xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 93d90ad7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 
40 #include <linux/aio.h>
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 
45 static const struct vm_operations_struct xfs_file_vm_ops;
46 
47 /*
48  * Locking primitives for read and write IO paths to ensure we consistently use
49  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50  */
51 static inline void
52 xfs_rw_ilock(
53 	struct xfs_inode	*ip,
54 	int			type)
55 {
56 	if (type & XFS_IOLOCK_EXCL)
57 		mutex_lock(&VFS_I(ip)->i_mutex);
58 	xfs_ilock(ip, type);
59 }
60 
61 static inline void
62 xfs_rw_iunlock(
63 	struct xfs_inode	*ip,
64 	int			type)
65 {
66 	xfs_iunlock(ip, type);
67 	if (type & XFS_IOLOCK_EXCL)
68 		mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70 
71 static inline void
72 xfs_rw_ilock_demote(
73 	struct xfs_inode	*ip,
74 	int			type)
75 {
76 	xfs_ilock_demote(ip, type);
77 	if (type & XFS_IOLOCK_EXCL)
78 		mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80 
81 /*
82  *	xfs_iozero
83  *
84  *	xfs_iozero clears the specified range of buffer supplied,
85  *	and marks all the affected blocks as valid and modified.  If
86  *	an affected block is not allocated, it will be allocated.  If
87  *	an affected block is not completely overwritten, and is not
88  *	valid before the operation, it will be read from disk before
89  *	being partially zeroed.
90  */
91 int
92 xfs_iozero(
93 	struct xfs_inode	*ip,	/* inode			*/
94 	loff_t			pos,	/* offset in file		*/
95 	size_t			count)	/* size of data to zero		*/
96 {
97 	struct page		*page;
98 	struct address_space	*mapping;
99 	int			status;
100 
101 	mapping = VFS_I(ip)->i_mapping;
102 	do {
103 		unsigned offset, bytes;
104 		void *fsdata;
105 
106 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 		bytes = PAGE_CACHE_SIZE - offset;
108 		if (bytes > count)
109 			bytes = count;
110 
111 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 					AOP_FLAG_UNINTERRUPTIBLE,
113 					&page, &fsdata);
114 		if (status)
115 			break;
116 
117 		zero_user(page, offset, bytes);
118 
119 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 					page, fsdata);
121 		WARN_ON(status <= 0); /* can't return less than zero! */
122 		pos += bytes;
123 		count -= bytes;
124 		status = 0;
125 	} while (count);
126 
127 	return (-status);
128 }
129 
130 /*
131  * Fsync operations on directories are much simpler than on regular files,
132  * as there is no file data to flush, and thus also no need for explicit
133  * cache flush operations, and there are no non-transaction metadata updates
134  * on directories either.
135  */
136 STATIC int
137 xfs_dir_fsync(
138 	struct file		*file,
139 	loff_t			start,
140 	loff_t			end,
141 	int			datasync)
142 {
143 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
144 	struct xfs_mount	*mp = ip->i_mount;
145 	xfs_lsn_t		lsn = 0;
146 
147 	trace_xfs_dir_fsync(ip);
148 
149 	xfs_ilock(ip, XFS_ILOCK_SHARED);
150 	if (xfs_ipincount(ip))
151 		lsn = ip->i_itemp->ili_last_lsn;
152 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
153 
154 	if (!lsn)
155 		return 0;
156 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
157 }
158 
159 STATIC int
160 xfs_file_fsync(
161 	struct file		*file,
162 	loff_t			start,
163 	loff_t			end,
164 	int			datasync)
165 {
166 	struct inode		*inode = file->f_mapping->host;
167 	struct xfs_inode	*ip = XFS_I(inode);
168 	struct xfs_mount	*mp = ip->i_mount;
169 	int			error = 0;
170 	int			log_flushed = 0;
171 	xfs_lsn_t		lsn = 0;
172 
173 	trace_xfs_file_fsync(ip);
174 
175 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
176 	if (error)
177 		return error;
178 
179 	if (XFS_FORCED_SHUTDOWN(mp))
180 		return -EIO;
181 
182 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
183 
184 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
185 		/*
186 		 * If we have an RT and/or log subvolume we need to make sure
187 		 * to flush the write cache the device used for file data
188 		 * first.  This is to ensure newly written file data make
189 		 * it to disk before logging the new inode size in case of
190 		 * an extending write.
191 		 */
192 		if (XFS_IS_REALTIME_INODE(ip))
193 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
194 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
195 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
196 	}
197 
198 	/*
199 	 * All metadata updates are logged, which means that we just have
200 	 * to flush the log up to the latest LSN that touched the inode.
201 	 */
202 	xfs_ilock(ip, XFS_ILOCK_SHARED);
203 	if (xfs_ipincount(ip)) {
204 		if (!datasync ||
205 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
206 			lsn = ip->i_itemp->ili_last_lsn;
207 	}
208 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
209 
210 	if (lsn)
211 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
212 
213 	/*
214 	 * If we only have a single device, and the log force about was
215 	 * a no-op we might have to flush the data device cache here.
216 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 	 * an already allocated file and thus do not have any metadata to
218 	 * commit.
