xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 8fdff1dc)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38 
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 #include <linux/pagevec.h>
42 
43 static const struct vm_operations_struct xfs_file_vm_ops;
44 
45 /*
46  * Locking primitives for read and write IO paths to ensure we consistently use
47  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
48  */
49 static inline void
50 xfs_rw_ilock(
51 	struct xfs_inode	*ip,
52 	int			type)
53 {
54 	if (type & XFS_IOLOCK_EXCL)
55 		mutex_lock(&VFS_I(ip)->i_mutex);
56 	xfs_ilock(ip, type);
57 }
58 
59 static inline void
60 xfs_rw_iunlock(
61 	struct xfs_inode	*ip,
62 	int			type)
63 {
64 	xfs_iunlock(ip, type);
65 	if (type & XFS_IOLOCK_EXCL)
66 		mutex_unlock(&VFS_I(ip)->i_mutex);
67 }
68 
69 static inline void
70 xfs_rw_ilock_demote(
71 	struct xfs_inode	*ip,
72 	int			type)
73 {
74 	xfs_ilock_demote(ip, type);
75 	if (type & XFS_IOLOCK_EXCL)
76 		mutex_unlock(&VFS_I(ip)->i_mutex);
77 }
78 
79 /*
80  *	xfs_iozero
81  *
82  *	xfs_iozero clears the specified range of buffer supplied,
83  *	and marks all the affected blocks as valid and modified.  If
84  *	an affected block is not allocated, it will be allocated.  If
85  *	an affected block is not completely overwritten, and is not
86  *	valid before the operation, it will be read from disk before
87  *	being partially zeroed.
88  */
89 int
90 xfs_iozero(
91 	struct xfs_inode	*ip,	/* inode			*/
92 	loff_t			pos,	/* offset in file		*/
93 	size_t			count)	/* size of data to zero		*/
94 {
95 	struct page		*page;
96 	struct address_space	*mapping;
97 	int			status;
98 
99 	mapping = VFS_I(ip)->i_mapping;
100 	do {
101 		unsigned offset, bytes;
102 		void *fsdata;
103 
104 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
105 		bytes = PAGE_CACHE_SIZE - offset;
106 		if (bytes > count)
107 			bytes = count;
108 
109 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
110 					AOP_FLAG_UNINTERRUPTIBLE,
111 					&page, &fsdata);
112 		if (status)
113 			break;
114 
115 		zero_user(page, offset, bytes);
116 
117 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
118 					page, fsdata);
119 		WARN_ON(status <= 0); /* can't return less than zero! */
120 		pos += bytes;
121 		count -= bytes;
122 		status = 0;
123 	} while (count);
124 
125 	return (-status);
126 }
127 
128 /*
129  * Fsync operations on directories are much simpler than on regular files,
130  * as there is no file data to flush, and thus also no need for explicit
131  * cache flush operations, and there are no non-transaction metadata updates
132  * on directories either.
133  */
134 STATIC int
135 xfs_dir_fsync(
136 	struct file		*file,
137 	loff_t			start,
138 	loff_t			end,
139 	int			datasync)
140 {
141 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
142 	struct xfs_mount	*mp = ip->i_mount;
143 	xfs_lsn_t		lsn = 0;
144 
145 	trace_xfs_dir_fsync(ip);
146 
147 	xfs_ilock(ip, XFS_ILOCK_SHARED);
148 	if (xfs_ipincount(ip))
149 		lsn = ip->i_itemp->ili_last_lsn;
150 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
151 
152 	if (!lsn)
153 		return 0;
154 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
155 }
156 
157 STATIC int
158 xfs_file_fsync(
159 	struct file		*file,
160 	loff_t			start,
161 	loff_t			end,
162 	int			datasync)
163 {
164 	struct inode		*inode = file->f_mapping->host;
165 	struct xfs_inode	*ip = XFS_I(inode);
166 	struct xfs_mount	*mp = ip->i_mount;
167 	int			error = 0;
168 	int			log_flushed = 0;
169 	xfs_lsn_t		lsn = 0;
170 
171 	trace_xfs_file_fsync(ip);
172 
173 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
174 	if (error)
175 		return error;
176 
177 	if (XFS_FORCED_SHUTDOWN(mp))
178 		return -XFS_ERROR(EIO);
179 
180 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
181 
182 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
183 		/*
184 		 * If we have an RT and/or log subvolume we need to make sure
185 		 * to flush the write cache the device used for file data
186 		 * first.  This is to ensure newly written file data make
187 		 * it to disk before logging the new inode size in case of
188 		 * an extending write.
189 		 */
190 		if (XFS_IS_REALTIME_INODE(ip))
191 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
192 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
193 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
194 	}
195 
196 	/*
197 	 * All metadata updates are logged, which means that we just have
198 	 * to flush the log up to the latest LSN that touched the inode.
199 	 */
200 	xfs_ilock(ip, XFS_ILOCK_SHARED);
201 	if (xfs_ipincount(ip)) {
202 		if (!datasync ||
203 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
204 			lsn = ip->i_itemp->ili_last_lsn;
205 	}
206 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
207 
208 	if (lsn)
209 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
210 
211 	/*
212 	 * If we only have a single device, and the log force about was
213 	 * a no-op we might have to flush the data device cache here.
