xref: /openbmc/linux/fs/xfs/xfs_file.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 
32 static const struct vm_operations_struct xfs_file_vm_ops;
33 
34 int
35 xfs_update_prealloc_flags(
36 	struct xfs_inode	*ip,
37 	enum xfs_prealloc_flags	flags)
38 {
39 	struct xfs_trans	*tp;
40 	int			error;
41 
42 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
43 			0, 0, 0, &tp);
44 	if (error)
45 		return error;
46 
47 	xfs_ilock(ip, XFS_ILOCK_EXCL);
48 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
49 
50 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
51 		VFS_I(ip)->i_mode &= ~S_ISUID;
52 		if (VFS_I(ip)->i_mode & S_IXGRP)
53 			VFS_I(ip)->i_mode &= ~S_ISGID;
54 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
55 	}
56 
57 	if (flags & XFS_PREALLOC_SET)
58 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
59 	if (flags & XFS_PREALLOC_CLEAR)
60 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
61 
62 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
63 	if (flags & XFS_PREALLOC_SYNC)
64 		xfs_trans_set_sync(tp);
65 	return xfs_trans_commit(tp);
66 }
67 
68 /*
69  * Fsync operations on directories are much simpler than on regular files,
70  * as there is no file data to flush, and thus also no need for explicit
71  * cache flush operations, and there are no non-transaction metadata updates
72  * on directories either.
73  */
74 STATIC int
75 xfs_dir_fsync(
76 	struct file		*file,
77 	loff_t			start,
78 	loff_t			end,
79 	int			datasync)
80 {
81 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
82 	struct xfs_mount	*mp = ip->i_mount;
83 	xfs_lsn_t		lsn = 0;
84 
85 	trace_xfs_dir_fsync(ip);
86 
87 	xfs_ilock(ip, XFS_ILOCK_SHARED);
88 	if (xfs_ipincount(ip))
89 		lsn = ip->i_itemp->ili_last_lsn;
90 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
91 
92 	if (!lsn)
93 		return 0;
94 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
95 }
96 
97 STATIC int
98 xfs_file_fsync(
99 	struct file		*file,
100 	loff_t			start,
101 	loff_t			end,
102 	int			datasync)
103 {
104 	struct inode		*inode = file->f_mapping->host;
105 	struct xfs_inode	*ip = XFS_I(inode);
106 	struct xfs_mount	*mp = ip->i_mount;
107 	int			error = 0;
108 	int			log_flushed = 0;
109 	xfs_lsn_t		lsn = 0;
110 
111 	trace_xfs_file_fsync(ip);
112 
113 	error = file_write_and_wait_range(file, start, end);
114 	if (error)
115 		return error;
116 
117 	if (XFS_FORCED_SHUTDOWN(mp))
118 		return -EIO;
119 
120 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
121 
122 	/*
123 	 * If we have an RT and/or log subvolume we need to make sure to flush
124 	 * the write cache the device used for file data first.  This is to
125 	 * ensure newly written file data make it to disk before logging the new
126 	 * inode size in case of an extending write.
127 	 */
128 	if (XFS_IS_REALTIME_INODE(ip))
129 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
130 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
131 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
132 
133 	/*
134 	 * All metadata updates are logged, which means that we just have to
135 	 * flush the log up to the latest LSN that touched the inode. If we have
136 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
137 	 * log force before we clear the ili_fsync_fields field. This ensures
138 	 * that we don't get a racing sync operation that does not wait for the
139 	 * metadata to hit the journal before returning. If we race with
140 	 * clearing the ili_fsync_fields, then all that will happen is the log
141 	 * force will do nothing as the lsn will already be on disk. We can't
142 	 * race with setting ili_fsync_fields because that is done under
143 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
144 	 * until after the ili_fsync_fields is cleared.
145 	 */
146 	xfs_ilock(ip, XFS_ILOCK_SHARED);
147 	if (xfs_ipincount(ip)) {
148 		if (!datasync ||
149 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
150 			lsn = ip->i_itemp->ili_last_lsn;
151 	}
152 
153 	if (lsn) {
154 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
155 		ip->i_itemp->ili_fsync_fields = 0;
156 	}
157 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
158 
159 	/*
160 	 * If we only have a single device, and the log force about was
161 	 * a no-op we might have to flush the data device cache here.
162 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
163 	 * an already allocated file and thus do not have any metadata to
164 	 * commit.
