1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_bit.h" 21 #include "xfs_log.h" 22 #include "xfs_inum.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_trans.h" 26 #include "xfs_mount.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_alloc.h" 29 #include "xfs_dinode.h" 30 #include "xfs_inode.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_error.h" 34 #include "xfs_vnodeops.h" 35 #include "xfs_da_btree.h" 36 #include "xfs_ioctl.h" 37 #include "xfs_trace.h" 38 39 #include <linux/dcache.h> 40 #include <linux/falloc.h> 41 42 static const struct vm_operations_struct xfs_file_vm_ops; 43 44 /* 45 * Locking primitives for read and write IO paths to ensure we consistently use 46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 47 */ 48 static inline void 49 xfs_rw_ilock( 50 struct xfs_inode *ip, 51 int type) 52 { 53 if (type & XFS_IOLOCK_EXCL) 54 mutex_lock(&VFS_I(ip)->i_mutex); 55 xfs_ilock(ip, type); 56 } 57 58 static inline void 59 xfs_rw_iunlock( 60 struct xfs_inode *ip, 61 int type) 62 { 63 xfs_iunlock(ip, type); 64 if (type & XFS_IOLOCK_EXCL) 65 mutex_unlock(&VFS_I(ip)->i_mutex); 66 } 67 68 static inline void 69 xfs_rw_ilock_demote( 70 struct xfs_inode *ip, 71 int type) 72 { 73 xfs_ilock_demote(ip, type); 74 if (type & XFS_IOLOCK_EXCL) 75 mutex_unlock(&VFS_I(ip)->i_mutex); 76 } 77 78 /* 79 * xfs_iozero 80 * 81 * xfs_iozero clears the specified range of buffer supplied, 82 * and marks all the affected blocks as valid and modified. If 83 * an affected block is not allocated, it will be allocated. If 84 * an affected block is not completely overwritten, and is not 85 * valid before the operation, it will be read from disk before 86 * being partially zeroed. 87 */ 88 STATIC int 89 xfs_iozero( 90 struct xfs_inode *ip, /* inode */ 91 loff_t pos, /* offset in file */ 92 size_t count) /* size of data to zero */ 93 { 94 struct page *page; 95 struct address_space *mapping; 96 int status; 97 98 mapping = VFS_I(ip)->i_mapping; 99 do { 100 unsigned offset, bytes; 101 void *fsdata; 102 103 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 104 bytes = PAGE_CACHE_SIZE - offset; 105 if (bytes > count) 106 bytes = count; 107 108 status = pagecache_write_begin(NULL, mapping, pos, bytes, 109 AOP_FLAG_UNINTERRUPTIBLE, 110 &page, &fsdata); 111 if (status) 112 break; 113 114 zero_user(page, offset, bytes); 115 116 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 117 page, fsdata); 118 WARN_ON(status <= 0); /* can't return less than zero! */ 119 pos += bytes; 120 count -= bytes; 121 status = 0; 122 } while (count); 123 124 return (-status); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 struct xfs_trans *tp; 138 int error = 0; 139 int log_flushed = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -XFS_ERROR(EIO); 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 xfs_ilock(ip, XFS_IOLOCK_SHARED); 153 xfs_ioend_wait(ip); 154 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 155 156 if (mp->m_flags & XFS_MOUNT_BARRIER) { 157 /* 158 * If we have an RT and/or log subvolume we need to make sure 159 * to flush the write cache the device used for file data 160 * first. This is to ensure newly written file data make 161 * it to disk before logging the new inode size in case of 162 * an extending write. 163 */ 164 if (XFS_IS_REALTIME_INODE(ip)) 165 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 166 else if (mp->m_logdev_targp != mp->m_ddev_targp) 167 xfs_blkdev_issue_flush(mp->m_ddev_targp); 168 } 169 170 /* 171 * We always need to make sure that the required inode state is safe on 172 * disk. The inode might be clean but we still might need to force the 173 * log because of committed transactions that haven't hit the disk yet. 174 * Likewise, there could be unflushed non-transactional changes to the 175 * inode core that have to go to disk and this requires us to issue 176 * a synchronous transaction to capture these changes correctly. 