file_inode(file);
1126 	xfs_inode_t	*ip = XFS_I(inode);
1127 	size_t		bufsize;
1128 
1129 	/*
1130 	 * The Linux API doesn't pass down the total size of the buffer
1131 	 * we read into down to the filesystem.  With the filldir concept
1132 	 * it's not needed for correct information, but the XFS dir2 leaf
1133 	 * code wants an estimate of the buffer size to calculate it's
1134 	 * readahead window and size the buffers used for mapping to
1135 	 * physical blocks.
1136 	 *
1137 	 * Try to give it an estimate that's good enough, maybe at some
1138 	 * point we can change the ->readdir prototype to include the
1139 	 * buffer size.  For now we use the current glibc buffer size.
1140 	 */
1141 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1142 
1143 	return xfs_readdir(NULL, ip, ctx, bufsize);
1144 }
1145 
1146 STATIC loff_t
1147 xfs_file_llseek(
1148 	struct file	*file,
1149 	loff_t		offset,
1150 	int		whence)
1151 {
1152 	struct inode		*inode = file->f_mapping->host;
1153 
1154 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1155 		return -EIO;
1156 
1157 	switch (whence) {
1158 	default:
1159 		return generic_file_llseek(file, offset, whence);
1160 	case SEEK_HOLE:
1161 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1162 		break;
1163 	case SEEK_DATA:
1164 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1165 		break;
1166 	}
1167 
1168 	if (offset < 0)
1169 		return offset;
1170 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1171 }
1172 
1173 /*
1174  * Locking for serialisation of IO during page faults. This results in a lock
1175  * ordering of:
1176  *
1177  * mmap_sem (MM)
1178  *   sb_start_pagefault(vfs, freeze)
1179  *     i_mmaplock (XFS - truncate serialisation)
1180  *       page_lock (MM)
1181  *         i_lock (XFS - extent map serialisation)
1182  */
1183 static vm_fault_t
1184 __xfs_filemap_fault(
1185 	struct vm_fault		*vmf,
1186 	enum page_entry_size	pe_size,
1187 	bool			write_fault)
1188 {
1189 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1190 	struct xfs_inode	*ip = XFS_I(inode);
1191 	vm_fault_t		ret;
1192 
1193 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1194 
1195 	if (write_fault) {
1196 		sb_start_pagefault(inode->i_sb);
1197 		file_update_time(vmf->vma->vm_file);
1198 	}
1199 
1200 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1201 	if (IS_DAX(inode)) {
1202 		pfn_t pfn;
1203 
1204 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1205 				(write_fault && !vmf->cow_page) ?
1206 				 &xfs_direct_write_iomap_ops :
1207 				 &xfs_read_iomap_ops);
1208 		if (ret & VM_FAULT_NEEDDSYNC)
1209 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1210 	} else {
1211 		if (write_fault)
1212 			ret = iomap_page_mkwrite(vmf,
1213 					&xfs_buffered_write_iomap_ops);
1214 		else
1215 			ret = filemap_fault(vmf);
1216 	}
1217 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1218 
1219 	if (write_fault)
1220 		sb_end_pagefault(inode->i_sb);
1221 	return ret;
1222 }
1223 
1224 static vm_fault_t
1225 xfs_filemap_fault(
1226 	struct vm_fault		*vmf)
1227 {
1228 	/* DAX can shortcut the normal fault path on write faults! */
1229 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1230 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1231 			(vmf->flags & FAULT_FLAG_WRITE));
1232 }
1233 
1234 static vm_fault_t
1235 xfs_filemap_huge_fault(
1236 	struct vm_fault		*vmf,
1237 	enum page_entry_size	pe_size)
1238 {
1239 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1240 		return VM_FAULT_FALLBACK;
1241 
1242 	/* DAX can shortcut the normal fault path on write faults! */
1243 	return __xfs_filemap_fault(vmf, pe_size,
1244 			(vmf->flags & FAULT_FLAG_WRITE));
1245 }
1246 
1247 static vm_fault_t
1248 xfs_filemap_page_mkwrite(
1249 	struct vm_fault		*vmf)
1250 {
1251 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1252 }
1253 
1254 /*
1255  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1256  * on write faults. In reality, it needs to serialise against truncate and
1257  * prepare memory for writing so handle is as standard write fault.
1258  */
1259 static vm_fault_t
1260 xfs_filemap_pfn_mkwrite(
1261 	struct vm_fault		*vmf)
1262 {
1263 
1264 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1265 }
1266 
1267 static const struct vm_operations_struct xfs_file_vm_ops = {
1268 	.fault		= xfs_filemap_fault,
1269 	.huge_fault	= xfs_filemap_huge_fault,
1270 	.map_pages	= filemap_map_pages,
1271 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1272 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1273 };
1274 
1275 STATIC int
1276 xfs_file_mmap(
1277 	struct file		*file,
1278 	struct vm_area_struct	*vma)
1279 {
1280 	struct inode		*inode = file_inode(file);
1281 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1282 
1283 	/*
1284 	 * We don't support synchronous mappings for non-DAX files and
1285 	 * for DAX files if underneath dax_device is not synchronous.
1286 	 */
1287 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1288 		return -EOPNOTSUPP;
1289 
1290 	file_accessed(file);
1291 	vma->vm_ops = &xfs_file_vm_ops;
1292 	if (IS_DAX(inode))
1293 		vma->vm_flags |= VM_HUGEPAGE;
1294 	return 0;
1295 }
1296 
1297 const struct file_operations xfs_file_operations = {
1298 	.llseek		= xfs_file_llseek,
1299 	.read_iter	= xfs_file_read_iter,
1300 	.write_iter	= xfs_file_write_iter,
1301 	.splice_read	= generic_file_splice_read,
1302 	.splice_write	= iter_file_splice_write,
1303 	.iopoll		= iomap_dio_iopoll,
1304 	.unlocked_ioctl	= xfs_file_ioctl,
1305 #ifdef CONFIG_COMPAT
1306 	.compat_ioctl	= xfs_file_compat_ioctl,
1307 #endif
1308 	.mmap		= xfs_file_mmap,
1309 	.mmap_supported_flags = MAP_SYNC,
1310 	.open		= xfs_file_open,
1311 	.release	= xfs_file_release,
1312 	.fsync		= xfs_file_fsync,
1313 	.get_unmapped_area = thp_get_unmapped_area,
1314 	.fallocate	= xfs_file_fallocate,
1315 	.fadvise	= xfs_file_fadvise,
1316 	.remap_file_range = xfs_file_remap_range,
1317 };
1318 
1319 const struct file_operations xfs_dir_file_operations = {
1320 	.open		= xfs_dir_open,
1321 	.read		= generic_read_dir,
1322 	.iterate_shared	= xfs_file_readdir,
1323 	.llseek		= generic_file_llseek,
1324 	.unlocked_ioctl	= xfs_file_ioctl,
1325 #ifdef CONFIG_COMPAT
1326 	.compat_ioctl	= xfs_file_compat_ioctl,
1327 #endif
1328 	.fsync		= xfs_dir_fsync,
1329 };
1330