165 	 */
166 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
167 	    mp->m_logdev_targp == mp->m_ddev_targp)
168 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
169 
170 	return error;
171 }
172 
173 STATIC ssize_t
174 xfs_file_dio_aio_read(
175 	struct kiocb		*iocb,
176 	struct iov_iter		*to)
177 {
178 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
179 	size_t			count = iov_iter_count(to);
180 	ssize_t			ret;
181 
182 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
183 
184 	if (!count)
185 		return 0; /* skip atime */
186 
187 	file_accessed(iocb->ki_filp);
188 
189 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
190 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
191 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
192 
193 	return ret;
194 }
195 
196 static noinline ssize_t
197 xfs_file_dax_read(
198 	struct kiocb		*iocb,
199 	struct iov_iter		*to)
200 {
201 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
202 	size_t			count = iov_iter_count(to);
203 	ssize_t			ret = 0;
204 
205 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
206 
207 	if (!count)
208 		return 0; /* skip atime */
209 
210 	if (iocb->ki_flags & IOCB_NOWAIT) {
211 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
212 			return -EAGAIN;
213 	} else {
214 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
215 	}
216 
217 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
218 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
219 
220 	file_accessed(iocb->ki_filp);
221 	return ret;
222 }
223 
224 STATIC ssize_t
225 xfs_file_buffered_aio_read(
226 	struct kiocb		*iocb,
227 	struct iov_iter		*to)
228 {
229 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
230 	ssize_t			ret;
231 
232 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
233 
234 	if (iocb->ki_flags & IOCB_NOWAIT) {
235 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
236 			return -EAGAIN;
237 	} else {
238 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
239 	}
240 	ret = generic_file_read_iter(iocb, to);
241 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
242 
243 	return ret;
244 }
245 
246 STATIC ssize_t
247 xfs_file_read_iter(
248 	struct kiocb		*iocb,
249 	struct iov_iter		*to)
250 {
251 	struct inode		*inode = file_inode(iocb->ki_filp);
252 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
253 	ssize_t			ret = 0;
254 
255 	XFS_STATS_INC(mp, xs_read_calls);
256 
257 	if (XFS_FORCED_SHUTDOWN(mp))
258 		return -EIO;
259 
260 	if (IS_DAX(inode))
261 		ret = xfs_file_dax_read(iocb, to);
262 	else if (iocb->ki_flags & IOCB_DIRECT)
263 		ret = xfs_file_dio_aio_read(iocb, to);
264 	else
265 		ret = xfs_file_buffered_aio_read(iocb, to);
266 
267 	if (ret > 0)
268 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
269 	return ret;
270 }
271 
272 /*
273  * Common pre-write limit and setup checks.
274  *
275  * Called with the iolocked held either shared and exclusive according to
276  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
277  * if called for a direct write beyond i_size.
278  */
279 STATIC ssize_t
280 xfs_file_aio_write_checks(
281 	struct kiocb		*iocb,
282 	struct iov_iter		*from,
283 	int			*iolock)
284 {
285 	struct file		*file = iocb->ki_filp;
286 	struct inode		*inode = file->f_mapping->host;
287 	struct xfs_inode	*ip = XFS_I(inode);
288 	ssize_t			error = 0;
289 	size_t			count = iov_iter_count(from);
290 	bool			drained_dio = false;
291 	loff_t			isize;
292 
293 restart:
294 	error = generic_write_checks(iocb, from);
295 	if (error <= 0)
296 		return error;
297 
298 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
299 	if (error)
300 		return error;
301 
302 	/*
303 	 * For changing security info in file_remove_privs() we need i_rwsem
304 	 * exclusively.
305 	 */
306 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
307 		xfs_iunlock(ip, *iolock);
308 		*iolock = XFS_IOLOCK_EXCL;
309 		xfs_ilock(ip, *iolock);
310 		goto restart;
311 	}
312 	/*
313 	 * If the offset is beyond the size of the file, we need to zero any
314 	 * blocks that fall between the existing EOF and the start of this
315 	 * write.  If zeroing is needed and we are currently holding the
316 	 * iolock shared, we need to update it to exclusive which implies
317 	 * having to redo all checks before.
318 	 *
319 	 * We need to serialise against EOF updates that occur in IO
320 	 * completions here. We want to make sure that nobody is changing the
321 	 * size while we do this check until we have placed an IO barrier (i.e.
322 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
323 	 * The spinlock effectively forms a memory barrier once we have the
324 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
325 	 * and hence be able to correctly determine if we need to run zeroing.
326 	 */
327 	spin_lock(&ip->i_flags_lock);
328 	isize = i_size_read(inode);
329 	if (iocb->ki_pos > isize) {
330 		spin_unlock(&ip->i_flags_lock);
331 		if (!drained_dio) {
332 			if (*iolock == XFS_IOLOCK_SHARED) {
333 				xfs_iunlock(ip, *iolock);
334 				*iolock = XFS_IOLOCK_EXCL;
335 				xfs_ilock(ip, *iolock);
336 				iov_iter_reexpand(from, count);
337 			}
338 			/*
339 			 * We now have an IO submission barrier in place, but
340 			 * AIO can do EOF updates during IO completion and hence
341 			 * we now need to wait for all of them to drain. Non-AIO
342 			 * DIO will have drained before we are given the
343 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
344 			 * no-op.
