xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 9c1f8594)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38 
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 
42 static const struct vm_operations_struct xfs_file_vm_ops;
43 
44 /*
45  * Locking primitives for read and write IO paths to ensure we consistently use
46  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
47  */
48 static inline void
49 xfs_rw_ilock(
50 	struct xfs_inode	*ip,
51 	int			type)
52 {
53 	if (type & XFS_IOLOCK_EXCL)
54 		mutex_lock(&VFS_I(ip)->i_mutex);
55 	xfs_ilock(ip, type);
56 }
57 
58 static inline void
59 xfs_rw_iunlock(
60 	struct xfs_inode	*ip,
61 	int			type)
62 {
63 	xfs_iunlock(ip, type);
64 	if (type & XFS_IOLOCK_EXCL)
65 		mutex_unlock(&VFS_I(ip)->i_mutex);
66 }
67 
68 static inline void
69 xfs_rw_ilock_demote(
70 	struct xfs_inode	*ip,
71 	int			type)
72 {
73 	xfs_ilock_demote(ip, type);
74 	if (type & XFS_IOLOCK_EXCL)
75 		mutex_unlock(&VFS_I(ip)->i_mutex);
76 }
77 
78 /*
79  *	xfs_iozero
80  *
81  *	xfs_iozero clears the specified range of buffer supplied,
82  *	and marks all the affected blocks as valid and modified.  If
83  *	an affected block is not allocated, it will be allocated.  If
84  *	an affected block is not completely overwritten, and is not
85  *	valid before the operation, it will be read from disk before
86  *	being partially zeroed.
87  */
88 STATIC int
89 xfs_iozero(
90 	struct xfs_inode	*ip,	/* inode			*/
91 	loff_t			pos,	/* offset in file		*/
92 	size_t			count)	/* size of data to zero		*/
93 {
94 	struct page		*page;
95 	struct address_space	*mapping;
96 	int			status;
97 
98 	mapping = VFS_I(ip)->i_mapping;
99 	do {
100 		unsigned offset, bytes;
101 		void *fsdata;
102 
103 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 		bytes = PAGE_CACHE_SIZE - offset;
105 		if (bytes > count)
106 			bytes = count;
107 
108 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 					AOP_FLAG_UNINTERRUPTIBLE,
110 					&page, &fsdata);
111 		if (status)
112 			break;
113 
114 		zero_user(page, offset, bytes);
115 
116 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 					page, fsdata);
118 		WARN_ON(status <= 0); /* can't return less than zero! */
119 		pos += bytes;
120 		count -= bytes;
121 		status = 0;
122 	} while (count);
123 
124 	return (-status);
125 }
126 
127 STATIC int
128 xfs_file_fsync(
129 	struct file		*file,
130 	loff_t			start,
131 	loff_t			end,
132 	int			datasync)
133 {
134 	struct inode		*inode = file->f_mapping->host;
135 	struct xfs_inode	*ip = XFS_I(inode);
136 	struct xfs_mount	*mp = ip->i_mount;
137 	struct xfs_trans	*tp;
138 	int			error = 0;
139 	int			log_flushed = 0;
140 
141 	trace_xfs_file_fsync(ip);
142 
143 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 	if (error)
145 		return error;
146 
147 	if (XFS_FORCED_SHUTDOWN(mp))
148 		return -XFS_ERROR(EIO);
149 
150 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
151 
152 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
153 	xfs_ioend_wait(ip);
154 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
155 
156 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
157 		/*
158 		 * If we have an RT and/or log subvolume we need to make sure
159 		 * to flush the write cache the device used for file data
160 		 * first.  This is to ensure newly written file data make
161 		 * it to disk before logging the new inode size in case of
162 		 * an extending write.
163 		 */
164 		if (XFS_IS_REALTIME_INODE(ip))
165 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
166 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
167 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
168 	}
169 
170 	/*
171 	 * We always need to make sure that the required inode state is safe on
172 	 * disk.  The inode might be clean but we still might need to force the
173 	 * log because of committed transactions that haven't hit the disk yet.
174 	 * Likewise, there could be unflushed non-transactional changes to the
175 	 * inode core that have to go to disk and this requires us to issue
176 	 * a synchronous transaction to capture these changes correctly.
