xref: /openbmc/linux/fs/xfs/xfs_file.c (revision a8fe58ce)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		inode_lock(VFS_I(ip));
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		inode_unlock(VFS_I(ip));
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		inode_unlock(VFS_I(ip));
80 }
81 
82 /*
83  * xfs_iozero clears the specified range supplied via the page cache (except in
84  * the DAX case). Writes through the page cache will allocate blocks over holes,
85  * though the callers usually map the holes first and avoid them. If a block is
86  * not completely zeroed, then it will be read from disk before being partially
87  * zeroed.
88  *
89  * In the DAX case, we can just directly write to the underlying pages. This
90  * will not allocate blocks, but will avoid holes and unwritten extents and so
91  * not do unnecessary work.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status = 0;
102 
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 		bytes = PAGE_CACHE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		if (IS_DAX(VFS_I(ip))) {
115 			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 						     xfs_get_blocks_direct);
117 			if (status)
118 				break;
119 		} else {
120 			status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 						AOP_FLAG_UNINTERRUPTIBLE,
122 						&page, &fsdata);
123 			if (status)
124 				break;
125 
126 			zero_user(page, offset, bytes);
127 
128 			status = pagecache_write_end(NULL, mapping, pos, bytes,
129 						bytes, page, fsdata);
130 			WARN_ON(status <= 0); /* can't return less than zero! */
131 			status = 0;
132 		}
133 		pos += bytes;
134 		count -= bytes;
135 	} while (count);
136 
137 	return status;
138 }
139 
140 int
141 xfs_update_prealloc_flags(
142 	struct xfs_inode	*ip,
143 	enum xfs_prealloc_flags	flags)
144 {
145 	struct xfs_trans	*tp;
146 	int			error;
147 
148 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
149 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
150 	if (error) {
151 		xfs_trans_cancel(tp);
152 		return error;
153 	}
154 
155 	xfs_ilock(ip, XFS_ILOCK_EXCL);
156 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
157 
158 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
159 		ip->i_d.di_mode &= ~S_ISUID;
160 		if (ip->i_d.di_mode & S_IXGRP)
161 			ip->i_d.di_mode &= ~S_ISGID;
162 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 	}
164 
165 	if (flags & XFS_PREALLOC_SET)
166 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
167 	if (flags & XFS_PREALLOC_CLEAR)
168 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
169 
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 	if (flags & XFS_PREALLOC_SYNC)
172 		xfs_trans_set_sync(tp);
173 	return xfs_trans_commit(tp);
174 }
175 
176 /*
177  * Fsync operations on directories are much simpler than on regular files,
178  * as there is no file data to flush, and thus also no need for explicit
179  * cache flush operations, and there are no non-transaction metadata updates
180  * on directories either.
181  */
182 STATIC int
183 xfs_dir_fsync(
184 	struct file		*file,
185 	loff_t			start,
186 	loff_t			end,
187 	int			datasync)
188 {
189 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
190 	struct xfs_mount	*mp = ip->i_mount;
191 	xfs_lsn_t		lsn = 0;
192 
193 	trace_xfs_dir_fsync(ip);
194 
195 	xfs_ilock(ip, XFS_ILOCK_SHARED);
196 	if (xfs_ipincount(ip))
197 		lsn = ip->i_itemp->ili_last_lsn;
198 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
199 
200 	if (!lsn)
201 		return 0;
202 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 }
204 
205 STATIC int
206 xfs_file_fsync(
207 	struct file		*file,
208 	loff_t			start,
209 	loff_t			end,
210 	int			datasync)
211 {
212 	struct inode		*inode = file->f_mapping->host;
213 	struct xfs_inode	*ip = XFS_I(inode);
214 	struct xfs_mount	*mp = ip->i_mount;
215 	int			error = 0;
216 	int			log_flushed = 0;
217 	xfs_lsn_t		lsn = 0;
218 
219 	trace_xfs_file_fsync(ip);
220 
221 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
222 	if (error)
223 		return error;
224 
225 	if (XFS_FORCED_SHUTDOWN(mp))
226 		return -EIO;
227 
228 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
229 
230 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
231 		/*
232 		 * If we have an RT and/or log subvolume we need to make sure
233 		 * to flush the write cache the device used for file data
234 		 * first.  This is to ensure newly written file data make
235 		 * it to disk before logging the new inode size in case of
236 		 * an extending write.
237 		 */
238 		if (XFS_IS_REALTIME_INODE(ip))
239 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
240 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
241 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
242 	}
243 
244 	/*
245 	 * All metadata updates are logged, which means that we just have to
246 	 * flush the log up to the latest LSN that touched the inode. If we have
247 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
248 	 * log force before we clear the ili_fsync_fields field. This ensures
249 	 * that we don't get a racing sync operation that does not wait for the
250 	 * metadata to hit the journal before returning. If we race with
251 	 * clearing the ili_fsync_fields, then all that will happen is the log
252 	 * force will do nothing as the lsn will already be on disk. We can't
253 	 * race with setting ili_fsync_fields because that is done under
254 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
255 	 * until after the ili_fsync_fields is cleared.
256 	 */
257 	xfs_ilock(ip, XFS_ILOCK_SHARED);
258 	if (xfs_ipincount(ip)) {
259 		if (!datasync ||
260 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
261 			lsn = ip->i_itemp->ili_last_lsn;
262 	}
263 
264 	if (lsn) {
265 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
266 		ip->i_itemp->ili_fsync_fields = 0;
267 	}
268 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
269 
270 	/*
271 	 * If we only have a single device, and the log force about was
272 	 * a no-op we might have to flush the data device cache here.
273 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
274 	 * an already allocated file and thus do not have any metadata to
275 	 * commit.