219 	 */
220 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
221 	    mp->m_logdev_targp == mp->m_ddev_targp &&
222 	    !XFS_IS_REALTIME_INODE(ip) &&
223 	    !log_flushed)
224 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
225 
226 	return error;
227 }
228 
229 STATIC ssize_t
230 xfs_file_read_iter(
231 	struct kiocb		*iocb,
232 	struct iov_iter		*to)
233 {
234 	struct file		*file = iocb->ki_filp;
235 	struct inode		*inode = file->f_mapping->host;
236 	struct xfs_inode	*ip = XFS_I(inode);
237 	struct xfs_mount	*mp = ip->i_mount;
238 	size_t			size = iov_iter_count(to);
239 	ssize_t			ret = 0;
240 	int			ioflags = 0;
241 	xfs_fsize_t		n;
242 	loff_t			pos = iocb->ki_pos;
243 
244 	XFS_STATS_INC(xs_read_calls);
245 
246 	if (unlikely(file->f_flags & O_DIRECT))
247 		ioflags |= XFS_IO_ISDIRECT;
248 	if (file->f_mode & FMODE_NOCMTIME)
249 		ioflags |= XFS_IO_INVIS;
250 
251 	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
252 		xfs_buftarg_t	*target =
253 			XFS_IS_REALTIME_INODE(ip) ?
254 				mp->m_rtdev_targp : mp->m_ddev_targp;
255 		/* DIO must be aligned to device logical sector size */
256 		if ((pos | size) & target->bt_logical_sectormask) {
257 			if (pos == i_size_read(inode))
258 				return 0;
259 			return -EINVAL;
260 		}
261 	}
262 
263 	n = mp->m_super->s_maxbytes - pos;
264 	if (n <= 0 || size == 0)
265 		return 0;
266 
267 	if (n < size)
268 		size = n;
269 
270 	if (XFS_FORCED_SHUTDOWN(mp))
271 		return -EIO;
272 
273 	/*
274 	 * Locking is a bit tricky here. If we take an exclusive lock
275 	 * for direct IO, we effectively serialise all new concurrent
276 	 * read IO to this file and block it behind IO that is currently in
277 	 * progress because IO in progress holds the IO lock shared. We only
278 	 * need to hold the lock exclusive to blow away the page cache, so
279 	 * only take lock exclusively if the page cache needs invalidation.
280 	 * This allows the normal direct IO case of no page cache pages to
281 	 * proceeed concurrently without serialisation.
282 	 */
283 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
284 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
285 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
286 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
287 
288 		if (inode->i_mapping->nrpages) {
289 			ret = filemap_write_and_wait_range(
290 							VFS_I(ip)->i_mapping,
291 							pos, pos + size - 1);
292 			if (ret) {
293 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
294 				return ret;
295 			}
296 
297 			/*
298 			 * Invalidate whole pages. This can return an error if
299 			 * we fail to invalidate a page, but this should never
300 			 * happen on XFS. Warn if it does fail.
301 			 */
302 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
303 					pos >> PAGE_CACHE_SHIFT,
304 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
305 			WARN_ON_ONCE(ret);
306 			ret = 0;
307 		}
308 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
309 	}
310 
311 	trace_xfs_file_read(ip, size, pos, ioflags);
312 
313 	ret = generic_file_read_iter(iocb, to);
314 	if (ret > 0)
315 		XFS_STATS_ADD(xs_read_bytes, ret);
316 
317 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
318 	return ret;
319 }
320 
321 STATIC ssize_t
322 xfs_file_splice_read(
323 	struct file		*infilp,
324 	loff_t			*ppos,
325 	struct pipe_inode_info	*pipe,
326 	size_t			count,
327 	unsigned int		flags)
328 {
329 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
330 	int			ioflags = 0;
331 	ssize_t			ret;
332 
333 	XFS_STATS_INC(xs_read_calls);
334 
335 	if (infilp->f_mode & FMODE_NOCMTIME)
336 		ioflags |= XFS_IO_INVIS;
337 
338 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
339 		return -EIO;
340 
341 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
342 
343 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
344 
345 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
346 	if (ret > 0)
347 		XFS_STATS_ADD(xs_read_bytes, ret);
348 
349 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
350 	return ret;
351 }
352 
353 /*
354  * This routine is called to handle zeroing any space in the last block of the
355  * file that is beyond the EOF.  We do this since the size is being increased
356  * without writing anything to that block and we don't want to read the
357  * garbage on the disk.
358  */
359 STATIC int				/* error (positive) */
360 xfs_zero_last_block(
361 	struct xfs_inode	*ip,
362 	xfs_fsize_t		offset,
363 	xfs_fsize_t		isize)
364 {
365 	struct xfs_mount	*mp = ip->i_mount;
366 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
367 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
368 	int			zero_len;
369 	int			nimaps = 1;
370 	int			error = 0;
371 	struct xfs_bmbt_irec	imap;
372 
373 	xfs_ilock(ip, XFS_ILOCK_EXCL);
374 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
375 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
376 	if (error)
377 		return error;
378 
379 	ASSERT(nimaps > 0);
380 
381 	/*
382 	 * If the block underlying isize is just a hole, then there
383 	 * is nothing to zero.
384 	 */
385 	if (imap.br_startblock == HOLESTARTBLOCK)
386 		return 0;
387 
388 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
389 	if (isize + zero_len > offset)
390 		zero_len = offset - isize;
391 	return xfs_iozero(ip, isize, zero_len);
392 }
393 
394 /*
395  * Zero any on disk space between the current EOF and the new, larger EOF.