177 	 *
178 	 * This code relies on the assumption that if the i_update_core field
179 	 * of the inode is clear and the inode is unpinned then it is clean
180 	 * and no action is required.
181 	 */
182 	xfs_ilock(ip, XFS_ILOCK_SHARED);
183 
184 	/*
185 	 * First check if the VFS inode is marked dirty.  All the dirtying
186 	 * of non-transactional updates no goes through mark_inode_dirty*,
187 	 * which allows us to distinguish beteeen pure timestamp updates
188 	 * and i_size updates which need to be caught for fdatasync.
189 	 * After that also theck for the dirty state in the XFS inode, which
190 	 * might gets cleared when the inode gets written out via the AIL
191 	 * or xfs_iflush_cluster.
192 	 */
193 	if (((inode->i_state & I_DIRTY_DATASYNC) ||
194 	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
195 	    ip->i_update_core) {
196 		/*
197 		 * Kick off a transaction to log the inode core to get the
198 		 * updates.  The sync transaction will also force the log.
199 		 */
200 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
201 		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
202 		error = xfs_trans_reserve(tp, 0,
203 				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
204 		if (error) {
205 			xfs_trans_cancel(tp, 0);
206 			return -error;
207 		}
208 		xfs_ilock(ip, XFS_ILOCK_EXCL);
209 
210 		/*
211 		 * Note - it's possible that we might have pushed ourselves out
212 		 * of the way during trans_reserve which would flush the inode.
213 		 * But there's no guarantee that the inode buffer has actually
214 		 * gone out yet (it's delwri).	Plus the buffer could be pinned
215 		 * anyway if it's part of an inode in another recent
216 		 * transaction.	 So we play it safe and fire off the
217 		 * transaction anyway.
218 		 */
219 		xfs_trans_ijoin(tp, ip);
220 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221 		xfs_trans_set_sync(tp);
222 		error = _xfs_trans_commit(tp, 0, &log_flushed);
223 
224 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
225 	} else {
226 		/*
227 		 * Timestamps/size haven't changed since last inode flush or
228 		 * inode transaction commit.  That means either nothing got
229 		 * written or a transaction committed which caught the updates.
230 		 * If the latter happened and the transaction hasn't hit the
231 		 * disk yet, the inode will be still be pinned.  If it is,
232 		 * force the log.
233 		 */
234 		if (xfs_ipincount(ip)) {
235 			error = _xfs_log_force_lsn(mp,
236 					ip->i_itemp->ili_last_lsn,
237 					XFS_LOG_SYNC, &log_flushed);
238 		}
239 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
240 	}
241 
242 	/*
243 	 * If we only have a single device, and the log force about was
244 	 * a no-op we might have to flush the data device cache here.
245 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
246 	 * an already allocated file and thus do not have any metadata to
247 	 * commit.
248 	 */
249 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
250 	    mp->m_logdev_targp == mp->m_ddev_targp &&
251 	    !XFS_IS_REALTIME_INODE(ip) &&
252 	    !log_flushed)
253 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
254 
255 	return -error;
256 }
257 
258 STATIC ssize_t
259 xfs_file_aio_read(
260 	struct kiocb		*iocb,
261 	const struct iovec	*iovp,
262 	unsigned long		nr_segs,
263 	loff_t			pos)
264 {
265 	struct file		*file = iocb->ki_filp;
266 	struct inode		*inode = file->f_mapping->host;
267 	struct xfs_inode	*ip = XFS_I(inode);
268 	struct xfs_mount	*mp = ip->i_mount;
269 	size_t			size = 0;
270 	ssize_t			ret = 0;
271 	int			ioflags = 0;
272 	xfs_fsize_t		n;
273 	unsigned long		seg;
274 
275 	XFS_STATS_INC(xs_read_calls);
276 
277 	BUG_ON(iocb->ki_pos != pos);
278 
279 	if (unlikely(file->f_flags & O_DIRECT))
280 		ioflags |= IO_ISDIRECT;
281 	if (file->f_mode & FMODE_NOCMTIME)
282 		ioflags |= IO_INVIS;
283 
284 	/* START copy & waste from filemap.c */
285 	for (seg = 0; seg < nr_segs; seg++) {
286 		const struct iovec *iv = &iovp[seg];
287 
288 		/*
289 		 * If any segment has a negative length, or the cumulative
290 		 * length ever wraps negative then return -EINVAL.