345 			 */
346 			inode_dio_wait(inode);
347 			drained_dio = true;
348 			goto restart;
349 		}
350 
351 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
352 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
353 				NULL, &xfs_iomap_ops);
354 		if (error)
355 			return error;
356 	} else
357 		spin_unlock(&ip->i_flags_lock);
358 
359 	/*
360 	 * Updating the timestamps will grab the ilock again from
361 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
362 	 * lock above.  Eventually we should look into a way to avoid
363 	 * the pointless lock roundtrip.
364 	 */
365 	return file_modified(file);
366 }
367 
368 static int
369 xfs_dio_write_end_io(
370 	struct kiocb		*iocb,
371 	ssize_t			size,
372 	unsigned		flags)
373 {
374 	struct inode		*inode = file_inode(iocb->ki_filp);
375 	struct xfs_inode	*ip = XFS_I(inode);
376 	loff_t			offset = iocb->ki_pos;
377 	unsigned int		nofs_flag;
378 	int			error = 0;
379 
380 	trace_xfs_end_io_direct_write(ip, offset, size);
381 
382 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
383 		return -EIO;
384 
385 	if (size <= 0)
386 		return size;
387 
388 	/*
389 	 * Capture amount written on completion as we can't reliably account
390 	 * for it on submission.
391 	 */
392 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
393 
394 	/*
395 	 * We can allocate memory here while doing writeback on behalf of
396 	 * memory reclaim.  To avoid memory allocation deadlocks set the
397 	 * task-wide nofs context for the following operations.
398 	 */
399 	nofs_flag = memalloc_nofs_save();
400 
401 	if (flags & IOMAP_DIO_COW) {
402 		error = xfs_reflink_end_cow(ip, offset, size);
403 		if (error)
404 			goto out;
405 	}
406 
407 	/*
408 	 * Unwritten conversion updates the in-core isize after extent
409 	 * conversion but before updating the on-disk size. Updating isize any
410 	 * earlier allows a racing dio read to find unwritten extents before
411 	 * they are converted.
412 	 */
413 	if (flags & IOMAP_DIO_UNWRITTEN) {
414 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
415 		goto out;
416 	}
417 
418 	/*
419 	 * We need to update the in-core inode size here so that we don't end up
420 	 * with the on-disk inode size being outside the in-core inode size. We
421 	 * have no other method of updating EOF for AIO, so always do it here
422 	 * if necessary.
423 	 *
424 	 * We need to lock the test/set EOF update as we can be racing with
425 	 * other IO completions here to update the EOF. Failing to serialise
426 	 * here can result in EOF moving backwards and Bad Things Happen when
427 	 * that occurs.
428 	 */
429 	spin_lock(&ip->i_flags_lock);
430 	if (offset + size > i_size_read(inode)) {
431 		i_size_write(inode, offset + size);
432 		spin_unlock(&ip->i_flags_lock);
433 		error = xfs_setfilesize(ip, offset, size);
434 	} else {
435 		spin_unlock(&ip->i_flags_lock);
436 	}
437 
438 out:
439 	memalloc_nofs_restore(nofs_flag);
440 	return error;
441 }
442 
443 /*
444  * xfs_file_dio_aio_write - handle direct IO writes
445  *
446  * Lock the inode appropriately to prepare for and issue a direct IO write.
447  * By separating it from the buffered write path we remove all the tricky to
448  * follow locking changes and looping.
449  *
450  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
451  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
452  * pages are flushed out.
453  *
454  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
455  * allowing them to be done in parallel with reads and other direct IO writes.
456  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
457  * needs to do sub-block zeroing and that requires serialisation against other
458  * direct IOs to the same block. In this case we need to serialise the
459  * submission of the unaligned IOs so that we don't get racing block zeroing in
460  * the dio layer.  To avoid the problem with aio, we also need to wait for
461  * outstanding IOs to complete so that unwritten extent conversion is completed
462  * before we try to map the overlapping block. This is currently implemented by
463  * hitting it with a big hammer (i.e. inode_dio_wait()).
464  *
465  * Returns with locks held indicated by @iolock and errors indicated by
466  * negative return values.
467  */
468 STATIC ssize_t
469 xfs_file_dio_aio_write(
470 	struct kiocb		*iocb,
471 	struct iov_iter		*from)
472 {
473 	struct file		*file = iocb->ki_filp;
474 	struct address_space	*mapping = file->f_mapping;
475 	struct inode		*inode = mapping->host;
476 	struct xfs_inode	*ip = XFS_I(inode);
477 	struct xfs_mount	*mp = ip->i_mount;
478 	ssize_t			ret = 0;
479 	int			unaligned_io = 0;
480 	int			iolock;
481 	size_t			count = iov_iter_count(from);
482 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
483 					mp->m_rtdev_targp : mp->m_ddev_targp;
484 
485 	/* DIO must be aligned to device logical sector size */
486 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
487 		return -EINVAL;
488 
489 	/*
490 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
491 	 * the file system block size.  We don't need to consider the EOF
492 	 * extension case here because xfs_file_aio_write_checks() will relock
493 	 * the inode as necessary for EOF zeroing cases and fill out the new
494 	 * inode size as appropriate.