214 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
215 	 * an already allocated file and thus do not have any metadata to
216 	 * commit.
217 	 */
218 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
219 	    mp->m_logdev_targp == mp->m_ddev_targp &&
220 	    !XFS_IS_REALTIME_INODE(ip) &&
221 	    !log_flushed)
222 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
223 
224 	return -error;
225 }
226 
227 STATIC ssize_t
228 xfs_file_aio_read(
229 	struct kiocb		*iocb,
230 	const struct iovec	*iovp,
231 	unsigned long		nr_segs,
232 	loff_t			pos)
233 {
234 	struct file		*file = iocb->ki_filp;
235 	struct inode		*inode = file->f_mapping->host;
236 	struct xfs_inode	*ip = XFS_I(inode);
237 	struct xfs_mount	*mp = ip->i_mount;
238 	size_t			size = 0;
239 	ssize_t			ret = 0;
240 	int			ioflags = 0;
241 	xfs_fsize_t		n;
242 
243 	XFS_STATS_INC(xs_read_calls);
244 
245 	BUG_ON(iocb->ki_pos != pos);
246 
247 	if (unlikely(file->f_flags & O_DIRECT))
248 		ioflags |= IO_ISDIRECT;
249 	if (file->f_mode & FMODE_NOCMTIME)
250 		ioflags |= IO_INVIS;
251 
252 	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
253 	if (ret < 0)
254 		return ret;
255 
256 	if (unlikely(ioflags & IO_ISDIRECT)) {
257 		xfs_buftarg_t	*target =
258 			XFS_IS_REALTIME_INODE(ip) ?
259 				mp->m_rtdev_targp : mp->m_ddev_targp;
260 		if ((pos & target->bt_smask) || (size & target->bt_smask)) {
261 			if (pos == i_size_read(inode))
262 				return 0;
263 			return -XFS_ERROR(EINVAL);
264 		}
265 	}
266 
267 	n = mp->m_super->s_maxbytes - pos;
268 	if (n <= 0 || size == 0)
269 		return 0;
270 
271 	if (n < size)
272 		size = n;
273 
274 	if (XFS_FORCED_SHUTDOWN(mp))
275 		return -EIO;
276 
277 	/*
278 	 * Locking is a bit tricky here. If we take an exclusive lock
279 	 * for direct IO, we effectively serialise all new concurrent
280 	 * read IO to this file and block it behind IO that is currently in
281 	 * progress because IO in progress holds the IO lock shared. We only
282 	 * need to hold the lock exclusive to blow away the page cache, so
283 	 * only take lock exclusively if the page cache needs invalidation.
284 	 * This allows the normal direct IO case of no page cache pages to
285 	 * proceeed concurrently without serialisation.
286 	 */
287 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
288 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
289 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
290 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
291 
292 		if (inode->i_mapping->nrpages) {
293 			ret = -filemap_write_and_wait_range(
294 							VFS_I(ip)->i_mapping,
295 							pos, -1);
296 			if (ret) {
297 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
298 				return ret;
299 			}
300 			truncate_pagecache_range(VFS_I(ip), pos, -1);
301 		}
302 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
303 	}
304 
305 	trace_xfs_file_read(ip, size, pos, ioflags);
306 
307 	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
308 	if (ret > 0)
309 		XFS_STATS_ADD(xs_read_bytes, ret);
310 
311 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
312 	return ret;
313 }
314 
315 STATIC ssize_t
316 xfs_file_splice_read(
317 	struct file		*infilp,
318 	loff_t			*ppos,
319 	struct pipe_inode_info	*pipe,
320 	size_t			count,
321 	unsigned int		flags)
322 {
323 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
324 	int			ioflags = 0;
325 	ssize_t			ret;
326 
327 	XFS_STATS_INC(xs_read_calls);
328 
329 	if (infilp->f_mode & FMODE_NOCMTIME)
330 		ioflags |= IO_INVIS;
331 
332 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
333 		return -EIO;
334 
335 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
336 
337 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
338 
339 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
340 	if (ret > 0)
341 		XFS_STATS_ADD(xs_read_bytes, ret);
342 
343 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
344 	return ret;
345 }
346 
347 /*
348  * xfs_file_splice_write() does not use xfs_rw_ilock() because
349  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
350  * couuld cause lock inversions between the aio_write path and the splice path
351  * if someone is doing concurrent splice(2) based writes and write(2) based
352  * writes to the same inode. The only real way to fix this is to re-implement
353  * the generic code here with correct locking orders.