291 		 */
292 		size += iv->iov_len;
293 		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
294 			return XFS_ERROR(-EINVAL);
295 	}
296 	/* END copy & waste from filemap.c */
297 
298 	if (unlikely(ioflags & IO_ISDIRECT)) {
299 		xfs_buftarg_t	*target =
300 			XFS_IS_REALTIME_INODE(ip) ?
301 				mp->m_rtdev_targp : mp->m_ddev_targp;
302 		if ((iocb->ki_pos & target->bt_smask) ||
303 		    (size & target->bt_smask)) {
304 			if (iocb->ki_pos == ip->i_size)
305 				return 0;
306 			return -XFS_ERROR(EINVAL);
307 		}
308 	}
309 
310 	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
311 	if (n <= 0 || size == 0)
312 		return 0;
313 
314 	if (n < size)
315 		size = n;
316 
317 	if (XFS_FORCED_SHUTDOWN(mp))
318 		return -EIO;
319 
320 	if (unlikely(ioflags & IO_ISDIRECT)) {
321 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
322 
323 		if (inode->i_mapping->nrpages) {
324 			ret = -xfs_flushinval_pages(ip,
325 					(iocb->ki_pos & PAGE_CACHE_MASK),
326 					-1, FI_REMAPF_LOCKED);
327 			if (ret) {
328 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
329 				return ret;
330 			}
331 		}
332 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
333 	} else
334 		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
335 
336 	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
337 
338 	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
339 	if (ret > 0)
340 		XFS_STATS_ADD(xs_read_bytes, ret);
341 
342 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 	return ret;
344 }
345 
346 STATIC ssize_t
347 xfs_file_splice_read(
348 	struct file		*infilp,
349 	loff_t			*ppos,
350 	struct pipe_inode_info	*pipe,
351 	size_t			count,
352 	unsigned int		flags)
353 {
354 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
355 	int			ioflags = 0;
356 	ssize_t			ret;
357 
358 	XFS_STATS_INC(xs_read_calls);
359 
360 	if (infilp->f_mode & FMODE_NOCMTIME)
361 		ioflags |= IO_INVIS;
362 
363 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
364 		return -EIO;
365 
366 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
367 
368 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
369 
370 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
371 	if (ret > 0)
372 		XFS_STATS_ADD(xs_read_bytes, ret);
373 
374 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
375 	return ret;
376 }
377 
378 STATIC void
379 xfs_aio_write_isize_update(
380 	struct inode	*inode,
381 	loff_t		*ppos,
382 	ssize_t		bytes_written)
383 {
384 	struct xfs_inode	*ip = XFS_I(inode);
385 	xfs_fsize_t		isize = i_size_read(inode);
386 
387 	if (bytes_written > 0)
388 		XFS_STATS_ADD(xs_write_bytes, bytes_written);
389 
390 	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
391 					*ppos > isize))
392 		*ppos = isize;
393 
394 	if (*ppos > ip->i_size) {
395 		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
396 		if (*ppos > ip->i_size)
397 			ip->i_size = *ppos;
398 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
399 	}
400 }
401 
402 /*
403  * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
404  * part of the I/O may have been written to disk before the error occurred.  In
405  * this case the on-disk file size may have been adjusted beyond the in-memory
406  * file size and now needs to be truncated back.
407  */
408 STATIC void
409 xfs_aio_write_newsize_update(
410 	struct xfs_inode	*ip)
411 {
412 	if (ip->i_new_size) {
413 		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
414 		ip->i_new_size = 0;
415 		if (ip->i_d.di_size > ip->i_size)
416 			ip->i_d.di_size = ip->i_size;
417 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
418 	}
419 }
420 
421 /*
422  * xfs_file_splice_write() does not use xfs_rw_ilock() because
423  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
424  * couuld cause lock inversions between the aio_write path and the splice path
425  * if someone is doing concurrent splice(2) based writes and write(2) based
426  * writes to the same inode. The only real way to fix this is to re-implement
427  * the generic code here with correct locking orders.