396  *
397  * This handles the normal case of zeroing the remainder of the last block in
398  * the file and the unusual case of zeroing blocks out beyond the size of the
399  * file.  This second case only happens with fixed size extents and when the
400  * system crashes before the inode size was updated but after blocks were
401  * allocated.
402  *
403  * Expects the iolock to be held exclusive, and will take the ilock internally.
404  */
405 int					/* error (positive) */
406 xfs_zero_eof(
407 	struct xfs_inode	*ip,
408 	xfs_off_t		offset,		/* starting I/O offset */
409 	xfs_fsize_t		isize)		/* current inode size */
410 {
411 	struct xfs_mount	*mp = ip->i_mount;
412 	xfs_fileoff_t		start_zero_fsb;
413 	xfs_fileoff_t		end_zero_fsb;
414 	xfs_fileoff_t		zero_count_fsb;
415 	xfs_fileoff_t		last_fsb;
416 	xfs_fileoff_t		zero_off;
417 	xfs_fsize_t		zero_len;
418 	int			nimaps;
419 	int			error = 0;
420 	struct xfs_bmbt_irec	imap;
421 
422 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
423 	ASSERT(offset > isize);
424 
425 	/*
426 	 * First handle zeroing the block on which isize resides.
427 	 *
428 	 * We only zero a part of that block so it is handled specially.
429 	 */
430 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
431 		error = xfs_zero_last_block(ip, offset, isize);
432 		if (error)
433 			return error;
434 	}
435 
436 	/*
437 	 * Calculate the range between the new size and the old where blocks
438 	 * needing to be zeroed may exist.
439 	 *
440 	 * To get the block where the last byte in the file currently resides,
441 	 * we need to subtract one from the size and truncate back to a block
442 	 * boundary.  We subtract 1 in case the size is exactly on a block
443 	 * boundary.
444 	 */
445 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
446 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
447 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
448 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
449 	if (last_fsb == end_zero_fsb) {
450 		/*
451 		 * The size was only incremented on its last block.
452 		 * We took care of that above, so just return.
453 		 */
454 		return 0;
455 	}
456 
457 	ASSERT(start_zero_fsb <= end_zero_fsb);
458 	while (start_zero_fsb <= end_zero_fsb) {
459 		nimaps = 1;
460 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
461 
462 		xfs_ilock(ip, XFS_ILOCK_EXCL);
463 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
464 					  &imap, &nimaps, 0);
465 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
466 		if (error)
467 			return error;
468 
469 		ASSERT(nimaps > 0);
470 
471 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
472 		    imap.br_startblock == HOLESTARTBLOCK) {
473 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
474 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
475 			continue;
476 		}
477 
478 		/*
479 		 * There are blocks we need to zero.
480 		 */
481 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
482 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
483 
484 		if ((zero_off + zero_len) > offset)
485 			zero_len = offset - zero_off;
486 
487 		error = xfs_iozero(ip, zero_off, zero_len);
488 		if (error)
489 			return error;
490 
491 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
492 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
493 	}
494 
495 	return 0;
496 }
497 
498 /*
499  * Common pre-write limit and setup checks.
500  *
501  * Called with the iolocked held either shared and exclusive according to
502  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
503  * if called for a direct write beyond i_size.
504  */
505 STATIC ssize_t
506 xfs_file_aio_write_checks(
507 	struct file		*file,
508 	loff_t			*pos,
509 	size_t			*count,
510 	int			*iolock)
511 {
512 	struct inode		*inode = file->f_mapping->host;
513 	struct xfs_inode	*ip = XFS_I(inode);
514 	int			error = 0;
515 
516 restart:
517 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
518 	if (error)
519 		return error;
520 
521 	/*
522 	 * If the offset is beyond the size of the file, we need to zero any
523 	 * blocks that fall between the existing EOF and the start of this
524 	 * write.  If zeroing is needed and we are currently holding the
525 	 * iolock shared, we need to update it to exclusive which implies
526 	 * having to redo all checks before.
527 	 */
528 	if (*pos > i_size_read(inode)) {
529 		if (*iolock == XFS_IOLOCK_SHARED) {
530 			xfs_rw_iunlock(ip, *iolock);
531 			*iolock = XFS_IOLOCK_EXCL;
532 			xfs_rw_ilock(ip, *iolock);
533 			goto restart;
534 		}
535 		error = xfs_zero_eof(ip, *pos, i_size_read(inode));
536 		if (error)
537 			return error;
538 	}
539 
540 	/*
541 	 * Updating the timestamps will grab the ilock again from
542 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
543 	 * lock above.  Eventually we should look into a way to avoid
544 	 * the pointless lock roundtrip.
545 	 */
546 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
547 		error = file_update_time(file);
548 		if (error)
549 			return error;
550 	}
551 
552 	/*
553 	 * If we're writing the file then make sure to clear the setuid and
554 	 * setgid bits if the process is not being run by root.  This keeps
555 	 * people from modifying setuid and setgid binaries.
556 	 */
557 	return file_remove_suid(file);
558 }
559 
560 /*
561  * xfs_file_dio_aio_write - handle direct IO writes
562  *
563  * Lock the inode appropriately to prepare for and issue a direct IO write.
564  * By separating it from the buffered write path we remove all the tricky to
565  * follow locking changes and looping.
566  *
567  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
568  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
569  * pages are flushed out.
570  *
571  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
572  * allowing them to be done in parallel with reads and other direct IO writes.