354  */
355 STATIC ssize_t
356 xfs_file_splice_write(
357 	struct pipe_inode_info	*pipe,
358 	struct file		*outfilp,
359 	loff_t			*ppos,
360 	size_t			count,
361 	unsigned int		flags)
362 {
363 	struct inode		*inode = outfilp->f_mapping->host;
364 	struct xfs_inode	*ip = XFS_I(inode);
365 	int			ioflags = 0;
366 	ssize_t			ret;
367 
368 	XFS_STATS_INC(xs_write_calls);
369 
370 	if (outfilp->f_mode & FMODE_NOCMTIME)
371 		ioflags |= IO_INVIS;
372 
373 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
374 		return -EIO;
375 
376 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
377 
378 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
379 
380 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
381 	if (ret > 0)
382 		XFS_STATS_ADD(xs_write_bytes, ret);
383 
384 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
385 	return ret;
386 }
387 
388 /*
389  * This routine is called to handle zeroing any space in the last block of the
390  * file that is beyond the EOF.  We do this since the size is being increased
391  * without writing anything to that block and we don't want to read the
392  * garbage on the disk.
393  */
394 STATIC int				/* error (positive) */
395 xfs_zero_last_block(
396 	struct xfs_inode	*ip,
397 	xfs_fsize_t		offset,
398 	xfs_fsize_t		isize)
399 {
400 	struct xfs_mount	*mp = ip->i_mount;
401 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
402 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
403 	int			zero_len;
404 	int			nimaps = 1;
405 	int			error = 0;
406 	struct xfs_bmbt_irec	imap;
407 
408 	xfs_ilock(ip, XFS_ILOCK_EXCL);
409 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
410 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
411 	if (error)
412 		return error;
413 
414 	ASSERT(nimaps > 0);
415 
416 	/*
417 	 * If the block underlying isize is just a hole, then there
418 	 * is nothing to zero.
419 	 */
420 	if (imap.br_startblock == HOLESTARTBLOCK)
421 		return 0;
422 
423 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
424 	if (isize + zero_len > offset)
425 		zero_len = offset - isize;
426 	return xfs_iozero(ip, isize, zero_len);
427 }
428 
429 /*
430  * Zero any on disk space between the current EOF and the new, larger EOF.
431  *
432  * This handles the normal case of zeroing the remainder of the last block in
433  * the file and the unusual case of zeroing blocks out beyond the size of the
434  * file.  This second case only happens with fixed size extents and when the
435  * system crashes before the inode size was updated but after blocks were
436  * allocated.
437  *
438  * Expects the iolock to be held exclusive, and will take the ilock internally.
439  */
440 int					/* error (positive) */
441 xfs_zero_eof(
442 	struct xfs_inode	*ip,
443 	xfs_off_t		offset,		/* starting I/O offset */
444 	xfs_fsize_t		isize)		/* current inode size */
445 {
446 	struct xfs_mount	*mp = ip->i_mount;
447 	xfs_fileoff_t		start_zero_fsb;
448 	xfs_fileoff_t		end_zero_fsb;
449 	xfs_fileoff_t		zero_count_fsb;
450 	xfs_fileoff_t		last_fsb;
451 	xfs_fileoff_t		zero_off;
452 	xfs_fsize_t		zero_len;
453 	int			nimaps;
454 	int			error = 0;
455 	struct xfs_bmbt_irec	imap;
456 
457 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
458 	ASSERT(offset > isize);
459 
460 	/*
461 	 * First handle zeroing the block on which isize resides.
462 	 *
463 	 * We only zero a part of that block so it is handled specially.
464 	 */
465 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
466 		error = xfs_zero_last_block(ip, offset, isize);
467 		if (error)
468 			return error;
469 	}
470 
471 	/*
472 	 * Calculate the range between the new size and the old where blocks
473 	 * needing to be zeroed may exist.
474 	 *
475 	 * To get the block where the last byte in the file currently resides,
476 	 * we need to subtract one from the size and truncate back to a block
477 	 * boundary.  We subtract 1 in case the size is exactly on a block
478 	 * boundary.
479 	 */
480 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
481 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
482 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
483 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
484 	if (last_fsb == end_zero_fsb) {
485 		/*
486 		 * The size was only incremented on its last block.
487 		 * We took care of that above, so just return.
488 		 */
489 		return 0;
490 	}
491 
492 	ASSERT(start_zero_fsb <= end_zero_fsb);
493 	while (start_zero_fsb <= end_zero_fsb) {
494 		nimaps = 1;
495 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
496 
497 		xfs_ilock(ip, XFS_ILOCK_EXCL);
498 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
499 					  &imap, &nimaps, 0);
500 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
501 		if (error)
502 			return error;
503 
504 		ASSERT(nimaps > 0);
505 
506 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
507 		    imap.br_startblock == HOLESTARTBLOCK) {
508 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
509 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
510 			continue;
511 		}
512 
513 		/*
514 		 * There are blocks we need to zero.
515 		 */
516 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
517 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
518 
519 		if ((zero_off + zero_len) > offset)
520 			zero_len = offset - zero_off;
521 
522 		error = xfs_iozero(ip, zero_off, zero_len);
523 		if (error)
524 			return error;
525 
526 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
528 	}
529 
530 	return 0;
531 }
532 
533 /*
534  * Common pre-write limit and setup checks.
535  *
536  * Called with the iolocked held either shared and exclusive according to
537  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
538  * if called for a direct write beyond i_size.