428  */
429 STATIC ssize_t
430 xfs_file_splice_write(
431 	struct pipe_inode_info	*pipe,
432 	struct file		*outfilp,
433 	loff_t			*ppos,
434 	size_t			count,
435 	unsigned int		flags)
436 {
437 	struct inode		*inode = outfilp->f_mapping->host;
438 	struct xfs_inode	*ip = XFS_I(inode);
439 	xfs_fsize_t		new_size;
440 	int			ioflags = 0;
441 	ssize_t			ret;
442 
443 	XFS_STATS_INC(xs_write_calls);
444 
445 	if (outfilp->f_mode & FMODE_NOCMTIME)
446 		ioflags |= IO_INVIS;
447 
448 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
449 		return -EIO;
450 
451 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
452 
453 	new_size = *ppos + count;
454 
455 	xfs_ilock(ip, XFS_ILOCK_EXCL);
456 	if (new_size > ip->i_size)
457 		ip->i_new_size = new_size;
458 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
459 
460 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
461 
462 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
463 
464 	xfs_aio_write_isize_update(inode, ppos, ret);
465 	xfs_aio_write_newsize_update(ip);
466 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
467 	return ret;
468 }
469 
470 /*
471  * This routine is called to handle zeroing any space in the last
472  * block of the file that is beyond the EOF.  We do this since the
473  * size is being increased without writing anything to that block
474  * and we don't want anyone to read the garbage on the disk.
475  */
476 STATIC int				/* error (positive) */
477 xfs_zero_last_block(
478 	xfs_inode_t	*ip,
479 	xfs_fsize_t	offset,
480 	xfs_fsize_t	isize)
481 {
482 	xfs_fileoff_t	last_fsb;
483 	xfs_mount_t	*mp = ip->i_mount;
484 	int		nimaps;
485 	int		zero_offset;
486 	int		zero_len;
487 	int		error = 0;
488 	xfs_bmbt_irec_t	imap;
489 
490 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
491 
492 	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
493 	if (zero_offset == 0) {
494 		/*
495 		 * There are no extra bytes in the last block on disk to
496 		 * zero, so return.
497 		 */
498 		return 0;
499 	}
500 
501 	last_fsb = XFS_B_TO_FSBT(mp, isize);
502 	nimaps = 1;
503 	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
504 			  &nimaps, NULL);
505 	if (error) {
506 		return error;
507 	}
508 	ASSERT(nimaps > 0);
509 	/*
510 	 * If the block underlying isize is just a hole, then there
511 	 * is nothing to zero.
512 	 */
513 	if (imap.br_startblock == HOLESTARTBLOCK) {
514 		return 0;
515 	}
516 	/*
517 	 * Zero the part of the last block beyond the EOF, and write it
518 	 * out sync.  We need to drop the ilock while we do this so we
519 	 * don't deadlock when the buffer cache calls back to us.
520 	 */
521 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
522 
523 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
524 	if (isize + zero_len > offset)
525 		zero_len = offset - isize;
526 	error = xfs_iozero(ip, isize, zero_len);
527 
528 	xfs_ilock(ip, XFS_ILOCK_EXCL);
529 	ASSERT(error >= 0);
530 	return error;
531 }
532 
533 /*
534  * Zero any on disk space between the current EOF and the new,
535  * larger EOF.  This handles the normal case of zeroing the remainder
536  * of the last block in the file and the unusual case of zeroing blocks
537  * out beyond the size of the file.  This second case only happens
538  * with fixed size extents and when the system crashes before the inode
539  * size was updated but after blocks were allocated.  If fill is set,
540  * then any holes in the range are filled and zeroed.  If not, the holes
541  * are left alone as holes.
542  */
543 
544 int					/* error (positive) */
545 xfs_zero_eof(
546 	xfs_inode_t	*ip,
547 	xfs_off_t	offset,		/* starting I/O offset */
548 	xfs_fsize_t	isize)		/* current inode size */
549 {
550 	xfs_mount_t	*mp = ip->i_mount;
551 	xfs_fileoff_t	start_zero_fsb;
552 	xfs_fileoff_t	end_zero_fsb;
553 	xfs_fileoff_t	zero_count_fsb;
554 	xfs_fileoff_t	last_fsb;
555 	xfs_fileoff_t	zero_off;
556 	xfs_fsize_t	zero_len;
557 	int		nimaps;
558 	int		error = 0;
559 	xfs_bmbt_irec_t	imap;
560 
561 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
562 	ASSERT(offset > isize);
563 
564 	/*
565 	 * First handle zeroing the block on which isize resides.