276 	 */
277 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
278 	    mp->m_logdev_targp == mp->m_ddev_targp &&
279 	    !XFS_IS_REALTIME_INODE(ip) &&
280 	    !log_flushed)
281 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
282 
283 	return error;
284 }
285 
286 STATIC ssize_t
287 xfs_file_read_iter(
288 	struct kiocb		*iocb,
289 	struct iov_iter		*to)
290 {
291 	struct file		*file = iocb->ki_filp;
292 	struct inode		*inode = file->f_mapping->host;
293 	struct xfs_inode	*ip = XFS_I(inode);
294 	struct xfs_mount	*mp = ip->i_mount;
295 	size_t			size = iov_iter_count(to);
296 	ssize_t			ret = 0;
297 	int			ioflags = 0;
298 	xfs_fsize_t		n;
299 	loff_t			pos = iocb->ki_pos;
300 
301 	XFS_STATS_INC(mp, xs_read_calls);
302 
303 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
304 		ioflags |= XFS_IO_ISDIRECT;
305 	if (file->f_mode & FMODE_NOCMTIME)
306 		ioflags |= XFS_IO_INVIS;
307 
308 	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
309 		xfs_buftarg_t	*target =
310 			XFS_IS_REALTIME_INODE(ip) ?
311 				mp->m_rtdev_targp : mp->m_ddev_targp;
312 		/* DIO must be aligned to device logical sector size */
313 		if ((pos | size) & target->bt_logical_sectormask) {
314 			if (pos == i_size_read(inode))
315 				return 0;
316 			return -EINVAL;
317 		}
318 	}
319 
320 	n = mp->m_super->s_maxbytes - pos;
321 	if (n <= 0 || size == 0)
322 		return 0;
323 
324 	if (n < size)
325 		size = n;
326 
327 	if (XFS_FORCED_SHUTDOWN(mp))
328 		return -EIO;
329 
330 	/*
331 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
332 	 * IO, we effectively serialise all new concurrent read IO to this file
333 	 * and block it behind IO that is currently in progress because IO in
334 	 * progress holds the IO lock shared. We only need to hold the lock
335 	 * exclusive to blow away the page cache, so only take lock exclusively
336 	 * if the page cache needs invalidation. This allows the normal direct
337 	 * IO case of no page cache pages to proceeed concurrently without
338 	 * serialisation.
339 	 */
340 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
341 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
342 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
344 
345 		/*
346 		 * The generic dio code only flushes the range of the particular
347 		 * I/O. Because we take an exclusive lock here, this whole
348 		 * sequence is considerably more expensive for us. This has a
349 		 * noticeable performance impact for any file with cached pages,
350 		 * even when outside of the range of the particular I/O.
351 		 *
352 		 * Hence, amortize the cost of the lock against a full file
353 		 * flush and reduce the chances of repeated iolock cycles going
354 		 * forward.
355 		 */
356 		if (inode->i_mapping->nrpages) {
357 			ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
358 			if (ret) {
359 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
360 				return ret;
361 			}
362 
363 			/*
364 			 * Invalidate whole pages. This can return an error if
365 			 * we fail to invalidate a page, but this should never
366 			 * happen on XFS. Warn if it does fail.
367 			 */
368 			ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
369 			WARN_ON_ONCE(ret);
370 			ret = 0;
371 		}
372 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
373 	}
374 
375 	trace_xfs_file_read(ip, size, pos, ioflags);
376 
377 	ret = generic_file_read_iter(iocb, to);
378 	if (ret > 0)
379 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
380 
381 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
382 	return ret;
383 }
384 
385 STATIC ssize_t
386 xfs_file_splice_read(
387 	struct file		*infilp,
388 	loff_t			*ppos,
389 	struct pipe_inode_info	*pipe,
390 	size_t			count,
391 	unsigned int		flags)
392 {
393 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
394 	int			ioflags = 0;
395 	ssize_t			ret;
396 
397 	XFS_STATS_INC(ip->i_mount, xs_read_calls);
398 
399 	if (infilp->f_mode & FMODE_NOCMTIME)
400 		ioflags |= XFS_IO_INVIS;
401 
402 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
403 		return -EIO;
404 
405 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
406 
407 	/*
408 	 * DAX inodes cannot ues the page cache for splice, so we have to push
409 	 * them through the VFS IO path. This means it goes through
410 	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
411 	 * cannot lock the splice operation at this level for DAX inodes.
412 	 */
413 	if (IS_DAX(VFS_I(ip))) {
414 		ret = default_file_splice_read(infilp, ppos, pipe, count,
415 					       flags);
416 		goto out;
417 	}
418 
419 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
420 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
421 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
422 out:
423 	if (ret > 0)
424 		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
425 	return ret;
426 }
427 
428 /*
429  * This routine is called to handle zeroing any space in the last block of the
430  * file that is beyond the EOF.  We do this since the size is being increased
431  * without writing anything to that block and we don't want to read the
432  * garbage on the disk.
433  */
434 STATIC int				/* error (positive) */
435 xfs_zero_last_block(
436 	struct xfs_inode	*ip,
437 	xfs_fsize_t		offset,
438 	xfs_fsize_t		isize,
439 	bool			*did_zeroing)
440 {
441 	struct xfs_mount	*mp = ip->i_mount;
442 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
443 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
444 	int			zero_len;
445 	int			nimaps = 1;
446 	int			error = 0;
447 	struct xfs_bmbt_irec	imap;
448 
449 	xfs_ilock(ip, XFS_ILOCK_EXCL);
450 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
451 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
452 	if (error)
453 		return error;
454 
455 	ASSERT(nimaps > 0);
456 
457 	/*
458 	 * If the block underlying isize is just a hole, then there
459 	 * is nothing to zero.
460 	 */
461 	if (imap.br_startblock == HOLESTARTBLOCK)
462 		return 0;
463 
464 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
465 	if (isize + zero_len > offset)
466 		zero_len = offset - isize;
467 	*did_zeroing = true;
468 	return xfs_iozero(ip, isize, zero_len);
469 }
470 
471 /*
472  * Zero any on disk space between the current EOF and the new, larger EOF.
473  *
474  * This handles the normal case of zeroing the remainder of the last block in
475  * the file and the unusual case of zeroing blocks out beyond the size of the
476  * file.  This second case only happens with fixed size extents and when the
477  * system crashes before the inode size was updated but after blocks were
478  * allocated.
479  *
480  * Expects the iolock to be held exclusive, and will take the ilock internally.
481  */
482 int					/* error (positive) */
483 xfs_zero_eof(
484 	struct xfs_inode	*ip,
485 	xfs_off_t		offset,		/* starting I/O offset */
486 	xfs_fsize_t		isize,		/* current inode size */
487 	bool			*did_zeroing)
488 {
489 	struct xfs_mount	*mp = ip->i_mount;
490 	xfs_fileoff_t		start_zero_fsb;
491 	xfs_fileoff_t		end_zero_fsb;
492 	xfs_fileoff_t		zero_count_fsb;
493 	xfs_fileoff_t		last_fsb;
494 	xfs_fileoff_t		zero_off;
495 	xfs_fsize_t		zero_len;
496 	int			nimaps;
497 	int			error = 0;
498 	struct xfs_bmbt_irec	imap;
499 
500 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
501 	ASSERT(offset > isize);
502 
503 	trace_xfs_zero_eof(ip, isize, offset - isize);
504 
505 	/*
506 	 * First handle zeroing the block on which isize resides.