539  */
540 STATIC ssize_t
541 xfs_file_aio_write_checks(
542 	struct file		*file,
543 	loff_t			*pos,
544 	size_t			*count,
545 	int			*iolock)
546 {
547 	struct inode		*inode = file->f_mapping->host;
548 	struct xfs_inode	*ip = XFS_I(inode);
549 	int			error = 0;
550 
551 restart:
552 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
553 	if (error)
554 		return error;
555 
556 	/*
557 	 * If the offset is beyond the size of the file, we need to zero any
558 	 * blocks that fall between the existing EOF and the start of this
559 	 * write.  If zeroing is needed and we are currently holding the
560 	 * iolock shared, we need to update it to exclusive which implies
561 	 * having to redo all checks before.
562 	 */
563 	if (*pos > i_size_read(inode)) {
564 		if (*iolock == XFS_IOLOCK_SHARED) {
565 			xfs_rw_iunlock(ip, *iolock);
566 			*iolock = XFS_IOLOCK_EXCL;
567 			xfs_rw_ilock(ip, *iolock);
568 			goto restart;
569 		}
570 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
571 		if (error)
572 			return error;
573 	}
574 
575 	/*
576 	 * Updating the timestamps will grab the ilock again from
577 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
578 	 * lock above.  Eventually we should look into a way to avoid
579 	 * the pointless lock roundtrip.
580 	 */
581 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
582 		error = file_update_time(file);
583 		if (error)
584 			return error;
585 	}
586 
587 	/*
588 	 * If we're writing the file then make sure to clear the setuid and
589 	 * setgid bits if the process is not being run by root.  This keeps
590 	 * people from modifying setuid and setgid binaries.
591 	 */
592 	return file_remove_suid(file);
593 }
594 
595 /*
596  * xfs_file_dio_aio_write - handle direct IO writes
597  *
598  * Lock the inode appropriately to prepare for and issue a direct IO write.
599  * By separating it from the buffered write path we remove all the tricky to
600  * follow locking changes and looping.
601  *
602  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
603  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
604  * pages are flushed out.
605  *
606  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
607  * allowing them to be done in parallel with reads and other direct IO writes.
608  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
609  * needs to do sub-block zeroing and that requires serialisation against other
610  * direct IOs to the same block. In this case we need to serialise the
611  * submission of the unaligned IOs so that we don't get racing block zeroing in
612  * the dio layer.  To avoid the problem with aio, we also need to wait for
613  * outstanding IOs to complete so that unwritten extent conversion is completed
614  * before we try to map the overlapping block. This is currently implemented by
615  * hitting it with a big hammer (i.e. inode_dio_wait()).
616  *
617  * Returns with locks held indicated by @iolock and errors indicated by
618  * negative return values.
619  */
620 STATIC ssize_t
621 xfs_file_dio_aio_write(
622 	struct kiocb		*iocb,
623 	const struct iovec	*iovp,
624 	unsigned long		nr_segs,
625 	loff_t			pos,
626 	size_t			ocount)
627 {
628 	struct file		*file = iocb->ki_filp;
629 	struct address_space	*mapping = file->f_mapping;
630 	struct inode		*inode = mapping->host;
631 	struct xfs_inode	*ip = XFS_I(inode);
632 	struct xfs_mount	*mp = ip->i_mount;
633 	ssize_t			ret = 0;
634 	size_t			count = ocount;
635 	int			unaligned_io = 0;
636 	int			iolock;
637 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
638 					mp->m_rtdev_targp : mp->m_ddev_targp;
639 
640 	if ((pos & target->bt_smask) || (count & target->bt_smask))
641 		return -XFS_ERROR(EINVAL);
642 
643 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
644 		unaligned_io = 1;
645 
646 	/*
647 	 * We don't need to take an exclusive lock unless there page cache needs
648 	 * to be invalidated or unaligned IO is being executed. We don't need to
649 	 * consider the EOF extension case here because
650 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
651 	 * EOF zeroing cases and fill out the new inode size as appropriate.
652 	 */
653 	if (unaligned_io || mapping->nrpages)
654 		iolock = XFS_IOLOCK_EXCL;
655 	else
656 		iolock = XFS_IOLOCK_SHARED;
657 	xfs_rw_ilock(ip, iolock);
658 
659 	/*
660 	 * Recheck if there are cached pages that need invalidate after we got
661 	 * the iolock to protect against other threads adding new pages while
662 	 * we were waiting for the iolock.