177 * 178 * This code relies on the assumption that if the i_update_core field 179 * of the inode is clear and the inode is unpinned then it is clean 180 * and no action is required. 181 */ 182 xfs_ilock(ip, XFS_ILOCK_SHARED); 183 184 /* 185 * First check if the VFS inode is marked dirty. All the dirtying 186 * of non-transactional updates no goes through mark_inode_dirty*, 187 * which allows us to distinguish beteeen pure timestamp updates 188 * and i_size updates which need to be caught for fdatasync. 189 * After that also theck for the dirty state in the XFS inode, which 190 * might gets cleared when the inode gets written out via the AIL 191 * or xfs_iflush_cluster. 192 */ 193 if (((inode->i_state & I_DIRTY_DATASYNC) || 194 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) && 195 ip->i_update_core) { 196 /* 197 * Kick off a transaction to log the inode core to get the 198 * updates. The sync transaction will also force the log. 199 */ 200 xfs_iunlock(ip, XFS_ILOCK_SHARED); 201 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 202 error = xfs_trans_reserve(tp, 0, 203 XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); 204 if (error) { 205 xfs_trans_cancel(tp, 0); 206 return -error; 207 } 208 xfs_ilock(ip, XFS_ILOCK_EXCL); 209 210 /* 211 * Note - it's possible that we might have pushed ourselves out 212 * of the way during trans_reserve which would flush the inode. 213 * But there's no guarantee that the inode buffer has actually 214 * gone out yet (it's delwri). Plus the buffer could be pinned 215 * anyway if it's part of an inode in another recent 216 * transaction. So we play it safe and fire off the 217 * transaction anyway. 218 */ 219 xfs_trans_ijoin(tp, ip); 220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 221 xfs_trans_set_sync(tp); 222 error = _xfs_trans_commit(tp, 0, &log_flushed); 223 224 xfs_iunlock(ip, XFS_ILOCK_EXCL); 225 } else { 226 /* 227 * Timestamps/size haven't changed since last inode flush or 228 * inode transaction commit. That means either nothing got 229 * written or a transaction committed which caught the updates. 230 * If the latter happened and the transaction hasn't hit the 231 * disk yet, the inode will be still be pinned. If it is, 232 * force the log. 233 */ 234 if (xfs_ipincount(ip)) { 235 error = _xfs_log_force_lsn(mp, 236 ip->i_itemp->ili_last_lsn, 237 XFS_LOG_SYNC, &log_flushed); 238 } 239 xfs_iunlock(ip, XFS_ILOCK_SHARED); 240 } 241 242 /* 243 * If we only have a single device, and the log force about was 244 * a no-op we might have to flush the data device cache here. 245 * This can only happen for fdatasync/O_DSYNC if we were overwriting 246 * an already allocated file and thus do not have any metadata to 247 * commit. 248 */ 249 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 250 mp->m_logdev_targp == mp->m_ddev_targp && 251 !XFS_IS_REALTIME_INODE(ip) && 252 !log_flushed) 253 xfs_blkdev_issue_flush(mp->m_ddev_targp); 254 255 return -error; 256 } 257 258 STATIC ssize_t 259 xfs_file_aio_read( 260 struct kiocb *iocb, 261 const struct iovec *iovp, 262 unsigned long nr_segs, 263 loff_t pos) 264 { 265 struct file *file = iocb->ki_filp; 266 struct inode *inode = file->f_mapping->host; 267 struct xfs_inode *ip = XFS_I(inode); 268 struct xfs_mount *mp = ip->i_mount; 269 size_t size = 0; 270 ssize_t ret = 0; 271 int ioflags = 0; 272 xfs_fsize_t n; 273 unsigned long seg; 274 275 XFS_STATS_INC(xs_read_calls); 276 277 BUG_ON(iocb->ki_pos != pos); 278 279 if (unlikely(file->f_flags & O_DIRECT)) 280 ioflags |= IO_ISDIRECT; 281 if (file->f_mode & FMODE_NOCMTIME) 282 ioflags |= IO_INVIS; 283 284 /* START copy & waste from filemap.c */ 285 for (seg = 0; seg < nr_segs; seg++) { 286 const struct iovec *iv = &iovp[seg]; 287 288 /* 289 * If any segment has a negative length, or the cumulative 290 * length ever wraps negative then return -EINVAL. 