507 	 *
508 	 * We only zero a part of that block so it is handled specially.
509 	 */
510 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
511 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
512 		if (error)
513 			return error;
514 	}
515 
516 	/*
517 	 * Calculate the range between the new size and the old where blocks
518 	 * needing to be zeroed may exist.
519 	 *
520 	 * To get the block where the last byte in the file currently resides,
521 	 * we need to subtract one from the size and truncate back to a block
522 	 * boundary.  We subtract 1 in case the size is exactly on a block
523 	 * boundary.
524 	 */
525 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
526 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
527 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
528 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
529 	if (last_fsb == end_zero_fsb) {
530 		/*
531 		 * The size was only incremented on its last block.
532 		 * We took care of that above, so just return.
533 		 */
534 		return 0;
535 	}
536 
537 	ASSERT(start_zero_fsb <= end_zero_fsb);
538 	while (start_zero_fsb <= end_zero_fsb) {
539 		nimaps = 1;
540 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
541 
542 		xfs_ilock(ip, XFS_ILOCK_EXCL);
543 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
544 					  &imap, &nimaps, 0);
545 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
546 		if (error)
547 			return error;
548 
549 		ASSERT(nimaps > 0);
550 
551 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
552 		    imap.br_startblock == HOLESTARTBLOCK) {
553 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
554 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
555 			continue;
556 		}
557 
558 		/*
559 		 * There are blocks we need to zero.
560 		 */
561 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
562 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
563 
564 		if ((zero_off + zero_len) > offset)
565 			zero_len = offset - zero_off;
566 
567 		error = xfs_iozero(ip, zero_off, zero_len);
568 		if (error)
569 			return error;
570 
571 		*did_zeroing = true;
572 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
573 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
574 	}
575 
576 	return 0;
577 }
578 
579 /*
580  * Common pre-write limit and setup checks.
581  *
582  * Called with the iolocked held either shared and exclusive according to
583  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
584  * if called for a direct write beyond i_size.
585  */
586 STATIC ssize_t
587 xfs_file_aio_write_checks(
588 	struct kiocb		*iocb,
589 	struct iov_iter		*from,
590 	int			*iolock)
591 {
592 	struct file		*file = iocb->ki_filp;
593 	struct inode		*inode = file->f_mapping->host;
594 	struct xfs_inode	*ip = XFS_I(inode);
595 	ssize_t			error = 0;
596 	size_t			count = iov_iter_count(from);
597 	bool			drained_dio = false;
598 
599 restart:
600 	error = generic_write_checks(iocb, from);
601 	if (error <= 0)
602 		return error;
603 
604 	error = xfs_break_layouts(inode, iolock, true);
605 	if (error)
606 		return error;
607 
608 	/* For changing security info in file_remove_privs() we need i_mutex */
609 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
610 		xfs_rw_iunlock(ip, *iolock);
611 		*iolock = XFS_IOLOCK_EXCL;
612 		xfs_rw_ilock(ip, *iolock);
613 		goto restart;
614 	}
615 	/*
616 	 * If the offset is beyond the size of the file, we need to zero any
617 	 * blocks that fall between the existing EOF and the start of this
618 	 * write.  If zeroing is needed and we are currently holding the
619 	 * iolock shared, we need to update it to exclusive which implies
620 	 * having to redo all checks before.
621 	 *
622 	 * We need to serialise against EOF updates that occur in IO
623 	 * completions here. We want to make sure that nobody is changing the
624 	 * size while we do this check until we have placed an IO barrier (i.e.
625 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
626 	 * The spinlock effectively forms a memory barrier once we have the
627 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
628 	 * and hence be able to correctly determine if we need to run zeroing.
629 	 */
630 	spin_lock(&ip->i_flags_lock);
631 	if (iocb->ki_pos > i_size_read(inode)) {
632 		bool	zero = false;
633 
634 		spin_unlock(&ip->i_flags_lock);
635 		if (!drained_dio) {
636 			if (*iolock == XFS_IOLOCK_SHARED) {
637 				xfs_rw_iunlock(ip, *iolock);
638 				*iolock = XFS_IOLOCK_EXCL;
639 				xfs_rw_ilock(ip, *iolock);
640 				iov_iter_reexpand(from, count);
641 			}
642 			/*
643 			 * We now have an IO submission barrier in place, but
644 			 * AIO can do EOF updates during IO completion and hence
645 			 * we now need to wait for all of them to drain. Non-AIO
646 			 * DIO will have drained before we are given the
647 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
648 			 * no-op.
649 			 */
650 			inode_dio_wait(inode);
651 			drained_dio = true;
652 			goto restart;
653 		}
654 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
655 		if (error)
656 			return error;
657 	} else
658 		spin_unlock(&ip->i_flags_lock);
659 
660 	/*
661 	 * Updating the timestamps will grab the ilock again from
662 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
663 	 * lock above.  Eventually we should look into a way to avoid
664 	 * the pointless lock roundtrip.
665 	 */
666 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
667 		error = file_update_time(file);
668 		if (error)
669 			return error;
670 	}
671 
672 	/*
673 	 * If we're writing the file then make sure to clear the setuid and
674 	 * setgid bits if the process is not being run by root.  This keeps
675 	 * people from modifying setuid and setgid binaries.
676 	 */
677 	if (!IS_NOSEC(inode))
678 		return file_remove_privs(file);
679 	return 0;
680 }
681 
682 /*
683  * xfs_file_dio_aio_write - handle direct IO writes
684  *
685  * Lock the inode appropriately to prepare for and issue a direct IO write.
686  * By separating it from the buffered write path we remove all the tricky to
687  * follow locking changes and looping.
688  *
689  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
690  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
691  * pages are flushed out.
692  *
693  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
694  * allowing them to be done in parallel with reads and other direct IO writes.
695  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
696  * needs to do sub-block zeroing and that requires serialisation against other
697  * direct IOs to the same block. In this case we need to serialise the
698  * submission of the unaligned IOs so that we don't get racing block zeroing in
699  * the dio layer.  To avoid the problem with aio, we also need to wait for
700  * outstanding IOs to complete so that unwritten extent conversion is completed
701  * before we try to map the overlapping block. This is currently implemented by
702  * hitting it with a big hammer (i.e. inode_dio_wait()).
703  *
704  * Returns with locks held indicated by @iolock and errors indicated by
705  * negative return values.