566 	 * We only zero a part of that block so it is handled specially.
567 	 */
568 	error = xfs_zero_last_block(ip, offset, isize);
569 	if (error) {
570 		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
571 		return error;
572 	}
573 
574 	/*
575 	 * Calculate the range between the new size and the old
576 	 * where blocks needing to be zeroed may exist.  To get the
577 	 * block where the last byte in the file currently resides,
578 	 * we need to subtract one from the size and truncate back
579 	 * to a block boundary.  We subtract 1 in case the size is
580 	 * exactly on a block boundary.
581 	 */
582 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
583 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
584 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
585 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
586 	if (last_fsb == end_zero_fsb) {
587 		/*
588 		 * The size was only incremented on its last block.
589 		 * We took care of that above, so just return.
590 		 */
591 		return 0;
592 	}
593 
594 	ASSERT(start_zero_fsb <= end_zero_fsb);
595 	while (start_zero_fsb <= end_zero_fsb) {
596 		nimaps = 1;
597 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
598 		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
599 				  0, NULL, 0, &imap, &nimaps, NULL);
600 		if (error) {
601 			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
602 			return error;
603 		}
604 		ASSERT(nimaps > 0);
605 
606 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
607 		    imap.br_startblock == HOLESTARTBLOCK) {
608 			/*
609 			 * This loop handles initializing pages that were
610 			 * partially initialized by the code below this
611 			 * loop. It basically zeroes the part of the page
612 			 * that sits on a hole and sets the page as P_HOLE
613 			 * and calls remapf if it is a mapped file.
614 			 */
615 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
616 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
617 			continue;
618 		}
619 
620 		/*
621 		 * There are blocks we need to zero.
622 		 * Drop the inode lock while we're doing the I/O.
623 		 * We'll still have the iolock to protect us.
624 		 */
625 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
626 
627 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
628 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
629 
630 		if ((zero_off + zero_len) > offset)
631 			zero_len = offset - zero_off;
632 
633 		error = xfs_iozero(ip, zero_off, zero_len);
634 		if (error) {
635 			goto out_lock;
636 		}
637 
638 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
639 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
640 
641 		xfs_ilock(ip, XFS_ILOCK_EXCL);
642 	}
643 
644 	return 0;
645 
646 out_lock:
647 	xfs_ilock(ip, XFS_ILOCK_EXCL);
648 	ASSERT(error >= 0);
649 	return error;
650 }
651 
652 /*
653  * Common pre-write limit and setup checks.
654  *
655  * Returns with iolock held according to @iolock.
656  */
657 STATIC ssize_t
658 xfs_file_aio_write_checks(
659 	struct file		*file,
660 	loff_t			*pos,
661 	size_t			*count,
662 	int			*iolock)
663 {
664 	struct inode		*inode = file->f_mapping->host;
665 	struct xfs_inode	*ip = XFS_I(inode);
666 	xfs_fsize_t		new_size;
667 	int			error = 0;
668 
669 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
670 	if (error) {
671 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
672 		*iolock = 0;
673 		return error;
674 	}
675 
676 	new_size = *pos + *count;
677 	if (new_size > ip->i_size)
678 		ip->i_new_size = new_size;
679 
680 	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
681 		file_update_time(file);
682 
683 	/*
684 	 * If the offset is beyond the size of the file, we need to zero any
685 	 * blocks that fall between the existing EOF and the start of this
686 	 * write.
687 	 */
688 	if (*pos > ip->i_size)
689 		error = -xfs_zero_eof(ip, *pos, ip->i_size);
690 
691 	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
692 	if (error)
693 		return error;
694 
695 	/*
696 	 * If we're writing the file then make sure to clear the setuid and
697 	 * setgid bits if the process is not being run by root.  This keeps
698 	 * people from modifying setuid and setgid binaries.
699 	 */
700 	return file_remove_suid(file);
701 
702 }
703 
704 /*
705  * xfs_file_dio_aio_write - handle direct IO writes
706  *
707  * Lock the inode appropriately to prepare for and issue a direct IO write.