573  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
574  * needs to do sub-block zeroing and that requires serialisation against other
575  * direct IOs to the same block. In this case we need to serialise the
576  * submission of the unaligned IOs so that we don't get racing block zeroing in
577  * the dio layer.  To avoid the problem with aio, we also need to wait for
578  * outstanding IOs to complete so that unwritten extent conversion is completed
579  * before we try to map the overlapping block. This is currently implemented by
580  * hitting it with a big hammer (i.e. inode_dio_wait()).
581  *
582  * Returns with locks held indicated by @iolock and errors indicated by
583  * negative return values.
584  */
585 STATIC ssize_t
586 xfs_file_dio_aio_write(
587 	struct kiocb		*iocb,
588 	struct iov_iter		*from)
589 {
590 	struct file		*file = iocb->ki_filp;
591 	struct address_space	*mapping = file->f_mapping;
592 	struct inode		*inode = mapping->host;
593 	struct xfs_inode	*ip = XFS_I(inode);
594 	struct xfs_mount	*mp = ip->i_mount;
595 	ssize_t			ret = 0;
596 	int			unaligned_io = 0;
597 	int			iolock;
598 	size_t			count = iov_iter_count(from);
599 	loff_t			pos = iocb->ki_pos;
600 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
601 					mp->m_rtdev_targp : mp->m_ddev_targp;
602 
603 	/* DIO must be aligned to device logical sector size */
604 	if ((pos | count) & target->bt_logical_sectormask)
605 		return -EINVAL;
606 
607 	/* "unaligned" here means not aligned to a filesystem block */
608 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
609 		unaligned_io = 1;
610 
611 	/*
612 	 * We don't need to take an exclusive lock unless there page cache needs
613 	 * to be invalidated or unaligned IO is being executed. We don't need to
614 	 * consider the EOF extension case here because
615 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
616 	 * EOF zeroing cases and fill out the new inode size as appropriate.
617 	 */
618 	if (unaligned_io || mapping->nrpages)
619 		iolock = XFS_IOLOCK_EXCL;
620 	else
621 		iolock = XFS_IOLOCK_SHARED;
622 	xfs_rw_ilock(ip, iolock);
623 
624 	/*
625 	 * Recheck if there are cached pages that need invalidate after we got
626 	 * the iolock to protect against other threads adding new pages while
627 	 * we were waiting for the iolock.
628 	 */
629 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
630 		xfs_rw_iunlock(ip, iolock);
631 		iolock = XFS_IOLOCK_EXCL;
632 		xfs_rw_ilock(ip, iolock);
633 	}
634 
635 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
636 	if (ret)
637 		goto out;
638 	iov_iter_truncate(from, count);
639 
640 	if (mapping->nrpages) {
641 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
642 						    pos, pos + count - 1);
643 		if (ret)
644 			goto out;
645 		/*
646 		 * Invalidate whole pages. This can return an error if
647 		 * we fail to invalidate a page, but this should never
648 		 * happen on XFS. Warn if it does fail.
649 		 */
650 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
651 					pos >> PAGE_CACHE_SHIFT,
652 					(pos + count - 1) >> PAGE_CACHE_SHIFT);
653 		WARN_ON_ONCE(ret);
654 		ret = 0;
655 	}
656 
657 	/*
658 	 * If we are doing unaligned IO, wait for all other IO to drain,
659 	 * otherwise demote the lock if we had to flush cached pages
660 	 */
661 	if (unaligned_io)
662 		inode_dio_wait(inode);
663 	else if (iolock == XFS_IOLOCK_EXCL) {
664 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
665 		iolock = XFS_IOLOCK_SHARED;
666 	}
667 
668 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
669 	ret = generic_file_direct_write(iocb, from, pos);
670 
671 out:
672 	xfs_rw_iunlock(ip, iolock);
673 
674 	/* No fallback to buffered IO on errors for XFS. */
675 	ASSERT(ret < 0 || ret == count);
676 	return ret;
677 }
678 
679 STATIC ssize_t
680 xfs_file_buffered_aio_write(
681 	struct kiocb		*iocb,
682 	struct iov_iter		*from)
683 {
684 	struct file		*file = iocb->ki_filp;
685 	struct address_space	*mapping = file->f_mapping;
686 	struct inode		*inode = mapping->host;
687 	struct xfs_inode	*ip = XFS_I(inode);
688 	ssize_t			ret;
689 	int			enospc = 0;
690 	int			iolock = XFS_IOLOCK_EXCL;
691 	loff_t			pos = iocb->ki_pos;
692 	size_t			count = iov_iter_count(from);
693 
694 	xfs_rw_ilock(ip, iolock);
695 
696 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
697 	if (ret)
698 		goto out;
699 
700 	iov_iter_truncate(from, count);
701 	/* We can write back this queue in page reclaim */
702 	current->backing_dev_info = mapping->backing_dev_info;
703 
704 write_retry:
705 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
706 	ret = generic_perform_write(file, from, pos);
707 	if (likely(ret >= 0))
708 		iocb->ki_pos = pos + ret;
709 
710 	/*
711 	 * If we hit a space limit, try to free up some lingering preallocated
712 	 * space before returning an error. In the case of ENOSPC, first try to
713 	 * write back all dirty inodes to free up some of the excess reserved
714 	 * metadata space. This reduces the chances that the eofblocks scan
715 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
716 	 * also behaves as a filter to prevent too many eofblocks scans from
717 	 * running at the same time.