495 	 */
496 	if ((iocb->ki_pos & mp->m_blockmask) ||
497 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
498 		unaligned_io = 1;
499 
500 		/*
501 		 * We can't properly handle unaligned direct I/O to reflink
502 		 * files yet, as we can't unshare a partial block.
503 		 */
504 		if (xfs_is_cow_inode(ip)) {
505 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
506 			return -EREMCHG;
507 		}
508 		iolock = XFS_IOLOCK_EXCL;
509 	} else {
510 		iolock = XFS_IOLOCK_SHARED;
511 	}
512 
513 	if (iocb->ki_flags & IOCB_NOWAIT) {
514 		/* unaligned dio always waits, bail */
515 		if (unaligned_io)
516 			return -EAGAIN;
517 		if (!xfs_ilock_nowait(ip, iolock))
518 			return -EAGAIN;
519 	} else {
520 		xfs_ilock(ip, iolock);
521 	}
522 
523 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
524 	if (ret)
525 		goto out;
526 	count = iov_iter_count(from);
527 
528 	/*
529 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
530 	 * in-flight at the same time or we risk data corruption. Wait for all
531 	 * other IO to drain before we submit. If the IO is aligned, demote the
532 	 * iolock if we had to take the exclusive lock in
533 	 * xfs_file_aio_write_checks() for other reasons.
534 	 */
535 	if (unaligned_io) {
536 		inode_dio_wait(inode);
537 	} else if (iolock == XFS_IOLOCK_EXCL) {
538 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
539 		iolock = XFS_IOLOCK_SHARED;
540 	}
541 
542 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
543 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
544 
545 	/*
546 	 * If unaligned, this is the only IO in-flight. If it has not yet
547 	 * completed, wait on it before we release the iolock to prevent
548 	 * subsequent overlapping IO.
549 	 */
550 	if (ret == -EIOCBQUEUED && unaligned_io)
551 		inode_dio_wait(inode);
552 out:
553 	xfs_iunlock(ip, iolock);
554 
555 	/*
556 	 * No fallback to buffered IO on errors for XFS, direct IO will either
557 	 * complete fully or fail.
558 	 */
559 	ASSERT(ret < 0 || ret == count);
560 	return ret;
561 }
562 
563 static noinline ssize_t
564 xfs_file_dax_write(
565 	struct kiocb		*iocb,
566 	struct iov_iter		*from)
567 {
568 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
569 	struct xfs_inode	*ip = XFS_I(inode);
570 	int			iolock = XFS_IOLOCK_EXCL;
571 	ssize_t			ret, error = 0;
572 	size_t			count;
573 	loff_t			pos;
574 
575 	if (iocb->ki_flags & IOCB_NOWAIT) {
576 		if (!xfs_ilock_nowait(ip, iolock))
577 			return -EAGAIN;
578 	} else {
579 		xfs_ilock(ip, iolock);
580 	}
581 
582 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
583 	if (ret)
584 		goto out;
585 
586 	pos = iocb->ki_pos;
587 	count = iov_iter_count(from);
588 
589 	trace_xfs_file_dax_write(ip, count, pos);
590 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
591 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
592 		i_size_write(inode, iocb->ki_pos);
593 		error = xfs_setfilesize(ip, pos, ret);
594 	}
595 out:
596 	xfs_iunlock(ip, iolock);
597 	if (error)
598 		return error;
599 
600 	if (ret > 0) {
601 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
602 
603 		/* Handle various SYNC-type writes */
604 		ret = generic_write_sync(iocb, ret);
605 	}
606 	return ret;
607 }
608 
609 STATIC ssize_t
610 xfs_file_buffered_aio_write(
611 	struct kiocb		*iocb,
612 	struct iov_iter		*from)
613 {
614 	struct file		*file = iocb->ki_filp;
615 	struct address_space	*mapping = file->f_mapping;
616 	struct inode		*inode = mapping->host;
617 	struct xfs_inode	*ip = XFS_I(inode);
618 	ssize_t			ret;
619 	int			enospc = 0;
620 	int			iolock;
621 
622 	if (iocb->ki_flags & IOCB_NOWAIT)
623 		return -EOPNOTSUPP;
624 
625 write_retry:
626 	iolock = XFS_IOLOCK_EXCL;
627 	xfs_ilock(ip, iolock);
628 
629 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
630 	if (ret)
631 		goto out;
632 
633 	/* We can write back this queue in page reclaim */
634 	current->backing_dev_info = inode_to_bdi(inode);
635 
636 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
637 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
638 	if (likely(ret >= 0))
639 		iocb->ki_pos += ret;
640 
641 	/*
642 	 * If we hit a space limit, try to free up some lingering preallocated
643 	 * space before returning an error. In the case of ENOSPC, first try to
644 	 * write back all dirty inodes to free up some of the excess reserved
645 	 * metadata space. This reduces the chances that the eofblocks scan
646 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
647 	 * also behaves as a filter to prevent too many eofblocks scans from
648 	 * running at the same time.