663 	 */
664 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
665 		xfs_rw_iunlock(ip, iolock);
666 		iolock = XFS_IOLOCK_EXCL;
667 		xfs_rw_ilock(ip, iolock);
668 	}
669 
670 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
671 	if (ret)
672 		goto out;
673 
674 	if (mapping->nrpages) {
675 		ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
676 						    pos, -1);
677 		if (ret)
678 			goto out;
679 		truncate_pagecache_range(VFS_I(ip), pos, -1);
680 	}
681 
682 	/*
683 	 * If we are doing unaligned IO, wait for all other IO to drain,
684 	 * otherwise demote the lock if we had to flush cached pages
685 	 */
686 	if (unaligned_io)
687 		inode_dio_wait(inode);
688 	else if (iolock == XFS_IOLOCK_EXCL) {
689 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
690 		iolock = XFS_IOLOCK_SHARED;
691 	}
692 
693 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
694 	ret = generic_file_direct_write(iocb, iovp,
695 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
696 
697 out:
698 	xfs_rw_iunlock(ip, iolock);
699 
700 	/* No fallback to buffered IO on errors for XFS. */
701 	ASSERT(ret < 0 || ret == count);
702 	return ret;
703 }
704 
705 STATIC ssize_t
706 xfs_file_buffered_aio_write(
707 	struct kiocb		*iocb,
708 	const struct iovec	*iovp,
709 	unsigned long		nr_segs,
710 	loff_t			pos,
711 	size_t			ocount)
712 {
713 	struct file		*file = iocb->ki_filp;
714 	struct address_space	*mapping = file->f_mapping;
715 	struct inode		*inode = mapping->host;
716 	struct xfs_inode	*ip = XFS_I(inode);
717 	ssize_t			ret;
718 	int			enospc = 0;
719 	int			iolock = XFS_IOLOCK_EXCL;
720 	size_t			count = ocount;
721 
722 	xfs_rw_ilock(ip, iolock);
723 
724 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
725 	if (ret)
726 		goto out;
727 
728 	/* We can write back this queue in page reclaim */
729 	current->backing_dev_info = mapping->backing_dev_info;
730 
731 write_retry:
732 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
733 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
734 			pos, &iocb->ki_pos, count, 0);
735 
736 	/*
737 	 * If we just got an ENOSPC, try to write back all dirty inodes to
738 	 * convert delalloc space to free up some of the excess reserved
739 	 * metadata space.
740 	 */
741 	if (ret == -ENOSPC && !enospc) {
742 		enospc = 1;
743 		xfs_flush_inodes(ip->i_mount);
744 		goto write_retry;
745 	}
746 
747 	current->backing_dev_info = NULL;
748 out:
749 	xfs_rw_iunlock(ip, iolock);
750 	return ret;
751 }
752 
753 STATIC ssize_t
754 xfs_file_aio_write(
755 	struct kiocb		*iocb,
756 	const struct iovec	*iovp,
757 	unsigned long		nr_segs,
758 	loff_t			pos)
759 {
760 	struct file		*file = iocb->ki_filp;
761 	struct address_space	*mapping = file->f_mapping;
762 	struct inode		*inode = mapping->host;
763 	struct xfs_inode	*ip = XFS_I(inode);
764 	ssize_t			ret;
765 	size_t			ocount = 0;
766 
767 	XFS_STATS_INC(xs_write_calls);
768 
769 	BUG_ON(iocb->ki_pos != pos);
770 
771 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
772 	if (ret)
773 		return ret;
774 
775 	if (ocount == 0)
776 		return 0;
777 
778 	sb_start_write(inode->i_sb);
779 
780 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 		ret = -EIO;
782 		goto out;
783 	}
784 
785 	if (unlikely(file->f_flags & O_DIRECT))
786 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
787 	else
788 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
789 						  ocount);
790 
791 	if (ret > 0) {
792 		ssize_t err;
793 
794 		XFS_STATS_ADD(xs_write_bytes, ret);
795 
796 		/* Handle various SYNC-type writes */
797 		err = generic_write_sync(file, pos, ret);
798 		if (err < 0)
799 			ret = err;
800 	}
801 
802 out:
803 	sb_end_write(inode->i_sb);
804 	return ret;
805 }
806 
807 STATIC long
808 xfs_file_fallocate(
809 	struct file	*file,
810 	int		mode,
811 	loff_t		offset,
812 	loff_t		len)
813 {
814 	struct inode	*inode = file->f_path.dentry->d_inode;
815 	long		error;
816 	loff_t		new_size = 0;
817 	xfs_flock64_t	bf;
818 	xfs_inode_t	*ip = XFS_I(inode);
819 	int		cmd = XFS_IOC_RESVSP;
820 	int		attr_flags = XFS_ATTR_NOLOCK;
821 
822 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
823 		return -EOPNOTSUPP;
824 
825 	bf.l_whence = 0;
826 	bf.l_start = offset;
827 	bf.l_len = len;
828 
829 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
830 
831 	if (mode & FALLOC_FL_PUNCH_HOLE)
832 		cmd = XFS_IOC_UNRESVSP;
833 
834 	/* check the new inode size is valid before allocating */
835 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
836 	    offset + len > i_size_read(inode)) {
837 		new_size = offset + len;
838 		error = inode_newsize_ok(inode, new_size);
839 		if (error)
840 			goto out_unlock;
841 	}
842 
843 	if (file->f_flags & O_DSYNC)
844 		attr_flags |= XFS_ATTR_SYNC;
845 
846 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
847 	if (error)
848 		goto out_unlock;
849 
850 	/* Change file size if needed */
851 	if (new_size) {
852 		struct iattr iattr;
853 
854 		iattr.ia_valid = ATTR_SIZE;
855 		iattr.ia_size = new_size;
856 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
857 	}
858 
859 out_unlock:
860 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
861 	return error;
862 }
863 
864 
865 STATIC int
866 xfs_file_open(
867 	struct inode	*inode,
868 	struct file	*file)
869 {
870 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
871 		return -EFBIG;
872 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
873 		return -EIO;
874 	return 0;
875 }
876 
877 STATIC int
878 xfs_dir_open(
879 	struct inode	*inode,
880 	struct file	*file)
881 {
882 	struct xfs_inode *ip = XFS_I(inode);
883 	int		mode;
884 	int		error;
885 
886 	error = xfs_file_open(inode, file);
887 	if (error)
888 		return error;
889 
890 	/*
891 	 * If there are any blocks, read-ahead block 0 as we're almost
892 	 * certain to have the next operation be a read there.