718 	 */
719 	if (ret == -EDQUOT && !enospc) {
720 		enospc = xfs_inode_free_quota_eofblocks(ip);
721 		if (enospc)
722 			goto write_retry;
723 	} else if (ret == -ENOSPC && !enospc) {
724 		struct xfs_eofblocks eofb = {0};
725 
726 		enospc = 1;
727 		xfs_flush_inodes(ip->i_mount);
728 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
729 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
730 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
731 		goto write_retry;
732 	}
733 
734 	current->backing_dev_info = NULL;
735 out:
736 	xfs_rw_iunlock(ip, iolock);
737 	return ret;
738 }
739 
740 STATIC ssize_t
741 xfs_file_write_iter(
742 	struct kiocb		*iocb,
743 	struct iov_iter		*from)
744 {
745 	struct file		*file = iocb->ki_filp;
746 	struct address_space	*mapping = file->f_mapping;
747 	struct inode		*inode = mapping->host;
748 	struct xfs_inode	*ip = XFS_I(inode);
749 	ssize_t			ret;
750 	size_t			ocount = iov_iter_count(from);
751 
752 	XFS_STATS_INC(xs_write_calls);
753 
754 	if (ocount == 0)
755 		return 0;
756 
757 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
758 		return -EIO;
759 
760 	if (unlikely(file->f_flags & O_DIRECT))
761 		ret = xfs_file_dio_aio_write(iocb, from);
762 	else
763 		ret = xfs_file_buffered_aio_write(iocb, from);
764 
765 	if (ret > 0) {
766 		ssize_t err;
767 
768 		XFS_STATS_ADD(xs_write_bytes, ret);
769 
770 		/* Handle various SYNC-type writes */
771 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
772 		if (err < 0)
773 			ret = err;
774 	}
775 	return ret;
776 }
777 
778 STATIC long
779 xfs_file_fallocate(
780 	struct file		*file,
781 	int			mode,
782 	loff_t			offset,
783 	loff_t			len)
784 {
785 	struct inode		*inode = file_inode(file);
786 	struct xfs_inode	*ip = XFS_I(inode);
787 	struct xfs_trans	*tp;
788 	long			error;
789 	loff_t			new_size = 0;
790 
791 	if (!S_ISREG(inode->i_mode))
792 		return -EINVAL;
793 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
794 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
795 		return -EOPNOTSUPP;
796 
797 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
798 	if (mode & FALLOC_FL_PUNCH_HOLE) {
799 		error = xfs_free_file_space(ip, offset, len);
800 		if (error)
801 			goto out_unlock;
802 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
803 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
804 
805 		if (offset & blksize_mask || len & blksize_mask) {
806 			error = -EINVAL;
807 			goto out_unlock;
808 		}
809 
810 		/*
811 		 * There is no need to overlap collapse range with EOF,
812 		 * in which case it is effectively a truncate operation
813 		 */
814 		if (offset + len >= i_size_read(inode)) {
815 			error = -EINVAL;
816 			goto out_unlock;
817 		}
818 
819 		new_size = i_size_read(inode) - len;
820 
821 		error = xfs_collapse_file_space(ip, offset, len);
822 		if (error)
823 			goto out_unlock;
824 	} else {
825 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
826 		    offset + len > i_size_read(inode)) {
827 			new_size = offset + len;
828 			error = inode_newsize_ok(inode, new_size);
829 			if (error)
830 				goto out_unlock;
831 		}
832 
833 		if (mode & FALLOC_FL_ZERO_RANGE)
834 			error = xfs_zero_file_space(ip, offset, len);
835 		else
836 			error = xfs_alloc_file_space(ip, offset, len,
837 						     XFS_BMAPI_PREALLOC);
838 		if (error)
839 			goto out_unlock;
840 	}
841 
842 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
843 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
844 	if (error) {
845 		xfs_trans_cancel(tp, 0);
846 		goto out_unlock;
847 	}
848 
849 	xfs_ilock(ip, XFS_ILOCK_EXCL);
850 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
851 	ip->i_d.di_mode &= ~S_ISUID;
852 	if (ip->i_d.di_mode & S_IXGRP)
853 		ip->i_d.di_mode &= ~S_ISGID;
854 
855 	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
856 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
857 
858 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
859 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
860 
861 	if (file->f_flags & O_DSYNC)
862 		xfs_trans_set_sync(tp);
863 	error = xfs_trans_commit(tp, 0);
864 	if (error)
865 		goto out_unlock;
866 
867 	/* Change file size if needed */
868 	if (new_size) {
869 		struct iattr iattr;
870 
871 		iattr.ia_valid = ATTR_SIZE;
872 		iattr.ia_size = new_size;
873 		error = xfs_setattr_size(ip, &iattr);
874 	}
875 
876 out_unlock:
877 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
878 	return error;
879 }
880 
881 
882 STATIC int
883 xfs_file_open(
884 	struct inode	*inode,
885 	struct file	*file)
886 {
887 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
888 		return -EFBIG;
889 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
890 		return -EIO;
891 	return 0;
892 }
893 
894 STATIC int
895 xfs_dir_open(
896 	struct inode	*inode,
897 	struct file	*file)
898 {
899 	struct xfs_inode *ip = XFS_I(inode);
900 	int		mode;
901 	int		error;
902 
903 	error = xfs_file_open(inode, file);
904 	if (error)
905 		return error;
906 
907 	/*
908 	 * If there are any blocks, read-ahead block 0 as we're almost
909 	 * certain to have the next operation be a read there.