291 */ 292 size += iv->iov_len; 293 if (unlikely((ssize_t)(size|iv->iov_len) < 0)) 294 return XFS_ERROR(-EINVAL); 295 } 296 /* END copy & waste from filemap.c */ 297 298 if (unlikely(ioflags & IO_ISDIRECT)) { 299 xfs_buftarg_t *target = 300 XFS_IS_REALTIME_INODE(ip) ? 301 mp->m_rtdev_targp : mp->m_ddev_targp; 302 if ((iocb->ki_pos & target->bt_smask) || 303 (size & target->bt_smask)) { 304 if (iocb->ki_pos == ip->i_size) 305 return 0; 306 return -XFS_ERROR(EINVAL); 307 } 308 } 309 310 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; 311 if (n <= 0 || size == 0) 312 return 0; 313 314 if (n < size) 315 size = n; 316 317 if (XFS_FORCED_SHUTDOWN(mp)) 318 return -EIO; 319 320 if (unlikely(ioflags & IO_ISDIRECT)) { 321 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 322 323 if (inode->i_mapping->nrpages) { 324 ret = -xfs_flushinval_pages(ip, 325 (iocb->ki_pos & PAGE_CACHE_MASK), 326 -1, FI_REMAPF_LOCKED); 327 if (ret) { 328 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 329 return ret; 330 } 331 } 332 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 333 } else 334 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 335 336 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); 337 338 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); 339 if (ret > 0) 340 XFS_STATS_ADD(xs_read_bytes, ret); 341 342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 343 return ret; 344 } 345 346 STATIC ssize_t 347 xfs_file_splice_read( 348 struct file *infilp, 349 loff_t *ppos, 350 struct pipe_inode_info *pipe, 351 size_t count, 352 unsigned int flags) 353 { 354 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 355 int ioflags = 0; 356 ssize_t ret; 357 358 XFS_STATS_INC(xs_read_calls); 359 360 if (infilp->f_mode & FMODE_NOCMTIME) 361 ioflags |= IO_INVIS; 362 363 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 364 return -EIO; 365 366 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 367 368 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 369 370 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 371 if (ret > 0) 372 XFS_STATS_ADD(xs_read_bytes, ret); 373 374 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 375 return ret; 376 } 377 378 STATIC void 379 xfs_aio_write_isize_update( 380 struct inode *inode, 381 loff_t *ppos, 382 ssize_t bytes_written) 383 { 384 struct xfs_inode *ip = XFS_I(inode); 385 xfs_fsize_t isize = i_size_read(inode); 386 387 if (bytes_written > 0) 388 XFS_STATS_ADD(xs_write_bytes, bytes_written); 389 390 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT && 391 *ppos > isize)) 392 *ppos = isize; 393 394 if (*ppos > ip->i_size) { 395 xfs_rw_ilock(ip, XFS_ILOCK_EXCL); 396 if (*ppos > ip->i_size) 397 ip->i_size = *ppos; 398 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); 399 } 400 } 401 402 /* 403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then 404 * part of the I/O may have been written to disk before the error occurred. In 405 * this case the on-disk file size may have been adjusted beyond the in-memory 406 * file size and now needs to be truncated back. 407 */ 408 STATIC void 409 xfs_aio_write_newsize_update( 410 struct xfs_inode *ip) 411 { 412 if (ip->i_new_size) { 413 xfs_rw_ilock(ip, XFS_ILOCK_EXCL); 414 ip->i_new_size = 0; 415 if (ip->i_d.di_size > ip->i_size) 416 ip->i_d.di_size = ip->i_size; 417 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); 418 } 419 } 420 421 /* 422 * xfs_file_splice_write() does not use xfs_rw_ilock() because 423 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 424 * couuld cause lock inversions between the aio_write path and the splice path 425 * if someone is doing concurrent splice(2) based writes and write(2) based 426 * writes to the same inode. The only real way to fix this is to re-implement 427 * the generic code here with correct locking orders. 