706  */
707 STATIC ssize_t
708 xfs_file_dio_aio_write(
709 	struct kiocb		*iocb,
710 	struct iov_iter		*from)
711 {
712 	struct file		*file = iocb->ki_filp;
713 	struct address_space	*mapping = file->f_mapping;
714 	struct inode		*inode = mapping->host;
715 	struct xfs_inode	*ip = XFS_I(inode);
716 	struct xfs_mount	*mp = ip->i_mount;
717 	ssize_t			ret = 0;
718 	int			unaligned_io = 0;
719 	int			iolock;
720 	size_t			count = iov_iter_count(from);
721 	loff_t			pos = iocb->ki_pos;
722 	loff_t			end;
723 	struct iov_iter		data;
724 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
725 					mp->m_rtdev_targp : mp->m_ddev_targp;
726 
727 	/* DIO must be aligned to device logical sector size */
728 	if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask))
729 		return -EINVAL;
730 
731 	/* "unaligned" here means not aligned to a filesystem block */
732 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
733 		unaligned_io = 1;
734 
735 	/*
736 	 * We don't need to take an exclusive lock unless there page cache needs
737 	 * to be invalidated or unaligned IO is being executed. We don't need to
738 	 * consider the EOF extension case here because
739 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
740 	 * EOF zeroing cases and fill out the new inode size as appropriate.
741 	 */
742 	if (unaligned_io || mapping->nrpages)
743 		iolock = XFS_IOLOCK_EXCL;
744 	else
745 		iolock = XFS_IOLOCK_SHARED;
746 	xfs_rw_ilock(ip, iolock);
747 
748 	/*
749 	 * Recheck if there are cached pages that need invalidate after we got
750 	 * the iolock to protect against other threads adding new pages while
751 	 * we were waiting for the iolock.
752 	 */
753 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
754 		xfs_rw_iunlock(ip, iolock);
755 		iolock = XFS_IOLOCK_EXCL;
756 		xfs_rw_ilock(ip, iolock);
757 	}
758 
759 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
760 	if (ret)
761 		goto out;
762 	count = iov_iter_count(from);
763 	pos = iocb->ki_pos;
764 	end = pos + count - 1;
765 
766 	/*
767 	 * See xfs_file_read_iter() for why we do a full-file flush here.
768 	 */
769 	if (mapping->nrpages) {
770 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
771 		if (ret)
772 			goto out;
773 		/*
774 		 * Invalidate whole pages. This can return an error if we fail
775 		 * to invalidate a page, but this should never happen on XFS.
776 		 * Warn if it does fail.
777 		 */
778 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
779 		WARN_ON_ONCE(ret);
780 		ret = 0;
781 	}
782 
783 	/*
784 	 * If we are doing unaligned IO, wait for all other IO to drain,
785 	 * otherwise demote the lock if we had to flush cached pages
786 	 */
787 	if (unaligned_io)
788 		inode_dio_wait(inode);
789 	else if (iolock == XFS_IOLOCK_EXCL) {
790 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
791 		iolock = XFS_IOLOCK_SHARED;
792 	}
793 
794 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
795 
796 	data = *from;
797 	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
798 
799 	/* see generic_file_direct_write() for why this is necessary */
800 	if (mapping->nrpages) {
801 		invalidate_inode_pages2_range(mapping,
802 					      pos >> PAGE_CACHE_SHIFT,
803 					      end >> PAGE_CACHE_SHIFT);
804 	}
805 
806 	if (ret > 0) {
807 		pos += ret;
808 		iov_iter_advance(from, ret);
809 		iocb->ki_pos = pos;
810 	}
811 out:
812 	xfs_rw_iunlock(ip, iolock);
813 
814 	/*
815 	 * No fallback to buffered IO on errors for XFS. DAX can result in
816 	 * partial writes, but direct IO will either complete fully or fail.
817 	 */
818 	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
819 	return ret;
820 }
821 
822 STATIC ssize_t
823 xfs_file_buffered_aio_write(
824 	struct kiocb		*iocb,
825 	struct iov_iter		*from)
826 {
827 	struct file		*file = iocb->ki_filp;
828 	struct address_space	*mapping = file->f_mapping;
829 	struct inode		*inode = mapping->host;
830 	struct xfs_inode	*ip = XFS_I(inode);
831 	ssize_t			ret;
832 	int			enospc = 0;
833 	int			iolock = XFS_IOLOCK_EXCL;
834 
835 	xfs_rw_ilock(ip, iolock);
836 
837 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
838 	if (ret)
839 		goto out;
840 
841 	/* We can write back this queue in page reclaim */
842 	current->backing_dev_info = inode_to_bdi(inode);
843 
844 write_retry:
845 	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
846 				      iocb->ki_pos, 0);
847 	ret = generic_perform_write(file, from, iocb->ki_pos);
848 	if (likely(ret >= 0))
849 		iocb->ki_pos += ret;
850 
851 	/*
852 	 * If we hit a space limit, try to free up some lingering preallocated
853 	 * space before returning an error. In the case of ENOSPC, first try to
854 	 * write back all dirty inodes to free up some of the excess reserved
855 	 * metadata space. This reduces the chances that the eofblocks scan
856 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
857 	 * also behaves as a filter to prevent too many eofblocks scans from
858 	 * running at the same time.