910 	 */
911 	mode = xfs_ilock_data_map_shared(ip);
912 	if (ip->i_d.di_nextents > 0)
913 		xfs_dir3_data_readahead(ip, 0, -1);
914 	xfs_iunlock(ip, mode);
915 	return 0;
916 }
917 
918 STATIC int
919 xfs_file_release(
920 	struct inode	*inode,
921 	struct file	*filp)
922 {
923 	return xfs_release(XFS_I(inode));
924 }
925 
926 STATIC int
927 xfs_file_readdir(
928 	struct file	*file,
929 	struct dir_context *ctx)
930 {
931 	struct inode	*inode = file_inode(file);
932 	xfs_inode_t	*ip = XFS_I(inode);
933 	size_t		bufsize;
934 
935 	/*
936 	 * The Linux API doesn't pass down the total size of the buffer
937 	 * we read into down to the filesystem.  With the filldir concept
938 	 * it's not needed for correct information, but the XFS dir2 leaf
939 	 * code wants an estimate of the buffer size to calculate it's
940 	 * readahead window and size the buffers used for mapping to
941 	 * physical blocks.
942 	 *
943 	 * Try to give it an estimate that's good enough, maybe at some
944 	 * point we can change the ->readdir prototype to include the
945 	 * buffer size.  For now we use the current glibc buffer size.
946 	 */
947 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
948 
949 	return xfs_readdir(ip, ctx, bufsize);
950 }
951 
952 STATIC int
953 xfs_file_mmap(
954 	struct file	*filp,
955 	struct vm_area_struct *vma)
956 {
957 	vma->vm_ops = &xfs_file_vm_ops;
958 
959 	file_accessed(filp);
960 	return 0;
961 }
962 
963 /*
964  * mmap()d file has taken write protection fault and is being made
965  * writable. We can set the page state up correctly for a writable
966  * page, which means we can do correct delalloc accounting (ENOSPC
967  * checking!) and unwritten extent mapping.
968  */
969 STATIC int
970 xfs_vm_page_mkwrite(
971 	struct vm_area_struct	*vma,
972 	struct vm_fault		*vmf)
973 {
974 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
975 }
976 
977 /*
978  * This type is designed to indicate the type of offset we would like
979  * to search from page cache for xfs_seek_hole_data().
980  */
981 enum {
982 	HOLE_OFF = 0,
983 	DATA_OFF,
984 };
985 
986 /*
987  * Lookup the desired type of offset from the given page.
988  *
989  * On success, return true and the offset argument will point to the
990  * start of the region that was found.  Otherwise this function will
991  * return false and keep the offset argument unchanged.
992  */
993 STATIC bool
994 xfs_lookup_buffer_offset(
995 	struct page		*page,
996 	loff_t			*offset,
997 	unsigned int		type)
998 {
999 	loff_t			lastoff = page_offset(page);
1000 	bool			found = false;
1001 	struct buffer_head	*bh, *head;
1002 
1003 	bh = head = page_buffers(page);
1004 	do {
1005 		/*
1006 		 * Unwritten extents that have data in the page
1007 		 * cache covering them can be identified by the
1008 		 * BH_Unwritten state flag.  Pages with multiple
1009 		 * buffers might have a mix of holes, data and
1010 		 * unwritten extents - any buffer with valid
1011 		 * data in it should have BH_Uptodate flag set
1012 		 * on it.
1013 		 */
1014 		if (buffer_unwritten(bh) ||
1015 		    buffer_uptodate(bh)) {
1016 			if (type == DATA_OFF)
1017 				found = true;
1018 		} else {
1019 			if (type == HOLE_OFF)
1020 				found = true;
1021 		}
1022 
1023 		if (found) {
1024 			*offset = lastoff;
1025 			break;
1026 		}
1027 		lastoff += bh->b_size;
1028 	} while ((bh = bh->b_this_page) != head);
1029 
1030 	return found;
1031 }
1032 
1033 /*
1034  * This routine is called to find out and return a data or hole offset
1035  * from the page cache for unwritten extents according to the desired
1036  * type for xfs_seek_hole_data().
1037  *
1038  * The argument offset is used to tell where we start to search from the
1039  * page cache.  Map is used to figure out the end points of the range to
1040  * lookup pages.
1041  *
1042  * Return true if the desired type of offset was found, and the argument
1043  * offset is filled with that address.  Otherwise, return false and keep
1044  * offset unchanged.
1045  */
1046 STATIC bool
1047 xfs_find_get_desired_pgoff(
1048 	struct inode		*inode,
1049 	struct xfs_bmbt_irec	*map,
1050 	unsigned int		type,
1051 	loff_t			*offset)
1052 {
1053 	struct xfs_inode	*ip = XFS_I(inode);
1054 	struct xfs_mount	*mp = ip->i_mount;
1055 	struct pagevec		pvec;
1056 	pgoff_t			index;
1057 	pgoff_t			end;
1058 	loff_t			endoff;
1059 	loff_t			startoff = *offset;
1060 	loff_t			lastoff = startoff;
1061 	bool			found = false;
1062 
1063 	pagevec_init(&pvec, 0);
1064 
1065 	index = startoff >> PAGE_CACHE_SHIFT;
1066 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1067 	end = endoff >> PAGE_CACHE_SHIFT;
1068 	do {
1069 		int		want;
1070 		unsigned	nr_pages;
1071 		unsigned int	i;
1072 
1073 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1074 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1075 					  want);
1076 		/*
1077 		 * No page mapped into given range.  If we are searching holes
1078 		 * and if this is the first time we got into the loop, it means
1079 		 * that the given offset is landed in a hole, return it.