428 */ 429 STATIC ssize_t 430 xfs_file_splice_write( 431 struct pipe_inode_info *pipe, 432 struct file *outfilp, 433 loff_t *ppos, 434 size_t count, 435 unsigned int flags) 436 { 437 struct inode *inode = outfilp->f_mapping->host; 438 struct xfs_inode *ip = XFS_I(inode); 439 xfs_fsize_t new_size; 440 int ioflags = 0; 441 ssize_t ret; 442 443 XFS_STATS_INC(xs_write_calls); 444 445 if (outfilp->f_mode & FMODE_NOCMTIME) 446 ioflags |= IO_INVIS; 447 448 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 449 return -EIO; 450 451 xfs_ilock(ip, XFS_IOLOCK_EXCL); 452 453 new_size = *ppos + count; 454 455 xfs_ilock(ip, XFS_ILOCK_EXCL); 456 if (new_size > ip->i_size) 457 ip->i_new_size = new_size; 458 xfs_iunlock(ip, XFS_ILOCK_EXCL); 459 460 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 461 462 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 463 464 xfs_aio_write_isize_update(inode, ppos, ret); 465 xfs_aio_write_newsize_update(ip); 466 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 467 return ret; 468 } 469 470 /* 471 * This routine is called to handle zeroing any space in the last 472 * block of the file that is beyond the EOF. We do this since the 473 * size is being increased without writing anything to that block 474 * and we don't want anyone to read the garbage on the disk. 475 */ 476 STATIC int /* error (positive) */ 477 xfs_zero_last_block( 478 xfs_inode_t *ip, 479 xfs_fsize_t offset, 480 xfs_fsize_t isize) 481 { 482 xfs_fileoff_t last_fsb; 483 xfs_mount_t *mp = ip->i_mount; 484 int nimaps; 485 int zero_offset; 486 int zero_len; 487 int error = 0; 488 xfs_bmbt_irec_t imap; 489 490 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 491 492 zero_offset = XFS_B_FSB_OFFSET(mp, isize); 493 if (zero_offset == 0) { 494 /* 495 * There are no extra bytes in the last block on disk to 496 * zero, so return. 497 */ 498 return 0; 499 } 500 501 last_fsb = XFS_B_TO_FSBT(mp, isize); 502 nimaps = 1; 503 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap, 504 &nimaps, NULL); 505 if (error) { 506 return error; 507 } 508 ASSERT(nimaps > 0); 509 /* 510 * If the block underlying isize is just a hole, then there 511 * is nothing to zero. 512 */ 513 if (imap.br_startblock == HOLESTARTBLOCK) { 514 return 0; 515 } 516 /* 517 * Zero the part of the last block beyond the EOF, and write it 518 * out sync. We need to drop the ilock while we do this so we 519 * don't deadlock when the buffer cache calls back to us. 520 */ 521 xfs_iunlock(ip, XFS_ILOCK_EXCL); 522 523 zero_len = mp->m_sb.sb_blocksize - zero_offset; 524 if (isize + zero_len > offset) 525 zero_len = offset - isize; 526 error = xfs_iozero(ip, isize, zero_len); 527 528 xfs_ilock(ip, XFS_ILOCK_EXCL); 529 ASSERT(error >= 0); 530 return error; 531 } 532 533 /* 534 * Zero any on disk space between the current EOF and the new, 535 * larger EOF. This handles the normal case of zeroing the remainder 536 * of the last block in the file and the unusual case of zeroing blocks 537 * out beyond the size of the file. This second case only happens 538 * with fixed size extents and when the system crashes before the inode 539 * size was updated but after blocks were allocated. If fill is set, 540 * then any holes in the range are filled and zeroed. If not, the holes 541 * are left alone as holes. 542 */ 543 544 int /* error (positive) */ 545 xfs_zero_eof( 546 xfs_inode_t *ip, 547 xfs_off_t offset, /* starting I/O offset */ 548 xfs_fsize_t isize) /* current inode size */ 549 { 550 xfs_mount_t *mp = ip->i_mount; 551 xfs_fileoff_t start_zero_fsb; 552 xfs_fileoff_t end_zero_fsb; 553 xfs_fileoff_t zero_count_fsb; 554 xfs_fileoff_t last_fsb; 555 xfs_fileoff_t zero_off; 556 xfs_fsize_t zero_len; 557 int nimaps; 558 int error = 0; 559 xfs_bmbt_irec_t imap; 560 561 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 562 ASSERT(offset > isize); 563 564 /* 565 * First handle zeroing the block on which isize resides. 