859 	 */
860 	if (ret == -EDQUOT && !enospc) {
861 		enospc = xfs_inode_free_quota_eofblocks(ip);
862 		if (enospc)
863 			goto write_retry;
864 	} else if (ret == -ENOSPC && !enospc) {
865 		struct xfs_eofblocks eofb = {0};
866 
867 		enospc = 1;
868 		xfs_flush_inodes(ip->i_mount);
869 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
870 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
871 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
872 		goto write_retry;
873 	}
874 
875 	current->backing_dev_info = NULL;
876 out:
877 	xfs_rw_iunlock(ip, iolock);
878 	return ret;
879 }
880 
881 STATIC ssize_t
882 xfs_file_write_iter(
883 	struct kiocb		*iocb,
884 	struct iov_iter		*from)
885 {
886 	struct file		*file = iocb->ki_filp;
887 	struct address_space	*mapping = file->f_mapping;
888 	struct inode		*inode = mapping->host;
889 	struct xfs_inode	*ip = XFS_I(inode);
890 	ssize_t			ret;
891 	size_t			ocount = iov_iter_count(from);
892 
893 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
894 
895 	if (ocount == 0)
896 		return 0;
897 
898 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
899 		return -EIO;
900 
901 	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
902 		ret = xfs_file_dio_aio_write(iocb, from);
903 	else
904 		ret = xfs_file_buffered_aio_write(iocb, from);
905 
906 	if (ret > 0) {
907 		ssize_t err;
908 
909 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
910 
911 		/* Handle various SYNC-type writes */
912 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
913 		if (err < 0)
914 			ret = err;
915 	}
916 	return ret;
917 }
918 
919 #define	XFS_FALLOC_FL_SUPPORTED						\
920 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
921 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
922 		 FALLOC_FL_INSERT_RANGE)
923 
924 STATIC long
925 xfs_file_fallocate(
926 	struct file		*file,
927 	int			mode,
928 	loff_t			offset,
929 	loff_t			len)
930 {
931 	struct inode		*inode = file_inode(file);
932 	struct xfs_inode	*ip = XFS_I(inode);
933 	long			error;
934 	enum xfs_prealloc_flags	flags = 0;
935 	uint			iolock = XFS_IOLOCK_EXCL;
936 	loff_t			new_size = 0;
937 	bool			do_file_insert = 0;
938 
939 	if (!S_ISREG(inode->i_mode))
940 		return -EINVAL;
941 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
942 		return -EOPNOTSUPP;
943 
944 	xfs_ilock(ip, iolock);
945 	error = xfs_break_layouts(inode, &iolock, false);
946 	if (error)
947 		goto out_unlock;
948 
949 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
950 	iolock |= XFS_MMAPLOCK_EXCL;
951 
952 	if (mode & FALLOC_FL_PUNCH_HOLE) {
953 		error = xfs_free_file_space(ip, offset, len);
954 		if (error)
955 			goto out_unlock;
956 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
957 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
958 
959 		if (offset & blksize_mask || len & blksize_mask) {
960 			error = -EINVAL;
961 			goto out_unlock;
962 		}
963 
964 		/*
965 		 * There is no need to overlap collapse range with EOF,
966 		 * in which case it is effectively a truncate operation
967 		 */
968 		if (offset + len >= i_size_read(inode)) {
969 			error = -EINVAL;
970 			goto out_unlock;
971 		}
972 
973 		new_size = i_size_read(inode) - len;
974 
975 		error = xfs_collapse_file_space(ip, offset, len);
976 		if (error)
977 			goto out_unlock;
978 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
979 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
980 
981 		new_size = i_size_read(inode) + len;
982 		if (offset & blksize_mask || len & blksize_mask) {
983 			error = -EINVAL;
984 			goto out_unlock;
985 		}
986 
987 		/* check the new inode size does not wrap through zero */
988 		if (new_size > inode->i_sb->s_maxbytes) {
989 			error = -EFBIG;
990 			goto out_unlock;
991 		}
992 
993 		/* Offset should be less than i_size */
994 		if (offset >= i_size_read(inode)) {
995 			error = -EINVAL;
996 			goto out_unlock;
997 		}
998 		do_file_insert = 1;
999 	} else {
1000 		flags |= XFS_PREALLOC_SET;
1001 
1002 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1003 		    offset + len > i_size_read(inode)) {
1004 			new_size = offset + len;
1005 			error = inode_newsize_ok(inode, new_size);
1006 			if (error)
1007 				goto out_unlock;
1008 		}
1009 
1010 		if (mode & FALLOC_FL_ZERO_RANGE)
1011 			error = xfs_zero_file_space(ip, offset, len);
1012 		else
1013 			error = xfs_alloc_file_space(ip, offset, len,
1014 						     XFS_BMAPI_PREALLOC);
1015 		if (error)
1016 			goto out_unlock;
1017 	}
1018 
1019 	if (file->f_flags & O_DSYNC)
1020 		flags |= XFS_PREALLOC_SYNC;
1021 
1022 	error = xfs_update_prealloc_flags(ip, flags);
1023 	if (error)
1024 		goto out_unlock;
1025 
1026 	/* Change file size if needed */
1027 	if (new_size) {
1028 		struct iattr iattr;
1029 
1030 		iattr.ia_valid = ATTR_SIZE;
1031 		iattr.ia_size = new_size;
1032 		error = xfs_setattr_size(ip, &iattr);
1033 		if (error)
1034 			goto out_unlock;
1035 	}
1036 
1037 	/*
1038 	 * Perform hole insertion now that the file size has been
1039 	 * updated so that if we crash during the operation we don't
1040 	 * leave shifted extents past EOF and hence losing access to
1041 	 * the data that is contained within them.
1042 	 */
1043 	if (do_file_insert)
1044 		error = xfs_insert_file_space(ip, offset, len);
1045 
1046 out_unlock:
1047 	xfs_iunlock(ip, iolock);
1048 	return error;
1049 }
1050 
1051 
1052 STATIC int
1053 xfs_file_open(
1054 	struct inode	*inode,
1055 	struct file	*file)
1056 {
1057 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1058 		return -EFBIG;
1059 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1060 		return -EIO;
1061 	return 0;
1062 }
1063 
1064 STATIC int
1065 xfs_dir_open(
1066 	struct inode	*inode,
1067 	struct file	*file)
1068 {
1069 	struct xfs_inode *ip = XFS_I(inode);
1070 	int		mode;
1071 	int		error;
1072 
1073 	error = xfs_file_open(inode, file);
1074 	if (error)
1075 		return error;
1076 
1077 	/*
1078 	 * If there are any blocks, read-ahead block 0 as we're almost
1079 	 * certain to have the next operation be a read there.
1080 	 */
1081 	mode = xfs_ilock_data_map_shared(ip);
1082 	if (ip->i_d.di_nextents > 0)
1083 		xfs_dir3_data_readahead(ip, 0, -1);
1084 	xfs_iunlock(ip, mode);
1085 	return 0;
1086 }
1087 
1088 STATIC int
1089 xfs_file_release(
1090 	struct inode	*inode,
1091 	struct file	*filp)
1092 {
1093 	return xfs_release(XFS_I(inode));
1094 }
1095 
1096 STATIC int
1097 xfs_file_readdir(
1098 	struct file	*file,
1099 	struct dir_context *ctx)
1100 {
1101 	struct inode	*inode = file_inode(file);
1102 	xfs_inode_t	*ip = XFS_I(inode);
1103 	size_t		bufsize;
1104 
1105 	/*
1106 	 * The Linux API doesn't pass down the total size of the buffer
1107 	 * we read into down to the filesystem.  With the filldir concept
1108 	 * it's not needed for correct information, but the XFS dir2 leaf
1109 	 * code wants an estimate of the buffer size to calculate it's
1110 	 * readahead window and size the buffers used for mapping to
1111 	 * physical blocks.