708  * By separating it from the buffered write path we remove all the tricky to
709  * follow locking changes and looping.
710  *
711  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
712  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
713  * pages are flushed out.
714  *
715  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
716  * allowing them to be done in parallel with reads and other direct IO writes.
717  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
718  * needs to do sub-block zeroing and that requires serialisation against other
719  * direct IOs to the same block. In this case we need to serialise the
720  * submission of the unaligned IOs so that we don't get racing block zeroing in
721  * the dio layer.  To avoid the problem with aio, we also need to wait for
722  * outstanding IOs to complete so that unwritten extent conversion is completed
723  * before we try to map the overlapping block. This is currently implemented by
724  * hitting it with a big hammer (i.e. xfs_ioend_wait()).
725  *
726  * Returns with locks held indicated by @iolock and errors indicated by
727  * negative return values.
728  */
729 STATIC ssize_t
730 xfs_file_dio_aio_write(
731 	struct kiocb		*iocb,
732 	const struct iovec	*iovp,
733 	unsigned long		nr_segs,
734 	loff_t			pos,
735 	size_t			ocount,
736 	int			*iolock)
737 {
738 	struct file		*file = iocb->ki_filp;
739 	struct address_space	*mapping = file->f_mapping;
740 	struct inode		*inode = mapping->host;
741 	struct xfs_inode	*ip = XFS_I(inode);
742 	struct xfs_mount	*mp = ip->i_mount;
743 	ssize_t			ret = 0;
744 	size_t			count = ocount;
745 	int			unaligned_io = 0;
746 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
747 					mp->m_rtdev_targp : mp->m_ddev_targp;
748 
749 	*iolock = 0;
750 	if ((pos & target->bt_smask) || (count & target->bt_smask))
751 		return -XFS_ERROR(EINVAL);
752 
753 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
754 		unaligned_io = 1;
755 
756 	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
757 		*iolock = XFS_IOLOCK_EXCL;
758 	else
759 		*iolock = XFS_IOLOCK_SHARED;
760 	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
761 
762 	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
763 	if (ret)
764 		return ret;
765 
766 	if (mapping->nrpages) {
767 		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
768 		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
769 							FI_REMAPF_LOCKED);
770 		if (ret)
771 			return ret;
772 	}
773 
774 	/*
775 	 * If we are doing unaligned IO, wait for all other IO to drain,
776 	 * otherwise demote the lock if we had to flush cached pages
777 	 */
778 	if (unaligned_io)
779 		xfs_ioend_wait(ip);
780 	else if (*iolock == XFS_IOLOCK_EXCL) {
781 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
782 		*iolock = XFS_IOLOCK_SHARED;
783 	}
784 
785 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
786 	ret = generic_file_direct_write(iocb, iovp,
787 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
788 
789 	/* No fallback to buffered IO on errors for XFS. */
790 	ASSERT(ret < 0 || ret == count);
791 	return ret;
792 }
793 
794 STATIC ssize_t
795 xfs_file_buffered_aio_write(
796 	struct kiocb		*iocb,
797 	const struct iovec	*iovp,
798 	unsigned long		nr_segs,
799 	loff_t			pos,
800 	size_t			ocount,
801 	int			*iolock)
802 {
803 	struct file		*file = iocb->ki_filp;
804 	struct address_space	*mapping = file->f_mapping;
805 	struct inode		*inode = mapping->host;
806 	struct xfs_inode	*ip = XFS_I(inode);
807 	ssize_t			ret;
808 	int			enospc = 0;
809 	size_t			count = ocount;
810 
811 	*iolock = XFS_IOLOCK_EXCL;
812 	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
813 
814 	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
815 	if (ret)
816 		return ret;
817 
818 	/* We can write back this queue in page reclaim */
819 	current->backing_dev_info = mapping->backing_dev_info;
820 
821 write_retry:
822 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
823 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
824 			pos, &iocb->ki_pos, count, ret);
825 	/*