566 * We only zero a part of that block so it is handled specially. 567 */ 568 error = xfs_zero_last_block(ip, offset, isize); 569 if (error) { 570 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 571 return error; 572 } 573 574 /* 575 * Calculate the range between the new size and the old 576 * where blocks needing to be zeroed may exist. To get the 577 * block where the last byte in the file currently resides, 578 * we need to subtract one from the size and truncate back 579 * to a block boundary. We subtract 1 in case the size is 580 * exactly on a block boundary. 581 */ 582 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 583 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 584 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 585 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 586 if (last_fsb == end_zero_fsb) { 587 /* 588 * The size was only incremented on its last block. 589 * We took care of that above, so just return. 590 */ 591 return 0; 592 } 593 594 ASSERT(start_zero_fsb <= end_zero_fsb); 595 while (start_zero_fsb <= end_zero_fsb) { 596 nimaps = 1; 597 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 598 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb, 599 0, NULL, 0, &imap, &nimaps, NULL); 600 if (error) { 601 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 602 return error; 603 } 604 ASSERT(nimaps > 0); 605 606 if (imap.br_state == XFS_EXT_UNWRITTEN || 607 imap.br_startblock == HOLESTARTBLOCK) { 608 /* 609 * This loop handles initializing pages that were 610 * partially initialized by the code below this 611 * loop. It basically zeroes the part of the page 612 * that sits on a hole and sets the page as P_HOLE 613 * and calls remapf if it is a mapped file. 614 */ 615 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 616 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 617 continue; 618 } 619 620 /* 621 * There are blocks we need to zero. 622 * Drop the inode lock while we're doing the I/O. 623 * We'll still have the iolock to protect us. 624 */ 625 xfs_iunlock(ip, XFS_ILOCK_EXCL); 626 627 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 628 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 629 630 if ((zero_off + zero_len) > offset) 631 zero_len = offset - zero_off; 632 633 error = xfs_iozero(ip, zero_off, zero_len); 634 if (error) { 635 goto out_lock; 636 } 637 638 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 639 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 640 641 xfs_ilock(ip, XFS_ILOCK_EXCL); 642 } 643 644 return 0; 645 646 out_lock: 647 xfs_ilock(ip, XFS_ILOCK_EXCL); 648 ASSERT(error >= 0); 649 return error; 650 } 651 652 /* 653 * Common pre-write limit and setup checks. 654 * 655 * Returns with iolock held according to @iolock. 656 */ 657 STATIC ssize_t 658 xfs_file_aio_write_checks( 659 struct file *file, 660 loff_t *pos, 661 size_t *count, 662 int *iolock) 663 { 664 struct inode *inode = file->f_mapping->host; 665 struct xfs_inode *ip = XFS_I(inode); 666 xfs_fsize_t new_size; 667 int error = 0; 668 669 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 670 if (error) { 671 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock); 672 *iolock = 0; 673 return error; 674 } 675 676 new_size = *pos + *count; 677 if (new_size > ip->i_size) 678 ip->i_new_size = new_size; 679 680 if (likely(!(file->f_mode & FMODE_NOCMTIME))) 681 file_update_time(file); 682 683 /* 684 * If the offset is beyond the size of the file, we need to zero any 685 * blocks that fall between the existing EOF and the start of this 686 * write. 