1112 	 *
1113 	 * Try to give it an estimate that's good enough, maybe at some
1114 	 * point we can change the ->readdir prototype to include the
1115 	 * buffer size.  For now we use the current glibc buffer size.
1116 	 */
1117 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1118 
1119 	return xfs_readdir(ip, ctx, bufsize);
1120 }
1121 
1122 /*
1123  * This type is designed to indicate the type of offset we would like
1124  * to search from page cache for xfs_seek_hole_data().
1125  */
1126 enum {
1127 	HOLE_OFF = 0,
1128 	DATA_OFF,
1129 };
1130 
1131 /*
1132  * Lookup the desired type of offset from the given page.
1133  *
1134  * On success, return true and the offset argument will point to the
1135  * start of the region that was found.  Otherwise this function will
1136  * return false and keep the offset argument unchanged.
1137  */
1138 STATIC bool
1139 xfs_lookup_buffer_offset(
1140 	struct page		*page,
1141 	loff_t			*offset,
1142 	unsigned int		type)
1143 {
1144 	loff_t			lastoff = page_offset(page);
1145 	bool			found = false;
1146 	struct buffer_head	*bh, *head;
1147 
1148 	bh = head = page_buffers(page);
1149 	do {
1150 		/*
1151 		 * Unwritten extents that have data in the page
1152 		 * cache covering them can be identified by the
1153 		 * BH_Unwritten state flag.  Pages with multiple
1154 		 * buffers might have a mix of holes, data and
1155 		 * unwritten extents - any buffer with valid
1156 		 * data in it should have BH_Uptodate flag set
1157 		 * on it.
1158 		 */
1159 		if (buffer_unwritten(bh) ||
1160 		    buffer_uptodate(bh)) {
1161 			if (type == DATA_OFF)
1162 				found = true;
1163 		} else {
1164 			if (type == HOLE_OFF)
1165 				found = true;
1166 		}
1167 
1168 		if (found) {
1169 			*offset = lastoff;
1170 			break;
1171 		}
1172 		lastoff += bh->b_size;
1173 	} while ((bh = bh->b_this_page) != head);
1174 
1175 	return found;
1176 }
1177 
1178 /*
1179  * This routine is called to find out and return a data or hole offset
1180  * from the page cache for unwritten extents according to the desired
1181  * type for xfs_seek_hole_data().
1182  *
1183  * The argument offset is used to tell where we start to search from the
1184  * page cache.  Map is used to figure out the end points of the range to
1185  * lookup pages.
1186  *
1187  * Return true if the desired type of offset was found, and the argument
1188  * offset is filled with that address.  Otherwise, return false and keep
1189  * offset unchanged.
1190  */
1191 STATIC bool
1192 xfs_find_get_desired_pgoff(
1193 	struct inode		*inode,
1194 	struct xfs_bmbt_irec	*map,
1195 	unsigned int		type,
1196 	loff_t			*offset)
1197 {
1198 	struct xfs_inode	*ip = XFS_I(inode);
1199 	struct xfs_mount	*mp = ip->i_mount;
1200 	struct pagevec		pvec;
1201 	pgoff_t			index;
1202 	pgoff_t			end;
1203 	loff_t			endoff;
1204 	loff_t			startoff = *offset;
1205 	loff_t			lastoff = startoff;
1206 	bool			found = false;
1207 
1208 	pagevec_init(&pvec, 0);
1209 
1210 	index = startoff >> PAGE_CACHE_SHIFT;
1211 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1212 	end = endoff >> PAGE_CACHE_SHIFT;
1213 	do {
1214 		int		want;
1215 		unsigned	nr_pages;
1216 		unsigned int	i;
1217 
1218 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1219 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1220 					  want);
1221 		/*
1222 		 * No page mapped into given range.  If we are searching holes
1223 		 * and if this is the first time we got into the loop, it means
1224 		 * that the given offset is landed in a hole, return it.
1225 		 *
1226 		 * If we have already stepped through some block buffers to find
1227 		 * holes but they all contains data.  In this case, the last
1228 		 * offset is already updated and pointed to the end of the last
1229 		 * mapped page, if it does not reach the endpoint to search,
1230 		 * that means there should be a hole between them.
1231 		 */
1232 		if (nr_pages == 0) {
1233 			/* Data search found nothing */
1234 			if (type == DATA_OFF)
1235 				break;
1236 
1237 			ASSERT(type == HOLE_OFF);
1238 			if (lastoff == startoff || lastoff < endoff) {
1239 				found = true;
1240 				*offset = lastoff;
1241 			}
1242 			break;
1243 		}
1244 
1245 		/*
1246 		 * At lease we found one page.  If this is the first time we
1247 		 * step into the loop, and if the first page index offset is
1248 		 * greater than the given search offset, a hole was found.
1249 		 */
1250 		if (type == HOLE_OFF && lastoff == startoff &&
1251 		    lastoff < page_offset(pvec.pages[0])) {
1252 			found = true;
1253 			break;
1254 		}
1255 
1256 		for (i = 0; i < nr_pages; i++) {
1257 			struct page	*page = pvec.pages[i];
1258 			loff_t		b_offset;
1259 
1260 			/*
1261 			 * At this point, the page may be truncated or
1262 			 * invalidated (changing page->mapping to NULL),
1263 			 * or even swizzled back from swapper_space to tmpfs
1264 			 * file mapping. However, page->index will not change
1265 			 * because we have a reference on the page.
1266 			 *
1267 			 * Searching done if the page index is out of range.
1268 			 * If the current offset is not reaches the end of
1269 			 * the specified search range, there should be a hole
1270 			 * between them.
1271 			 */
1272 			if (page->index > end) {
1273 				if (type == HOLE_OFF && lastoff < endoff) {
1274 					*offset = lastoff;
1275 					found = true;
1276 				}
1277 				goto out;
1278 			}
1279 
1280 			lock_page(page);
1281 			/*
1282 			 * Page truncated or invalidated(page->mapping == NULL).
1283 			 * We can freely skip it and proceed to check the next
1284 			 * page.
1285 			 */
1286 			if (unlikely(page->mapping != inode->i_mapping)) {
1287 				unlock_page(page);
1288 				continue;
1289 			}
1290 
1291 			if (!page_has_buffers(page)) {
1292 				unlock_page(page);
1293 				continue;
1294 			}
1295 
1296 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1297 			if (found) {
1298 				/*
1299 				 * The found offset may be less than the start
1300 				 * point to search if this is the first time to
1301 				 * come here.