1080 		 *
1081 		 * If we have already stepped through some block buffers to find
1082 		 * holes but they all contains data.  In this case, the last
1083 		 * offset is already updated and pointed to the end of the last
1084 		 * mapped page, if it does not reach the endpoint to search,
1085 		 * that means there should be a hole between them.
1086 		 */
1087 		if (nr_pages == 0) {
1088 			/* Data search found nothing */
1089 			if (type == DATA_OFF)
1090 				break;
1091 
1092 			ASSERT(type == HOLE_OFF);
1093 			if (lastoff == startoff || lastoff < endoff) {
1094 				found = true;
1095 				*offset = lastoff;
1096 			}
1097 			break;
1098 		}
1099 
1100 		/*
1101 		 * At lease we found one page.  If this is the first time we
1102 		 * step into the loop, and if the first page index offset is
1103 		 * greater than the given search offset, a hole was found.
1104 		 */
1105 		if (type == HOLE_OFF && lastoff == startoff &&
1106 		    lastoff < page_offset(pvec.pages[0])) {
1107 			found = true;
1108 			break;
1109 		}
1110 
1111 		for (i = 0; i < nr_pages; i++) {
1112 			struct page	*page = pvec.pages[i];
1113 			loff_t		b_offset;
1114 
1115 			/*
1116 			 * At this point, the page may be truncated or
1117 			 * invalidated (changing page->mapping to NULL),
1118 			 * or even swizzled back from swapper_space to tmpfs
1119 			 * file mapping. However, page->index will not change
1120 			 * because we have a reference on the page.
1121 			 *
1122 			 * Searching done if the page index is out of range.
1123 			 * If the current offset is not reaches the end of
1124 			 * the specified search range, there should be a hole
1125 			 * between them.
1126 			 */
1127 			if (page->index > end) {
1128 				if (type == HOLE_OFF && lastoff < endoff) {
1129 					*offset = lastoff;
1130 					found = true;
1131 				}
1132 				goto out;
1133 			}
1134 
1135 			lock_page(page);
1136 			/*
1137 			 * Page truncated or invalidated(page->mapping == NULL).
1138 			 * We can freely skip it and proceed to check the next
1139 			 * page.
1140 			 */
1141 			if (unlikely(page->mapping != inode->i_mapping)) {
1142 				unlock_page(page);
1143 				continue;
1144 			}
1145 
1146 			if (!page_has_buffers(page)) {
1147 				unlock_page(page);
1148 				continue;
1149 			}
1150 
1151 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1152 			if (found) {
1153 				/*
1154 				 * The found offset may be less than the start
1155 				 * point to search if this is the first time to
1156 				 * come here.
1157 				 */
1158 				*offset = max_t(loff_t, startoff, b_offset);
1159 				unlock_page(page);
1160 				goto out;
1161 			}
1162 
1163 			/*
1164 			 * We either searching data but nothing was found, or
1165 			 * searching hole but found a data buffer.  In either
1166 			 * case, probably the next page contains the desired
1167 			 * things, update the last offset to it so.
1168 			 */
1169 			lastoff = page_offset(page) + PAGE_SIZE;
1170 			unlock_page(page);
1171 		}
1172 
1173 		/*
1174 		 * The number of returned pages less than our desired, search
1175 		 * done.  In this case, nothing was found for searching data,
1176 		 * but we found a hole behind the last offset.
1177 		 */
1178 		if (nr_pages < want) {
1179 			if (type == HOLE_OFF) {
1180 				*offset = lastoff;
1181 				found = true;
1182 			}
1183 			break;
1184 		}
1185 
1186 		index = pvec.pages[i - 1]->index + 1;
1187 		pagevec_release(&pvec);
1188 	} while (index <= end);
1189 
1190 out:
1191 	pagevec_release(&pvec);
1192 	return found;
1193 }
1194 
1195 STATIC loff_t
1196 xfs_seek_hole_data(
1197 	struct file		*file,
1198 	loff_t			start,
1199 	int			whence)
1200 {
1201 	struct inode		*inode = file->f_mapping->host;
1202 	struct xfs_inode	*ip = XFS_I(inode);
1203 	struct xfs_mount	*mp = ip->i_mount;
1204 	loff_t			uninitialized_var(offset);
1205 	xfs_fsize_t		isize;
1206 	xfs_fileoff_t		fsbno;
1207 	xfs_filblks_t		end;
1208 	uint			lock;
1209 	int			error;
1210 
1211 	if (XFS_FORCED_SHUTDOWN(mp))
1212 		return -EIO;
1213 
1214 	lock = xfs_ilock_data_map_shared(ip);
1215 
1216 	isize = i_size_read(inode);
1217 	if (start >= isize) {
1218 		error = -ENXIO;
1219 		goto out_unlock;
1220 	}
1221 
1222 	/*
1223 	 * Try to read extents from the first block indicated
1224 	 * by fsbno to the end block of the file.