826 	 * if we just got an ENOSPC, flush the inode now we aren't holding any
827 	 * page locks and retry *once*
828 	 */
829 	if (ret == -ENOSPC && !enospc) {
830 		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
831 		if (ret)
832 			return ret;
833 		enospc = 1;
834 		goto write_retry;
835 	}
836 	current->backing_dev_info = NULL;
837 	return ret;
838 }
839 
840 STATIC ssize_t
841 xfs_file_aio_write(
842 	struct kiocb		*iocb,
843 	const struct iovec	*iovp,
844 	unsigned long		nr_segs,
845 	loff_t			pos)
846 {
847 	struct file		*file = iocb->ki_filp;
848 	struct address_space	*mapping = file->f_mapping;
849 	struct inode		*inode = mapping->host;
850 	struct xfs_inode	*ip = XFS_I(inode);
851 	ssize_t			ret;
852 	int			iolock;
853 	size_t			ocount = 0;
854 
855 	XFS_STATS_INC(xs_write_calls);
856 
857 	BUG_ON(iocb->ki_pos != pos);
858 
859 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
860 	if (ret)
861 		return ret;
862 
863 	if (ocount == 0)
864 		return 0;
865 
866 	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
867 
868 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
869 		return -EIO;
870 
871 	if (unlikely(file->f_flags & O_DIRECT))
872 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
873 						ocount, &iolock);
874 	else
875 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
876 						ocount, &iolock);
877 
878 	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
879 
880 	if (ret <= 0)
881 		goto out_unlock;
882 
883 	/* Handle various SYNC-type writes */
884 	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
885 		loff_t end = pos + ret - 1;
886 		int error;
887 
888 		xfs_rw_iunlock(ip, iolock);
889 		error = xfs_file_fsync(file, pos, end,
890 				      (file->f_flags & __O_SYNC) ? 0 : 1);
891 		xfs_rw_ilock(ip, iolock);
892 		if (error)
893 			ret = error;
894 	}
895 
896 out_unlock:
897 	xfs_aio_write_newsize_update(ip);
898 	xfs_rw_iunlock(ip, iolock);
899 	return ret;
900 }
901 
902 STATIC long
903 xfs_file_fallocate(
904 	struct file	*file,
905 	int		mode,
906 	loff_t		offset,
907 	loff_t		len)
908 {
909 	struct inode	*inode = file->f_path.dentry->d_inode;
910 	long		error;
911 	loff_t		new_size = 0;
912 	xfs_flock64_t	bf;
913 	xfs_inode_t	*ip = XFS_I(inode);
914 	int		cmd = XFS_IOC_RESVSP;
915 	int		attr_flags = XFS_ATTR_NOLOCK;
916 
917 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
918 		return -EOPNOTSUPP;
919 
920 	bf.l_whence = 0;
921 	bf.l_start = offset;
922 	bf.l_len = len;
923 
924 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
925 
926 	if (mode & FALLOC_FL_PUNCH_HOLE)
927 		cmd = XFS_IOC_UNRESVSP;
928 
929 	/* check the new inode size is valid before allocating */
930 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
931 	    offset + len > i_size_read(inode)) {
932 		new_size = offset + len;
933 		error = inode_newsize_ok(inode, new_size);
934 		if (error)
935 			goto out_unlock;
936 	}
937 
938 	if (file->f_flags & O_DSYNC)
939 		attr_flags |= XFS_ATTR_SYNC;
940 
941 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
942 	if (error)
943 		goto out_unlock;
944 
945 	/* Change file size if needed */
946 	if (new_size) {
947 		struct iattr iattr;
948 
949 		iattr.ia_valid = ATTR_SIZE;
950 		iattr.ia_size = new_size;
951 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
952 	}
953 
954 out_unlock:
955 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
956 	return error;
957 }
958 
959 
960 STATIC int
961 xfs_file_open(
962 	struct inode	*inode,
963 	struct file	*file)
964 {
965 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
966 		return -EFBIG;
967 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
968 		return -EIO;
969 	return 0;
970 }
971 
972 STATIC int
973 xfs_dir_open(
974 	struct inode	*inode,
975 	struct file	*file)
976 {
977 	struct xfs_inode *ip = XFS_I(inode);
978 	int		mode;
979 	int		error;
980 
981 	error = xfs_file_open(inode, file);
982 	if (error)
983 		return error;
984 
985 	/*
986 	 * If there are any blocks, read-ahead block 0 as we're almost
987 	 * certain to have the next operation be a read there.