893 	 */
894 	mode = xfs_ilock_map_shared(ip);
895 	if (ip->i_d.di_nextents > 0)
896 		xfs_dir2_data_readahead(NULL, ip, 0, -1);
897 	xfs_iunlock(ip, mode);
898 	return 0;
899 }
900 
901 STATIC int
902 xfs_file_release(
903 	struct inode	*inode,
904 	struct file	*filp)
905 {
906 	return -xfs_release(XFS_I(inode));
907 }
908 
909 STATIC int
910 xfs_file_readdir(
911 	struct file	*filp,
912 	void		*dirent,
913 	filldir_t	filldir)
914 {
915 	struct inode	*inode = filp->f_path.dentry->d_inode;
916 	xfs_inode_t	*ip = XFS_I(inode);
917 	int		error;
918 	size_t		bufsize;
919 
920 	/*
921 	 * The Linux API doesn't pass down the total size of the buffer
922 	 * we read into down to the filesystem.  With the filldir concept
923 	 * it's not needed for correct information, but the XFS dir2 leaf
924 	 * code wants an estimate of the buffer size to calculate it's
925 	 * readahead window and size the buffers used for mapping to
926 	 * physical blocks.
927 	 *
928 	 * Try to give it an estimate that's good enough, maybe at some
929 	 * point we can change the ->readdir prototype to include the
930 	 * buffer size.  For now we use the current glibc buffer size.
931 	 */
932 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
933 
934 	error = xfs_readdir(ip, dirent, bufsize,
935 				(xfs_off_t *)&filp->f_pos, filldir);
936 	if (error)
937 		return -error;
938 	return 0;
939 }
940 
941 STATIC int
942 xfs_file_mmap(
943 	struct file	*filp,
944 	struct vm_area_struct *vma)
945 {
946 	vma->vm_ops = &xfs_file_vm_ops;
947 
948 	file_accessed(filp);
949 	return 0;
950 }
951 
952 /*
953  * mmap()d file has taken write protection fault and is being made
954  * writable. We can set the page state up correctly for a writable
955  * page, which means we can do correct delalloc accounting (ENOSPC
956  * checking!) and unwritten extent mapping.
957  */
958 STATIC int
959 xfs_vm_page_mkwrite(
960 	struct vm_area_struct	*vma,
961 	struct vm_fault		*vmf)
962 {
963 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
964 }
965 
966 /*
967  * This type is designed to indicate the type of offset we would like
968  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
969  */
970 enum {
971 	HOLE_OFF = 0,
972 	DATA_OFF,
973 };
974 
975 /*
976  * Lookup the desired type of offset from the given page.
977  *
978  * On success, return true and the offset argument will point to the
979  * start of the region that was found.  Otherwise this function will
980  * return false and keep the offset argument unchanged.
981  */
982 STATIC bool
983 xfs_lookup_buffer_offset(
984 	struct page		*page,
985 	loff_t			*offset,
986 	unsigned int		type)
987 {
988 	loff_t			lastoff = page_offset(page);
989 	bool			found = false;
990 	struct buffer_head	*bh, *head;
991 
992 	bh = head = page_buffers(page);
993 	do {
994 		/*
995 		 * Unwritten extents that have data in the page
996 		 * cache covering them can be identified by the
997 		 * BH_Unwritten state flag.  Pages with multiple
998 		 * buffers might have a mix of holes, data and
999 		 * unwritten extents - any buffer with valid
1000 		 * data in it should have BH_Uptodate flag set
1001 		 * on it.
1002 		 */
1003 		if (buffer_unwritten(bh) ||
1004 		    buffer_uptodate(bh)) {
1005 			if (type == DATA_OFF)
1006 				found = true;
1007 		} else {
1008 			if (type == HOLE_OFF)
1009 				found = true;
1010 		}
1011 
1012 		if (found) {
1013 			*offset = lastoff;
1014 			break;
1015 		}
1016 		lastoff += bh->b_size;
1017 	} while ((bh = bh->b_this_page) != head);
1018 
1019 	return found;
1020 }
1021 
1022 /*
1023  * This routine is called to find out and return a data or hole offset
1024  * from the page cache for unwritten extents according to the desired
1025  * type for xfs_seek_data() or xfs_seek_hole().
1026  *
1027  * The argument offset is used to tell where we start to search from the
1028  * page cache.  Map is used to figure out the end points of the range to
1029  * lookup pages.
1030  *
1031  * Return true if the desired type of offset was found, and the argument
1032  * offset is filled with that address.  Otherwise, return false and keep
1033  * offset unchanged.