649 	 */
650 	if (ret == -EDQUOT && !enospc) {
651 		xfs_iunlock(ip, iolock);
652 		enospc = xfs_inode_free_quota_eofblocks(ip);
653 		if (enospc)
654 			goto write_retry;
655 		enospc = xfs_inode_free_quota_cowblocks(ip);
656 		if (enospc)
657 			goto write_retry;
658 		iolock = 0;
659 	} else if (ret == -ENOSPC && !enospc) {
660 		struct xfs_eofblocks eofb = {0};
661 
662 		enospc = 1;
663 		xfs_flush_inodes(ip->i_mount);
664 
665 		xfs_iunlock(ip, iolock);
666 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
667 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
668 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
669 		goto write_retry;
670 	}
671 
672 	current->backing_dev_info = NULL;
673 out:
674 	if (iolock)
675 		xfs_iunlock(ip, iolock);
676 
677 	if (ret > 0) {
678 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
679 		/* Handle various SYNC-type writes */
680 		ret = generic_write_sync(iocb, ret);
681 	}
682 	return ret;
683 }
684 
685 STATIC ssize_t
686 xfs_file_write_iter(
687 	struct kiocb		*iocb,
688 	struct iov_iter		*from)
689 {
690 	struct file		*file = iocb->ki_filp;
691 	struct address_space	*mapping = file->f_mapping;
692 	struct inode		*inode = mapping->host;
693 	struct xfs_inode	*ip = XFS_I(inode);
694 	ssize_t			ret;
695 	size_t			ocount = iov_iter_count(from);
696 
697 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
698 
699 	if (ocount == 0)
700 		return 0;
701 
702 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
703 		return -EIO;
704 
705 	if (IS_DAX(inode))
706 		return xfs_file_dax_write(iocb, from);
707 
708 	if (iocb->ki_flags & IOCB_DIRECT) {
709 		/*
710 		 * Allow a directio write to fall back to a buffered
711 		 * write *only* in the case that we're doing a reflink
712 		 * CoW.  In all other directio scenarios we do not
713 		 * allow an operation to fall back to buffered mode.
714 		 */
715 		ret = xfs_file_dio_aio_write(iocb, from);
716 		if (ret != -EREMCHG)
717 			return ret;
718 	}
719 
720 	return xfs_file_buffered_aio_write(iocb, from);
721 }
722 
723 static void
724 xfs_wait_dax_page(
725 	struct inode		*inode)
726 {
727 	struct xfs_inode        *ip = XFS_I(inode);
728 
729 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
730 	schedule();
731 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
732 }
733 
734 static int
735 xfs_break_dax_layouts(
736 	struct inode		*inode,
737 	bool			*retry)
738 {
739 	struct page		*page;
740 
741 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
742 
743 	page = dax_layout_busy_page(inode->i_mapping);
744 	if (!page)
745 		return 0;
746 
747 	*retry = true;
748 	return ___wait_var_event(&page->_refcount,
749 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
750 			0, 0, xfs_wait_dax_page(inode));
751 }
752 
753 int
754 xfs_break_layouts(
755 	struct inode		*inode,
756 	uint			*iolock,
757 	enum layout_break_reason reason)
758 {
759 	bool			retry;
760 	int			error;
761 
762 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
763 
764 	do {
765 		retry = false;
766 		switch (reason) {
767 		case BREAK_UNMAP:
768 			error = xfs_break_dax_layouts(inode, &retry);
769 			if (error || retry)
770 				break;
771 			/* fall through */
772 		case BREAK_WRITE:
773 			error = xfs_break_leased_layouts(inode, iolock, &retry);
774 			break;
775 		default:
776 			WARN_ON_ONCE(1);
777 			error = -EINVAL;
778 		}
779 	} while (error == 0 && retry);
780 
781 	return error;
782 }
783 
784 #define	XFS_FALLOC_FL_SUPPORTED						\
785 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
786 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
787 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
788 
789 STATIC long
790 xfs_file_fallocate(
791 	struct file		*file,
792 	int			mode,
793 	loff_t			offset,
794 	loff_t			len)
795 {
796 	struct inode		*inode = file_inode(file);
797 	struct xfs_inode	*ip = XFS_I(inode);
798 	long			error;
799 	enum xfs_prealloc_flags	flags = 0;
800 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
801 	loff_t			new_size = 0;
802 	bool			do_file_insert = false;
803 
804 	if (!S_ISREG(inode->i_mode))
805 		return -EINVAL;
806 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
807 		return -EOPNOTSUPP;
808 
809 	xfs_ilock(ip, iolock);
810 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
811 	if (error)
812 		goto out_unlock;
813 
814 	if (mode & FALLOC_FL_PUNCH_HOLE) {
815 		error = xfs_free_file_space(ip, offset, len);
816 		if (error)
817 			goto out_unlock;
818 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