1225 	 */
1226 	fsbno = XFS_B_TO_FSBT(mp, start);
1227 	end = XFS_B_TO_FSB(mp, isize);
1228 
1229 	for (;;) {
1230 		struct xfs_bmbt_irec	map[2];
1231 		int			nmap = 2;
1232 		unsigned int		i;
1233 
1234 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1235 				       XFS_BMAPI_ENTIRE);
1236 		if (error)
1237 			goto out_unlock;
1238 
1239 		/* No extents at given offset, must be beyond EOF */
1240 		if (nmap == 0) {
1241 			error = -ENXIO;
1242 			goto out_unlock;
1243 		}
1244 
1245 		for (i = 0; i < nmap; i++) {
1246 			offset = max_t(loff_t, start,
1247 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1248 
1249 			/* Landed in the hole we wanted? */
1250 			if (whence == SEEK_HOLE &&
1251 			    map[i].br_startblock == HOLESTARTBLOCK)
1252 				goto out;
1253 
1254 			/* Landed in the data extent we wanted? */
1255 			if (whence == SEEK_DATA &&
1256 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1257 			     (map[i].br_state == XFS_EXT_NORM &&
1258 			      !isnullstartblock(map[i].br_startblock))))
1259 				goto out;
1260 
1261 			/*
1262 			 * Landed in an unwritten extent, try to search
1263 			 * for hole or data from page cache.
1264 			 */
1265 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1266 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1267 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1268 							&offset))
1269 					goto out;
1270 			}
1271 		}
1272 
1273 		/*
1274 		 * We only received one extent out of the two requested. This
1275 		 * means we've hit EOF and didn't find what we are looking for.
1276 		 */
1277 		if (nmap == 1) {
1278 			/*
1279 			 * If we were looking for a hole, set offset to
1280 			 * the end of the file (i.e., there is an implicit
1281 			 * hole at the end of any file).
1282 		 	 */
1283 			if (whence == SEEK_HOLE) {
1284 				offset = isize;
1285 				break;
1286 			}
1287 			/*
1288 			 * If we were looking for data, it's nowhere to be found
1289 			 */
1290 			ASSERT(whence == SEEK_DATA);
1291 			error = -ENXIO;
1292 			goto out_unlock;
1293 		}
1294 
1295 		ASSERT(i > 1);
1296 
1297 		/*
1298 		 * Nothing was found, proceed to the next round of search
1299 		 * if the next reading offset is not at or beyond EOF.
1300 		 */
1301 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1302 		start = XFS_FSB_TO_B(mp, fsbno);
1303 		if (start >= isize) {
1304 			if (whence == SEEK_HOLE) {
1305 				offset = isize;
1306 				break;
1307 			}
1308 			ASSERT(whence == SEEK_DATA);
1309 			error = -ENXIO;
1310 			goto out_unlock;
1311 		}
1312 	}
1313 
1314 out:
1315 	/*
1316 	 * If at this point we have found the hole we wanted, the returned
1317 	 * offset may be bigger than the file size as it may be aligned to
1318 	 * page boundary for unwritten extents.  We need to deal with this
1319 	 * situation in particular.
1320 	 */
1321 	if (whence == SEEK_HOLE)
1322 		offset = min_t(loff_t, offset, isize);
1323 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1324 
1325 out_unlock:
1326 	xfs_iunlock(ip, lock);
1327 
1328 	if (error)
1329 		return error;
1330 	return offset;
1331 }
1332 
1333 STATIC loff_t
1334 xfs_file_llseek(
1335 	struct file	*file,
1336 	loff_t		offset,
1337 	int		whence)
1338 {
1339 	switch (whence) {
1340 	case SEEK_END:
1341 	case SEEK_CUR:
1342 	case SEEK_SET:
1343 		return generic_file_llseek(file, offset, whence);
1344 	case SEEK_HOLE:
1345 	case SEEK_DATA:
1346 		return xfs_seek_hole_data(file, offset, whence);
1347 	default:
1348 		return -EINVAL;
1349 	}
1350 }
1351 
1352 const struct file_operations xfs_file_operations = {
1353 	.llseek		= xfs_file_llseek,
1354 	.read		= new_sync_read,
1355 	.write		= new_sync_write,
1356 	.read_iter	= xfs_file_read_iter,
1357 	.write_iter	= xfs_file_write_iter,
1358 	.splice_read	= xfs_file_splice_read,
1359 	.splice_write	= iter_file_splice_write,
1360 	.unlocked_ioctl	= xfs_file_ioctl,
1361 #ifdef CONFIG_COMPAT
1362 	.compat_ioctl	= xfs_file_compat_ioctl,
1363 #endif
1364 	.mmap		= xfs_file_mmap,
1365 	.open		= xfs_file_open,
1366 	.release	= xfs_file_release,
1367 	.fsync		= xfs_file_fsync,
1368 	.fallocate	= xfs_file_fallocate,
1369 };
1370 
1371 const struct file_operations xfs_dir_file_operations = {
1372 	.open		= xfs_dir_open,
1373 	.read		= generic_read_dir,
1374 	.iterate	= xfs_file_readdir,
1375 	.llseek		= generic_file_llseek,
1376 	.unlocked_ioctl	= xfs_file_ioctl,
1377 #ifdef CONFIG_COMPAT
1378 	.compat_ioctl	= xfs_file_compat_ioctl,
1379 #endif
1380 	.fsync		= xfs_dir_fsync,
1381 };
1382 
1383 static const struct vm_operations_struct xfs_file_vm_ops = {
1384 	.fault		= filemap_fault,
1385 	.map_pages	= filemap_map_pages,
1386 	.page_mkwrite	= xfs_vm_page_mkwrite,
1387 	.remap_pages	= generic_file_remap_pages,
1388 };
1389