1034  */
1035 STATIC bool
1036 xfs_find_get_desired_pgoff(
1037 	struct inode		*inode,
1038 	struct xfs_bmbt_irec	*map,
1039 	unsigned int		type,
1040 	loff_t			*offset)
1041 {
1042 	struct xfs_inode	*ip = XFS_I(inode);
1043 	struct xfs_mount	*mp = ip->i_mount;
1044 	struct pagevec		pvec;
1045 	pgoff_t			index;
1046 	pgoff_t			end;
1047 	loff_t			endoff;
1048 	loff_t			startoff = *offset;
1049 	loff_t			lastoff = startoff;
1050 	bool			found = false;
1051 
1052 	pagevec_init(&pvec, 0);
1053 
1054 	index = startoff >> PAGE_CACHE_SHIFT;
1055 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1056 	end = endoff >> PAGE_CACHE_SHIFT;
1057 	do {
1058 		int		want;
1059 		unsigned	nr_pages;
1060 		unsigned int	i;
1061 
1062 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1063 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1064 					  want);
1065 		/*
1066 		 * No page mapped into given range.  If we are searching holes
1067 		 * and if this is the first time we got into the loop, it means
1068 		 * that the given offset is landed in a hole, return it.
1069 		 *
1070 		 * If we have already stepped through some block buffers to find
1071 		 * holes but they all contains data.  In this case, the last
1072 		 * offset is already updated and pointed to the end of the last
1073 		 * mapped page, if it does not reach the endpoint to search,
1074 		 * that means there should be a hole between them.
1075 		 */
1076 		if (nr_pages == 0) {
1077 			/* Data search found nothing */
1078 			if (type == DATA_OFF)
1079 				break;
1080 
1081 			ASSERT(type == HOLE_OFF);
1082 			if (lastoff == startoff || lastoff < endoff) {
1083 				found = true;
1084 				*offset = lastoff;
1085 			}
1086 			break;
1087 		}
1088 
1089 		/*
1090 		 * At lease we found one page.  If this is the first time we
1091 		 * step into the loop, and if the first page index offset is
1092 		 * greater than the given search offset, a hole was found.
1093 		 */
1094 		if (type == HOLE_OFF && lastoff == startoff &&
1095 		    lastoff < page_offset(pvec.pages[0])) {
1096 			found = true;
1097 			break;
1098 		}
1099 
1100 		for (i = 0; i < nr_pages; i++) {
1101 			struct page	*page = pvec.pages[i];
1102 			loff_t		b_offset;
1103 
1104 			/*
1105 			 * At this point, the page may be truncated or
1106 			 * invalidated (changing page->mapping to NULL),
1107 			 * or even swizzled back from swapper_space to tmpfs
1108 			 * file mapping. However, page->index will not change
1109 			 * because we have a reference on the page.
1110 			 *
1111 			 * Searching done if the page index is out of range.
1112 			 * If the current offset is not reaches the end of
1113 			 * the specified search range, there should be a hole
1114 			 * between them.
1115 			 */
1116 			if (page->index > end) {
1117 				if (type == HOLE_OFF && lastoff < endoff) {
1118 					*offset = lastoff;
1119 					found = true;
1120 				}
1121 				goto out;
1122 			}
1123 
1124 			lock_page(page);
1125 			/*
1126 			 * Page truncated or invalidated(page->mapping == NULL).
1127 			 * We can freely skip it and proceed to check the next
1128 			 * page.
1129 			 */
1130 			if (unlikely(page->mapping != inode->i_mapping)) {
1131 				unlock_page(page);
1132 				continue;
1133 			}
1134 
1135 			if (!page_has_buffers(page)) {
1136 				unlock_page(page);
1137 				continue;
1138 			}
1139 
1140 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1141 			if (found) {
1142 				/*
1143 				 * The found offset may be less than the start
1144 				 * point to search if this is the first time to
1145 				 * come here.
1146 				 */
1147 				*offset = max_t(loff_t, startoff, b_offset);
1148 				unlock_page(page);
1149 				goto out;
1150 			}
1151 
1152 			/*
1153 			 * We either searching data but nothing was found, or
1154 			 * searching hole but found a data buffer.  In either
1155 			 * case, probably the next page contains the desired
1156 			 * things, update the last offset to it so.
1157 			 */
1158 			lastoff = page_offset(page) + PAGE_SIZE;
1159 			unlock_page(page);
1160 		}
1161 
1162 		/*
1163 		 * The number of returned pages less than our desired, search
1164 		 * done.  In this case, nothing was found for searching data,
1165 		 * but we found a hole behind the last offset.