687 */ 688 if (*pos > ip->i_size) 689 error = -xfs_zero_eof(ip, *pos, ip->i_size); 690 691 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); 692 if (error) 693 return error; 694 695 /* 696 * If we're writing the file then make sure to clear the setuid and 697 * setgid bits if the process is not being run by root. This keeps 698 * people from modifying setuid and setgid binaries. 699 */ 700 return file_remove_suid(file); 701 702 } 703 704 /* 705 * xfs_file_dio_aio_write - handle direct IO writes 706 * 707 * Lock the inode appropriately to prepare for and issue a direct IO write. 708 * By separating it from the buffered write path we remove all the tricky to 709 * follow locking changes and looping. 710 * 711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 713 * pages are flushed out. 714 * 715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 716 * allowing them to be done in parallel with reads and other direct IO writes. 717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 718 * needs to do sub-block zeroing and that requires serialisation against other 719 * direct IOs to the same block. In this case we need to serialise the 720 * submission of the unaligned IOs so that we don't get racing block zeroing in 721 * the dio layer. To avoid the problem with aio, we also need to wait for 722 * outstanding IOs to complete so that unwritten extent conversion is completed 723 * before we try to map the overlapping block. This is currently implemented by 724 * hitting it with a big hammer (i.e. xfs_ioend_wait()). 725 * 726 * Returns with locks held indicated by @iolock and errors indicated by 727 * negative return values. 728 */ 729 STATIC ssize_t 730 xfs_file_dio_aio_write( 731 struct kiocb *iocb, 732 const struct iovec *iovp, 733 unsigned long nr_segs, 734 loff_t pos, 735 size_t ocount, 736 int *iolock) 737 { 738 struct file *file = iocb->ki_filp; 739 struct address_space *mapping = file->f_mapping; 740 struct inode *inode = mapping->host; 741 struct xfs_inode *ip = XFS_I(inode); 742 struct xfs_mount *mp = ip->i_mount; 743 ssize_t ret = 0; 744 size_t count = ocount; 745 int unaligned_io = 0; 746 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 747 mp->m_rtdev_targp : mp->m_ddev_targp; 748 749 *iolock = 0; 750 if ((pos & target->bt_smask) || (count & target->bt_smask)) 751 return -XFS_ERROR(EINVAL); 752 753 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 754 unaligned_io = 1; 755 756 if (unaligned_io || mapping->nrpages || pos > ip->i_size) 757 *iolock = XFS_IOLOCK_EXCL; 758 else 759 *iolock = XFS_IOLOCK_SHARED; 760 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock); 761 762 ret = xfs_file_aio_write_checks(file, &pos, &count, iolock); 763 if (ret) 764 return ret; 765 766 if (mapping->nrpages) { 767 WARN_ON(*iolock != XFS_IOLOCK_EXCL); 768 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, 769 FI_REMAPF_LOCKED); 770 if (ret) 771 return ret; 772 } 773 774 /* 775 * If we are doing unaligned IO, wait for all other IO to drain, 776 * otherwise demote the lock if we had to flush cached pages 777 */ 778 if (unaligned_io) 779 xfs_ioend_wait(ip); 780 else if (*iolock == XFS_IOLOCK_EXCL) { 781 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 782 *iolock = XFS_IOLOCK_SHARED; 783 } 784 785 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 786 ret = generic_file_direct_write(iocb, iovp, 787 &nr_segs, pos, &iocb->ki_pos, count, ocount); 788 789 /* No fallback to buffered IO on errors for XFS. */ 790 ASSERT(ret < 0 || ret == count); 791 return ret; 792 } 793 794 STATIC ssize_t 795 xfs_file_buffered_aio_write( 796 struct kiocb *iocb, 797 const struct iovec *iovp, 798 unsigned long nr_segs, 799 loff_t pos, 800 size_t ocount, 801 int *iolock) 802 { 803 struct file *file = iocb->ki_filp; 804 struct address_space *mapping = file->f_mapping; 805 struct inode *inode = mapping->host; 806 struct xfs_inode *ip = XFS_I(inode); 807 ssize_t ret; 808 int enospc = 0; 809 size_t count = ocount; 810 811 *iolock = XFS_IOLOCK_EXCL; 812 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock); 813 814 ret = xfs_file_aio_write_checks(file, &pos, &count, iolock); 815 if (ret) 816 return ret; 817 818 /* We can write back this queue in page reclaim */ 819 current->backing_dev_info = mapping->backing_dev_info; 820 821 write_retry: 822 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 823 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 824 pos, &iocb->ki_pos, count, ret); 825 /* 826 * if we just got an ENOSPC, flush the inode now we aren't holding any 827 * page locks and retry *once* 828 */ 829 if (ret == -ENOSPC && !enospc) { 830 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); 831 if (ret) 832 return ret; 833 enospc = 1; 834 goto write_retry; 835 } 836 current->backing_dev_info = NULL; 837 return ret; 838 } 839 840 STATIC ssize_t 841 xfs_file_aio_write( 842 struct kiocb *iocb, 843 const struct iovec *iovp, 844 unsigned long nr_segs, 845 loff_t pos) 846 { 847 struct file *file = iocb->ki_filp; 848 struct address_space *mapping = file->f_mapping; 849 struct inode *inode = mapping->host; 850 struct xfs_inode *ip = XFS_I(inode); 851 ssize_t ret; 852 int iolock; 853 size_t ocount = 0; 854 855 XFS_STATS_INC(xs_write_calls); 856 857 BUG_ON(iocb->ki_pos != pos); 858 859 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 860 if (ret) 861 return ret; 862 863 if (ocount == 0) 864 return 0; 865 866 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE); 867 868 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 869 return -EIO; 870 871 if (unlikely(file->f_flags & O_DIRECT)) 872 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, 873 ocount, &iolock); 874 else 875 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 876 ocount, &iolock); 877 878 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret); 879 880 if (ret <= 0) 881 goto out_unlock; 882 883 /* Handle various SYNC-type writes */ 884 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) { 885 loff_t end = pos + ret - 1; 886 int error; 887 888 xfs_rw_iunlock(ip, iolock); 889 error = xfs_file_fsync(file, pos, end, 890 (file->f_flags & __O_SYNC) ? 0 : 1); 891 xfs_rw_ilock(ip, iolock); 892 if (error) 893 ret = error; 894 } 895 896 out_unlock: 897 xfs_aio_write_newsize_update(ip); 898 xfs_rw_iunlock(ip, iolock); 899 return ret; 900 } 901 902 STATIC long 903 xfs_file_fallocate( 904 struct file *file, 905 int mode, 906 loff_t offset, 907 loff_t len) 908 { 909 struct inode *inode = file->f_path.dentry->d_inode; 910 long error; 911 loff_t new_size = 0; 912 xfs_flock64_t bf; 913 xfs_inode_t *ip = XFS_I(inode); 914 int cmd = XFS_IOC_RESVSP; 915 int attr_flags = XFS_ATTR_NOLOCK; 916 917 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 918 return -EOPNOTSUPP; 919 920 bf.l_whence = 0; 921 bf.l_start = offset; 922 bf.l_len = len; 923 924 xfs_ilock(ip, XFS_IOLOCK_EXCL); 925 926 if (mode & FALLOC_FL_PUNCH_HOLE) 927 cmd = XFS_IOC_UNRESVSP; 928 929 /* check the new inode size is valid before allocating */ 930 if (!(mode & FALLOC_FL_KEEP_SIZE) && 931 offset + len > i_size_read(inode)) { 932 new_size = offset + len; 933 error = inode_newsize_ok(inode, new_size); 934 if (error) 935 goto out_unlock; 936 } 937 938 if (file->f_flags & O_DSYNC) 939 attr_flags |= XFS_ATTR_SYNC; 940 941 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 942 if (error) 943 goto out_unlock; 944 945 /* Change file size if needed */ 946 if (new_size) { 947 struct iattr iattr; 948 949 iattr.ia_valid = ATTR_SIZE; 950 iattr.ia_size = new_size; 951 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 952 } 953 954 out_unlock: 955 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 956 return