819 		unsigned int blksize_mask = i_blocksize(inode) - 1;
820 
821 		if (offset & blksize_mask || len & blksize_mask) {
822 			error = -EINVAL;
823 			goto out_unlock;
824 		}
825 
826 		/*
827 		 * There is no need to overlap collapse range with EOF,
828 		 * in which case it is effectively a truncate operation
829 		 */
830 		if (offset + len >= i_size_read(inode)) {
831 			error = -EINVAL;
832 			goto out_unlock;
833 		}
834 
835 		new_size = i_size_read(inode) - len;
836 
837 		error = xfs_collapse_file_space(ip, offset, len);
838 		if (error)
839 			goto out_unlock;
840 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
841 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
842 		loff_t		isize = i_size_read(inode);
843 
844 		if (offset & blksize_mask || len & blksize_mask) {
845 			error = -EINVAL;
846 			goto out_unlock;
847 		}
848 
849 		/*
850 		 * New inode size must not exceed ->s_maxbytes, accounting for
851 		 * possible signed overflow.
852 		 */
853 		if (inode->i_sb->s_maxbytes - isize < len) {
854 			error = -EFBIG;
855 			goto out_unlock;
856 		}
857 		new_size = isize + len;
858 
859 		/* Offset should be less than i_size */
860 		if (offset >= isize) {
861 			error = -EINVAL;
862 			goto out_unlock;
863 		}
864 		do_file_insert = true;
865 	} else {
866 		flags |= XFS_PREALLOC_SET;
867 
868 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
869 		    offset + len > i_size_read(inode)) {
870 			new_size = offset + len;
871 			error = inode_newsize_ok(inode, new_size);
872 			if (error)
873 				goto out_unlock;
874 		}
875 
876 		if (mode & FALLOC_FL_ZERO_RANGE) {
877 			error = xfs_zero_file_space(ip, offset, len);
878 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
879 			error = xfs_reflink_unshare(ip, offset, len);
880 			if (error)
881 				goto out_unlock;
882 
883 			if (!xfs_is_always_cow_inode(ip)) {
884 				error = xfs_alloc_file_space(ip, offset, len,
885 						XFS_BMAPI_PREALLOC);
886 			}
887 		} else {
888 			/*
889 			 * If always_cow mode we can't use preallocations and
890 			 * thus should not create them.
891 			 */
892 			if (xfs_is_always_cow_inode(ip)) {
893 				error = -EOPNOTSUPP;
894 				goto out_unlock;
895 			}
896 
897 			error = xfs_alloc_file_space(ip, offset, len,
898 						     XFS_BMAPI_PREALLOC);
899 		}
900 		if (error)
901 			goto out_unlock;
902 	}
903 
904 	if (file->f_flags & O_DSYNC)
905 		flags |= XFS_PREALLOC_SYNC;
906 
907 	error = xfs_update_prealloc_flags(ip, flags);
908 	if (error)
909 		goto out_unlock;
910 
911 	/* Change file size if needed */
912 	if (new_size) {
913 		struct iattr iattr;
914 
915 		iattr.ia_valid = ATTR_SIZE;
916 		iattr.ia_size = new_size;
917 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
918 		if (error)
919 			goto out_unlock;
920 	}
921 
922 	/*
923 	 * Perform hole insertion now that the file size has been
924 	 * updated so that if we crash during the operation we don't
925 	 * leave shifted extents past EOF and hence losing access to
926 	 * the data that is contained within them.
927 	 */
928 	if (do_file_insert)
929 		error = xfs_insert_file_space(ip, offset, len);
930 
931 out_unlock:
932 	xfs_iunlock(ip, iolock);
933 	return error;
934 }
935 
936 
937 STATIC loff_t
938 xfs_file_remap_range(
939 	struct file		*file_in,
940 	loff_t			pos_in,
941 	struct file		*file_out,
942 	loff_t			pos_out,
943 	loff_t			len,
944 	unsigned int		remap_flags)
945 {
946 	struct inode		*inode_in = file_inode(file_in);
947 	struct xfs_inode	*src = XFS_I(inode_in);
948 	struct inode		*inode_out = file_inode(file_out);
949 	struct xfs_inode	*dest = XFS_I(inode_out);
950 	struct xfs_mount	*mp = src->i_mount;
951 	loff_t			remapped = 0;
952 	xfs_extlen_t		cowextsize;
953 	int			ret;
954 
955 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
956 		return -EINVAL;
957 
958 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
959 		return -EOPNOTSUPP;
960 
961 	if (XFS_FORCED_SHUTDOWN(mp))
962 		return -EIO;
963 
964 	/* Prepare and then clone file data. */
965 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
966 			&len, remap_flags);
967 	if (ret < 0 || len == 0)
968 		return ret;
969 
970 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
971 
972 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
973 			&remapped);
974 	if (ret)
975 		goto out_unlock;
976 
977 	/*
978 	 * Carry the cowextsize hint from src to dest if we're sharing the
979 	 * entire source file to the entire destination file, the source file
980 	 * has a cowextsize hint, and the destination file does not.