1302 				 */
1303 				*offset = max_t(loff_t, startoff, b_offset);
1304 				unlock_page(page);
1305 				goto out;
1306 			}
1307 
1308 			/*
1309 			 * We either searching data but nothing was found, or
1310 			 * searching hole but found a data buffer.  In either
1311 			 * case, probably the next page contains the desired
1312 			 * things, update the last offset to it so.
1313 			 */
1314 			lastoff = page_offset(page) + PAGE_SIZE;
1315 			unlock_page(page);
1316 		}
1317 
1318 		/*
1319 		 * The number of returned pages less than our desired, search
1320 		 * done.  In this case, nothing was found for searching data,
1321 		 * but we found a hole behind the last offset.
1322 		 */
1323 		if (nr_pages < want) {
1324 			if (type == HOLE_OFF) {
1325 				*offset = lastoff;
1326 				found = true;
1327 			}
1328 			break;
1329 		}
1330 
1331 		index = pvec.pages[i - 1]->index + 1;
1332 		pagevec_release(&pvec);
1333 	} while (index <= end);
1334 
1335 out:
1336 	pagevec_release(&pvec);
1337 	return found;
1338 }
1339 
1340 STATIC loff_t
1341 xfs_seek_hole_data(
1342 	struct file		*file,
1343 	loff_t			start,
1344 	int			whence)
1345 {
1346 	struct inode		*inode = file->f_mapping->host;
1347 	struct xfs_inode	*ip = XFS_I(inode);
1348 	struct xfs_mount	*mp = ip->i_mount;
1349 	loff_t			uninitialized_var(offset);
1350 	xfs_fsize_t		isize;
1351 	xfs_fileoff_t		fsbno;
1352 	xfs_filblks_t		end;
1353 	uint			lock;
1354 	int			error;
1355 
1356 	if (XFS_FORCED_SHUTDOWN(mp))
1357 		return -EIO;
1358 
1359 	lock = xfs_ilock_data_map_shared(ip);
1360 
1361 	isize = i_size_read(inode);
1362 	if (start >= isize) {
1363 		error = -ENXIO;
1364 		goto out_unlock;
1365 	}
1366 
1367 	/*
1368 	 * Try to read extents from the first block indicated
1369 	 * by fsbno to the end block of the file.
1370 	 */
1371 	fsbno = XFS_B_TO_FSBT(mp, start);
1372 	end = XFS_B_TO_FSB(mp, isize);
1373 
1374 	for (;;) {
1375 		struct xfs_bmbt_irec	map[2];
1376 		int			nmap = 2;
1377 		unsigned int		i;
1378 
1379 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1380 				       XFS_BMAPI_ENTIRE);
1381 		if (error)
1382 			goto out_unlock;
1383 
1384 		/* No extents at given offset, must be beyond EOF */
1385 		if (nmap == 0) {
1386 			error = -ENXIO;
1387 			goto out_unlock;
1388 		}
1389 
1390 		for (i = 0; i < nmap; i++) {
1391 			offset = max_t(loff_t, start,
1392 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1393 
1394 			/* Landed in the hole we wanted? */
1395 			if (whence == SEEK_HOLE &&
1396 			    map[i].br_startblock == HOLESTARTBLOCK)
1397 				goto out;
1398 
1399 			/* Landed in the data extent we wanted? */
1400 			if (whence == SEEK_DATA &&
1401 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1402 			     (map[i].br_state == XFS_EXT_NORM &&
1403 			      !isnullstartblock(map[i].br_startblock))))
1404 				goto out;
1405 
1406 			/*
1407 			 * Landed in an unwritten extent, try to search
1408 			 * for hole or data from page cache.
1409 			 */
1410 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1411 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1412 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1413 							&offset))
1414 					goto out;
1415 			}
1416 		}
1417 
1418 		/*
1419 		 * We only received one extent out of the two requested. This
1420 		 * means we've hit EOF and didn't find what we are looking for.
1421 		 */
1422 		if (nmap == 1) {
1423 			/*
1424 			 * If we were looking for a hole, set offset to
1425 			 * the end of the file (i.e., there is an implicit
1426 			 * hole at the end of any file).
1427 		 	 */
1428 			if (whence == SEEK_HOLE) {
1429 				offset = isize;
1430 				break;
1431 			}
1432 			/*
1433 			 * If we were looking for data, it's nowhere to be found
1434 			 */
1435 			ASSERT(whence == SEEK_DATA);
1436 			error = -ENXIO;
1437 			goto out_unlock;
1438 		}
1439 
1440 		ASSERT(i > 1);
1441 
1442 		/*
1443 		 * Nothing was found, proceed to the next round of search
1444 		 * if the next reading offset is not at or beyond EOF.
1445 		 */
1446 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1447 		start = XFS_FSB_TO_B(mp, fsbno);
1448 		if (start >= isize) {
1449 			if (whence == SEEK_HOLE) {
1450 				offset = isize;
1451 				break;
1452 			}
1453 			ASSERT(whence == SEEK_DATA);
1454 			error = -ENXIO;
1455 			goto out_unlock;
1456 		}
1457 	}
1458 
1459 out:
1460 	/*
1461 	 * If at this point we have found the hole we wanted, the returned
1462 	 * offset may be bigger than the file size as it may be aligned to
1463 	 * page boundary for unwritten extents.  We need to deal with this
1464 	 * situation in particular.
1465 	 */
1466 	if (whence == SEEK_HOLE)
1467 		offset = min_t(loff_t, offset, isize);
1468 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1469 
1470 out_unlock:
1471 	xfs_iunlock(ip, lock);
1472 
1473 	if (error)
1474 		return error;
1475 	return offset;
1476 }
1477 
1478 STATIC loff_t
1479 xfs_file_llseek(
1480 	struct file	*file,
1481 	loff_t		offset,
1482 	int		whence)
1483 {
1484 	switch (whence) {
1485 	case SEEK_END:
1486 	case SEEK_CUR:
1487 	case SEEK_SET:
1488 		return generic_file_llseek(file, offset, whence);
1489 	case SEEK_HOLE:
1490 	case SEEK_DATA:
1491 		return xfs_seek_hole_data(file, offset, whence);
1492 	default:
1493 		return -EINVAL;
1494 	}
1495 }
1496 
1497 /*
1498  * Locking for serialisation of IO during page faults. This results in a lock
1499  * ordering of:
1500  *
1501  * mmap_sem (MM)
1502  *   sb_start_pagefault(vfs, freeze)
1503  *     i_mmaplock (XFS - truncate serialisation)
1504  *       page_lock (MM)
1505  *         i_lock (XFS - extent map serialisation)
1506  */
1507 
1508 /*
1509  * mmap()d file has taken write protection fault and is being made writable. We
1510  * can set the page state up correctly for a writable page, which means we can
1511  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1512  * mapping.