988 	 */
989 	mode = xfs_ilock_map_shared(ip);
990 	if (ip->i_d.di_nextents > 0)
991 		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
992 	xfs_iunlock(ip, mode);
993 	return 0;
994 }
995 
996 STATIC int
997 xfs_file_release(
998 	struct inode	*inode,
999 	struct file	*filp)
1000 {
1001 	return -xfs_release(XFS_I(inode));
1002 }
1003 
1004 STATIC int
1005 xfs_file_readdir(
1006 	struct file	*filp,
1007 	void		*dirent,
1008 	filldir_t	filldir)
1009 {
1010 	struct inode	*inode = filp->f_path.dentry->d_inode;
1011 	xfs_inode_t	*ip = XFS_I(inode);
1012 	int		error;
1013 	size_t		bufsize;
1014 
1015 	/*
1016 	 * The Linux API doesn't pass down the total size of the buffer
1017 	 * we read into down to the filesystem.  With the filldir concept
1018 	 * it's not needed for correct information, but the XFS dir2 leaf
1019 	 * code wants an estimate of the buffer size to calculate it's
1020 	 * readahead window and size the buffers used for mapping to
1021 	 * physical blocks.
1022 	 *
1023 	 * Try to give it an estimate that's good enough, maybe at some
1024 	 * point we can change the ->readdir prototype to include the
1025 	 * buffer size.  For now we use the current glibc buffer size.
1026 	 */
1027 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028 
1029 	error = xfs_readdir(ip, dirent, bufsize,
1030 				(xfs_off_t *)&filp->f_pos, filldir);
1031 	if (error)
1032 		return -error;
1033 	return 0;
1034 }
1035 
1036 STATIC int
1037 xfs_file_mmap(
1038 	struct file	*filp,
1039 	struct vm_area_struct *vma)
1040 {
1041 	vma->vm_ops = &xfs_file_vm_ops;
1042 	vma->vm_flags |= VM_CAN_NONLINEAR;
1043 
1044 	file_accessed(filp);
1045 	return 0;
1046 }
1047 
1048 /*
1049  * mmap()d file has taken write protection fault and is being made
1050  * writable. We can set the page state up correctly for a writable
1051  * page, which means we can do correct delalloc accounting (ENOSPC
1052  * checking!) and unwritten extent mapping.
1053  */
1054 STATIC int
1055 xfs_vm_page_mkwrite(
1056 	struct vm_area_struct	*vma,
1057 	struct vm_fault		*vmf)
1058 {
1059 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1060 }
1061 
1062 const struct file_operations xfs_file_operations = {
1063 	.llseek		= generic_file_llseek,
1064 	.read		= do_sync_read,
1065 	.write		= do_sync_write,
1066 	.aio_read	= xfs_file_aio_read,
1067 	.aio_write	= xfs_file_aio_write,
1068 	.splice_read	= xfs_file_splice_read,
1069 	.splice_write	= xfs_file_splice_write,
1070 	.unlocked_ioctl	= xfs_file_ioctl,
1071 #ifdef CONFIG_COMPAT
1072 	.compat_ioctl	= xfs_file_compat_ioctl,
1073 #endif
1074 	.mmap		= xfs_file_mmap,
1075 	.open		= xfs_file_open,
1076 	.release	= xfs_file_release,
1077 	.fsync		= xfs_file_fsync,
1078 	.fallocate	= xfs_file_fallocate,
1079 };
1080 
1081 const struct file_operations xfs_dir_file_operations = {
1082 	.open		= xfs_dir_open,
1083 	.read		= generic_read_dir,
1084 	.readdir	= xfs_file_readdir,
1085 	.llseek		= generic_file_llseek,
1086 	.unlocked_ioctl	= xfs_file_ioctl,
1087 #ifdef CONFIG_COMPAT
1088 	.compat_ioctl	= xfs_file_compat_ioctl,
1089 #endif
1090 	.fsync		= xfs_file_fsync,
1091 };
1092 
1093 static const struct vm_operations_struct xfs_file_vm_ops = {
1094 	.fault		= filemap_fault,
1095 	.page_mkwrite	= xfs_vm_page_mkwrite,
1096 };
1097