981 	 */
982 	cowextsize = 0;
983 	if (pos_in == 0 && len == i_size_read(inode_in) &&
984 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
985 	    pos_out == 0 && len >= i_size_read(inode_out) &&
986 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
987 		cowextsize = src->i_d.di_cowextsize;
988 
989 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
990 			remap_flags);
991 
992 out_unlock:
993 	xfs_reflink_remap_unlock(file_in, file_out);
994 	if (ret)
995 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
996 	return remapped > 0 ? remapped : ret;
997 }
998 
999 STATIC int
1000 xfs_file_open(
1001 	struct inode	*inode,
1002 	struct file	*file)
1003 {
1004 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1005 		return -EFBIG;
1006 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1007 		return -EIO;
1008 	file->f_mode |= FMODE_NOWAIT;
1009 	return 0;
1010 }
1011 
1012 STATIC int
1013 xfs_dir_open(
1014 	struct inode	*inode,
1015 	struct file	*file)
1016 {
1017 	struct xfs_inode *ip = XFS_I(inode);
1018 	int		mode;
1019 	int		error;
1020 
1021 	error = xfs_file_open(inode, file);
1022 	if (error)
1023 		return error;
1024 
1025 	/*
1026 	 * If there are any blocks, read-ahead block 0 as we're almost
1027 	 * certain to have the next operation be a read there.
1028 	 */
1029 	mode = xfs_ilock_data_map_shared(ip);
1030 	if (ip->i_d.di_nextents > 0)
1031 		error = xfs_dir3_data_readahead(ip, 0, -1);
1032 	xfs_iunlock(ip, mode);
1033 	return error;
1034 }
1035 
1036 STATIC int
1037 xfs_file_release(
1038 	struct inode	*inode,
1039 	struct file	*filp)
1040 {
1041 	return xfs_release(XFS_I(inode));
1042 }
1043 
1044 STATIC int
1045 xfs_file_readdir(
1046 	struct file	*file,
1047 	struct dir_context *ctx)
1048 {
1049 	struct inode	*inode = file_inode(file);
1050 	xfs_inode_t	*ip = XFS_I(inode);
1051 	size_t		bufsize;
1052 
1053 	/*
1054 	 * The Linux API doesn't pass down the total size of the buffer
1055 	 * we read into down to the filesystem.  With the filldir concept
1056 	 * it's not needed for correct information, but the XFS dir2 leaf
1057 	 * code wants an estimate of the buffer size to calculate it's
1058 	 * readahead window and size the buffers used for mapping to
1059 	 * physical blocks.
1060 	 *
1061 	 * Try to give it an estimate that's good enough, maybe at some
1062 	 * point we can change the ->readdir prototype to include the
1063 	 * buffer size.  For now we use the current glibc buffer size.