error; 957 } 958 959 960 STATIC int 961 xfs_file_open( 962 struct inode *inode, 963 struct file *file) 964 { 965 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 966 return -EFBIG; 967 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 968 return -EIO; 969 return 0; 970 } 971 972 STATIC int 973 xfs_dir_open( 974 struct inode *inode, 975 struct file *file) 976 { 977 struct xfs_inode *ip = XFS_I(inode); 978 int mode; 979 int error; 980 981 error = xfs_file_open(inode, file); 982 if (error) 983 return error; 984 985 /* 986 * If there are any blocks, read-ahead block 0 as we're almost 987 * certain to have the next operation be a read there. 988 */ 989 mode = xfs_ilock_map_shared(ip); 990 if (ip->i_d.di_nextents > 0) 991 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); 992 xfs_iunlock(ip, mode); 993 return 0; 994 } 995 996 STATIC int 997 xfs_file_release( 998 struct inode *inode, 999 struct file *filp) 1000 { 1001 return -xfs_release(XFS_I(inode)); 1002 } 1003 1004 STATIC int 1005 xfs_file_readdir( 1006 struct file *filp, 1007 void *dirent, 1008 filldir_t filldir) 1009 { 1010 struct inode *inode = filp->f_path.dentry->d_inode; 1011 xfs_inode_t *ip = XFS_I(inode); 1012 int error; 1013 size_t bufsize; 1014 1015 /* 1016 * The Linux API doesn't pass down the total size of the buffer 1017 * we read into down to the filesystem. With the filldir concept 1018 * it's not needed for correct information, but the XFS dir2 leaf 1019 * code wants an estimate of the buffer size to calculate it's 1020 * readahead window and size the buffers used for mapping to 1021 * physical blocks. 1022 * 1023 * Try to give it an estimate that's good enough, maybe at some 1024 * point we can change the ->readdir prototype to include the 1025 * buffer size. For now we use the current glibc buffer size. 1026 */ 1027 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1028 1029 error = xfs_readdir(ip, dirent, bufsize, 1030 (xfs_off_t *)&filp->f_pos, filldir); 1031 if (error) 1032 return -error; 1033 return 0; 1034 } 1035 1036 STATIC int 1037 xfs_file_mmap( 1038 struct file *filp, 1039 struct vm_area_struct *vma) 1040 { 1041 vma->vm_ops = &xfs_file_vm_ops; 1042 vma->vm_flags |= VM_CAN_NONLINEAR; 1043 1044 file_accessed(filp); 1045 return 0; 1046 } 1047 1048 /* 1049 * mmap()d file has taken write protection fault and is being made 1050 * writable. We can set the page state up correctly for a writable 1051 * page, which means we can do correct delalloc accounting (ENOSPC 1052 * checking!) and unwritten extent mapping. 1053 */ 1054 STATIC int 1055 xfs_vm_page_mkwrite( 1056 struct vm_area_struct *vma, 1057 struct vm_fault *vmf) 1058 { 1059 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 1060 } 1061 1062 const struct file_operations xfs_file_operations = { 1063 .llseek = generic_file_llseek, 1064 .read = do_sync_read, 1065 .write = do_sync_write, 1066 .aio_read = xfs_file_aio_read, 1067 .aio_write = xfs_file_aio_write, 1068 .splice_read = xfs_file_splice_read, 1069 .splice_write = xfs_file_splice_write, 1070 .unlocked_ioctl = xfs_file_ioctl, 1071 #ifdef CONFIG_COMPAT 1072 .compat_ioctl = xfs_file_compat_ioctl, 1073 #endif 1074 .mmap = xfs_file_mmap, 1075 .open = xfs_file_open, 1076 .release = xfs_file_release, 1077 .fsync = xfs_file_fsync, 1078 .fallocate = xfs_file_fallocate, 1079 }; 1080 1081 const struct file_operations xfs_dir_file_operations = { 1082 .open = xfs_dir_open, 1083 .read = generic_read_dir, 1084 .readdir = xfs_file_readdir, 1085 .llseek = generic_file_llseek, 1086 .unlocked_ioctl = xfs_file_ioctl, 1087 #ifdef CONFIG_COMPAT 1088 .compat_ioctl = xfs_file_compat_ioctl, 1089 #endif 1090 .fsync = xfs_file_fsync, 1091 }; 1092 1093 static const struct vm_operations_struct xfs_file_vm_ops = { 1094 .fault = filemap_fault, 1095 .page_mkwrite = xfs_vm_page_mkwrite, 1096 }; 1097