1513  */
1514 STATIC int
1515 xfs_filemap_page_mkwrite(
1516 	struct vm_area_struct	*vma,
1517 	struct vm_fault		*vmf)
1518 {
1519 	struct inode		*inode = file_inode(vma->vm_file);
1520 	int			ret;
1521 
1522 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1523 
1524 	sb_start_pagefault(inode->i_sb);
1525 	file_update_time(vma->vm_file);
1526 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1527 
1528 	if (IS_DAX(inode)) {
1529 		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1530 	} else {
1531 		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1532 		ret = block_page_mkwrite_return(ret);
1533 	}
1534 
1535 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1536 	sb_end_pagefault(inode->i_sb);
1537 
1538 	return ret;
1539 }
1540 
1541 STATIC int
1542 xfs_filemap_fault(
1543 	struct vm_area_struct	*vma,
1544 	struct vm_fault		*vmf)
1545 {
1546 	struct inode		*inode = file_inode(vma->vm_file);
1547 	int			ret;
1548 
1549 	trace_xfs_filemap_fault(XFS_I(inode));
1550 
1551 	/* DAX can shortcut the normal fault path on write faults! */
1552 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1553 		return xfs_filemap_page_mkwrite(vma, vmf);
1554 
1555 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1556 	if (IS_DAX(inode)) {
1557 		/*
1558 		 * we do not want to trigger unwritten extent conversion on read
1559 		 * faults - that is unnecessary overhead and would also require
1560 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1561 		 * ioend for conversion on read-only mappings.
1562 		 */
1563 		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL);
1564 	} else
1565 		ret = filemap_fault(vma, vmf);
1566 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1567 
1568 	return ret;
1569 }
1570 
1571 /*
1572  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1573  * both read and write faults. Hence we need to handle both cases. There is no
1574  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1575  * handle both cases here. @flags carries the information on the type of fault
1576  * occuring.
1577  */
1578 STATIC int
1579 xfs_filemap_pmd_fault(
1580 	struct vm_area_struct	*vma,
1581 	unsigned long		addr,
1582 	pmd_t			*pmd,
1583 	unsigned int		flags)
1584 {
1585 	struct inode		*inode = file_inode(vma->vm_file);
1586 	struct xfs_inode	*ip = XFS_I(inode);
1587 	int			ret;
1588 
1589 	if (!IS_DAX(inode))
1590 		return VM_FAULT_FALLBACK;
1591 
1592 	trace_xfs_filemap_pmd_fault(ip);
1593 
1594 	if (flags & FAULT_FLAG_WRITE) {
1595 		sb_start_pagefault(inode->i_sb);
1596 		file_update_time(vma->vm_file);
1597 	}
1598 
1599 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1600 	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault,
1601 			      NULL);
1602 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1603 
1604 	if (flags & FAULT_FLAG_WRITE)
1605 		sb_end_pagefault(inode->i_sb);
1606 
1607 	return ret;
1608 }
1609 
1610 /*
1611  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1612  * updates on write faults. In reality, it's need to serialise against
1613  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1614  * to ensure we serialise the fault barrier in place.
1615  */
1616 static int
1617 xfs_filemap_pfn_mkwrite(
1618 	struct vm_area_struct	*vma,
1619 	struct vm_fault		*vmf)
1620 {
1621 
1622 	struct inode		*inode = file_inode(vma->vm_file);
1623 	struct xfs_inode	*ip = XFS_I(inode);
1624 	int			ret = VM_FAULT_NOPAGE;
1625 	loff_t			size;
1626 
1627 	trace_xfs_filemap_pfn_mkwrite(ip);
1628 
1629 	sb_start_pagefault(inode->i_sb);
1630 	file_update_time(vma->vm_file);
1631 
1632 	/* check if the faulting page hasn't raced with truncate */
1633 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1634 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1635 	if (vmf->pgoff >= size)
1636 		ret = VM_FAULT_SIGBUS;
1637 	else if (IS_DAX(inode))
1638 		ret = dax_pfn_mkwrite(vma, vmf);
1639 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1640 	sb_end_pagefault(inode->i_sb);
1641 	return ret;
1642 
1643 }
1644 
1645 static const struct vm_operations_struct xfs_file_vm_ops = {
1646 	.fault		= xfs_filemap_fault,
1647 	.pmd_fault	= xfs_filemap_pmd_fault,
1648 	.map_pages	= filemap_map_pages,
1649 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1650 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1651 };
1652 
1653 STATIC int
1654 xfs_file_mmap(
1655 	struct file	*filp,
1656 	struct vm_area_struct *vma)
1657 {
1658 	file_accessed(filp);
1659 	vma->vm_ops = &xfs_file_vm_ops;
1660 	if (IS_DAX(file_inode(filp)))
1661 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1662 	return 0;
1663 }
1664 
1665 const struct file_operations xfs_file_operations = {
1666 	.llseek		= xfs_file_llseek,
1667 	.read_iter	= xfs_file_read_iter,
1668 	.write_iter	= xfs_file_write_iter,
1669 	.splice_read	= xfs_file_splice_read,
1670 	.splice_write	= iter_file_splice_write,
1671 	.unlocked_ioctl	= xfs_file_ioctl,
1672 #ifdef CONFIG_COMPAT
1673 	.compat_ioctl	= xfs_file_compat_ioctl,
1674 #endif
1675 	.mmap		= xfs_file_mmap,
1676 	.open		= xfs_file_open,
1677 	.release	= xfs_file_release,
1678 	.fsync		= xfs_file_fsync,
1679 	.fallocate	= xfs_file_fallocate,
1680 };
1681 
1682 const struct file_operations xfs_dir_file_operations = {
1683 	.open		= xfs_dir_open,
1684 	.read		= generic_read_dir,
1685 	.iterate	= xfs_file_readdir,
1686 	.llseek		= generic_file_llseek,
1687 	.unlocked_ioctl	= xfs_file_ioctl,
1688 #ifdef CONFIG_COMPAT
1689 	.compat_ioctl	= xfs_file_compat_ioctl,
1690 #endif
1691 	.fsync		= xfs_dir_fsync,
1692 };
1693