1064 	 */
1065 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1066 
1067 	return xfs_readdir(NULL, ip, ctx, bufsize);
1068 }
1069 
1070 STATIC loff_t
1071 xfs_file_llseek(
1072 	struct file	*file,
1073 	loff_t		offset,
1074 	int		whence)
1075 {
1076 	struct inode		*inode = file->f_mapping->host;
1077 
1078 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1079 		return -EIO;
1080 
1081 	switch (whence) {
1082 	default:
1083 		return generic_file_llseek(file, offset, whence);
1084 	case SEEK_HOLE:
1085 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1086 		break;
1087 	case SEEK_DATA:
1088 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1089 		break;
1090 	}
1091 
1092 	if (offset < 0)
1093 		return offset;
1094 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1095 }
1096 
1097 /*
1098  * Locking for serialisation of IO during page faults. This results in a lock
1099  * ordering of:
1100  *
1101  * mmap_sem (MM)
1102  *   sb_start_pagefault(vfs, freeze)
1103  *     i_mmaplock (XFS - truncate serialisation)
1104  *       page_lock (MM)
1105  *         i_lock (XFS - extent map serialisation)
1106  */
1107 static vm_fault_t
1108 __xfs_filemap_fault(
1109 	struct vm_fault		*vmf,
1110 	enum page_entry_size	pe_size,
1111 	bool			write_fault)
1112 {
1113 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1114 	struct xfs_inode	*ip = XFS_I(inode);
1115 	vm_fault_t		ret;
1116 
1117 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1118 
1119 	if (write_fault) {
1120 		sb_start_pagefault(inode->i_sb);
1121 		file_update_time(vmf->vma->vm_file);
1122 	}
1123 
1124 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1125 	if (IS_DAX(inode)) {
1126 		pfn_t pfn;
1127 
1128 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1129 		if (ret & VM_FAULT_NEEDDSYNC)
1130 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1131 	} else {
1132 		if (write_fault)
1133 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1134 		else
1135 			ret = filemap_fault(vmf);
1136 	}
1137 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1138 
1139 	if (write_fault)
1140 		sb_end_pagefault(inode->i_sb);
1141 	return ret;
1142 }
1143 
1144 static vm_fault_t
1145 xfs_filemap_fault(
1146 	struct vm_fault		*vmf)
1147 {
1148 	/* DAX can shortcut the normal fault path on write faults! */
1149 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1150 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1151 			(vmf->flags & FAULT_FLAG_WRITE));
1152 }
1153 
1154 static vm_fault_t
1155 xfs_filemap_huge_fault(
1156 	struct vm_fault		*vmf,
1157 	enum page_entry_size	pe_size)
1158 {
1159 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1160 		return VM_FAULT_FALLBACK;
1161 
1162 	/* DAX can shortcut the normal fault path on write faults! */
1163 	return __xfs_filemap_fault(vmf, pe_size,
1164 			(vmf->flags & FAULT_FLAG_WRITE));
1165 }
1166 
1167 static vm_fault_t
1168 xfs_filemap_page_mkwrite(
1169 	struct vm_fault		*vmf)
1170 {
1171 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1172 }
1173 
1174 /*
1175  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1176  * on write faults. In reality, it needs to serialise against truncate and
1177  * prepare memory for writing so handle is as standard write fault.
1178  */
1179 static vm_fault_t
1180 xfs_filemap_pfn_mkwrite(
1181 	struct vm_fault		*vmf)
1182 {
1183 
1184 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1185 }
1186 
1187 static const struct vm_operations_struct xfs_file_vm_ops = {
1188 	.fault		= xfs_filemap_fault,
1189 	.huge_fault	= xfs_filemap_huge_fault,
1190 	.map_pages	= filemap_map_pages,
1191 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1192 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1193 };
1194 
1195 STATIC int
1196 xfs_file_mmap(
1197 	struct file	*filp,
1198 	struct vm_area_struct *vma)
1199 {
1200 	struct dax_device 	*dax_dev;
1201 
1202 	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1203 	/*
1204 	 * We don't support synchronous mappings for non-DAX files and
1205 	 * for DAX files if underneath dax_device is not synchronous.
1206 	 */
1207 	if (!daxdev_mapping_supported(vma, dax_dev))
1208 		return -EOPNOTSUPP;
1209 
1210 	file_accessed(filp);
1211 	vma->vm_ops = &xfs_file_vm_ops;
1212 	if (IS_DAX(file_inode(filp)))
1213 		vma->vm_flags |= VM_HUGEPAGE;
1214 	return 0;
1215 }
1216 
1217 const struct file_operations xfs_file_operations = {
1218 	.llseek		= xfs_file_llseek,
1219 	.read_iter	= xfs_file_read_iter,
1220 	.write_iter	= xfs_file_write_iter,
1221 	.splice_read	= generic_file_splice_read,
1222 	.splice_write	= iter_file_splice_write,
1223 	.iopoll		= iomap_dio_iopoll,
1224 	.unlocked_ioctl	= xfs_file_ioctl,
1225 #ifdef CONFIG_COMPAT
1226 	.compat_ioctl	= xfs_file_compat_ioctl,
1227 #endif
1228 	.mmap		= xfs_file_mmap,
1229 	.mmap_supported_flags = MAP_SYNC,
1230 	.open		= xfs_file_open,
1231 	.release	= xfs_file_release,
1232 	.fsync		= xfs_file_fsync,
1233 	.get_unmapped_area = thp_get_unmapped_area,
1234 	.fallocate	= xfs_file_fallocate,
1235 	.remap_file_range = xfs_file_remap_range,
1236 };
1237 
1238 const struct file_operations xfs_dir_file_operations = {
1239 	.open		= xfs_dir_open,
1240 	.read		= generic_read_dir,
1241 	.iterate_shared	= xfs_file_readdir,
1242 	.llseek		= generic_file_llseek,
1243 	.unlocked_ioctl	= xfs_file_ioctl,
1244 #ifdef CONFIG_COMPAT
1245 	.compat_ioctl	= xfs_file_compat_ioctl,
1246 #endif
1247 	.fsync		= xfs_dir_fsync,
1248 };
1249