1166 		 */
1167 		if (nr_pages < want) {
1168 			if (type == HOLE_OFF) {
1169 				*offset = lastoff;
1170 				found = true;
1171 			}
1172 			break;
1173 		}
1174 
1175 		index = pvec.pages[i - 1]->index + 1;
1176 		pagevec_release(&pvec);
1177 	} while (index <= end);
1178 
1179 out:
1180 	pagevec_release(&pvec);
1181 	return found;
1182 }
1183 
1184 STATIC loff_t
1185 xfs_seek_data(
1186 	struct file		*file,
1187 	loff_t			start)
1188 {
1189 	struct inode		*inode = file->f_mapping->host;
1190 	struct xfs_inode	*ip = XFS_I(inode);
1191 	struct xfs_mount	*mp = ip->i_mount;
1192 	loff_t			uninitialized_var(offset);
1193 	xfs_fsize_t		isize;
1194 	xfs_fileoff_t		fsbno;
1195 	xfs_filblks_t		end;
1196 	uint			lock;
1197 	int			error;
1198 
1199 	lock = xfs_ilock_map_shared(ip);
1200 
1201 	isize = i_size_read(inode);
1202 	if (start >= isize) {
1203 		error = ENXIO;
1204 		goto out_unlock;
1205 	}
1206 
1207 	/*
1208 	 * Try to read extents from the first block indicated
1209 	 * by fsbno to the end block of the file.
1210 	 */
1211 	fsbno = XFS_B_TO_FSBT(mp, start);
1212 	end = XFS_B_TO_FSB(mp, isize);
1213 	for (;;) {
1214 		struct xfs_bmbt_irec	map[2];
1215 		int			nmap = 2;
1216 		unsigned int		i;
1217 
1218 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1219 				       XFS_BMAPI_ENTIRE);
1220 		if (error)
1221 			goto out_unlock;
1222 
1223 		/* No extents at given offset, must be beyond EOF */
1224 		if (nmap == 0) {
1225 			error = ENXIO;
1226 			goto out_unlock;
1227 		}
1228 
1229 		for (i = 0; i < nmap; i++) {
1230 			offset = max_t(loff_t, start,
1231 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1232 
1233 			/* Landed in a data extent */
1234 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1235 			    (map[i].br_state == XFS_EXT_NORM &&
1236 			     !isnullstartblock(map[i].br_startblock)))
1237 				goto out;
1238 
1239 			/*
1240 			 * Landed in an unwritten extent, try to search data
1241 			 * from page cache.
1242 			 */
1243 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1244 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1245 							DATA_OFF, &offset))
1246 					goto out;
1247 			}
1248 		}
1249 
1250 		/*
1251 		 * map[0] is hole or its an unwritten extent but
1252 		 * without data in page cache.  Probably means that
1253 		 * we are reading after EOF if nothing in map[1].
1254 		 */
1255 		if (nmap == 1) {
1256 			error = ENXIO;
1257 			goto out_unlock;
1258 		}
1259 
1260 		ASSERT(i > 1);
1261 
1262 		/*
1263 		 * Nothing was found, proceed to the next round of search
1264 		 * if reading offset not beyond or hit EOF.
1265 		 */
1266 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1267 		start = XFS_FSB_TO_B(mp, fsbno);
1268 		if (start >= isize) {
1269 			error = ENXIO;
1270 			goto out_unlock;
1271 		}
1272 	}
1273 
1274 out:
1275 	if (offset != file->f_pos)
1276 		file->f_pos = offset;
1277 
1278 out_unlock:
1279 	xfs_iunlock_map_shared(ip, lock);
1280 
1281 	if (error)
1282 		return -error;
1283 	return offset;
1284 }
1285 
1286 STATIC loff_t
1287 xfs_seek_hole(
1288 	struct file		*file,
1289 	loff_t			start)
1290 {
1291 	struct inode		*inode = file->f_mapping->host;
1292 	struct xfs_inode	*ip = XFS_I(inode);
1293 	struct xfs_mount	*mp = ip->i_mount;
1294 	loff_t			uninitialized_var(offset);
1295 	xfs_fsize_t		isize;
1296 	xfs_fileoff_t		fsbno;
1297 	xfs_filblks_t		end;
1298 	uint			lock;
1299 	int			error;
1300 
1301 	if (XFS_FORCED_SHUTDOWN(mp))
1302 		return -XFS_ERROR(EIO);
1303 
1304 	lock = xfs_ilock_map_shared(ip);
1305 
1306 	isize = i_size_read(inode);
1307 	if (start >= isize) {
1308 		error = ENXIO;
1309 		goto out_unlock;
1310 	}
1311 
1312 	fsbno = XFS_B_TO_FSBT(mp, start);
1313 	end = XFS_B_TO_FSB(mp, isize);
1314 
1315 	for (;;) {
1316 		struct xfs_bmbt_irec	map[2];
1317 		int			nmap = 2;
1318 		unsigned int		i;
1319 
1320 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1321 				       XFS_BMAPI_ENTIRE);
1322 		if (error)
1323 			goto out_unlock;
1324 
1325 		/* No extents at given offset, must be beyond EOF */
1326 		if (nmap == 0) {
1327 			error = ENXIO;
1328 			goto out_unlock;
1329 		}
1330 
1331 		for (i = 0; i < nmap; i++) {
1332 			offset = max_t(loff_t, start,
1333 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1334 
1335 			/* Landed in a hole */
1336 			if (map[i].br_startblock == HOLESTARTBLOCK)
1337 				goto out;
1338 
1339 			/*
1340 			 * Landed in an unwritten extent, try to search hole
1341 			 * from page cache.
1342 			 */
1343 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1344 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1345 							HOLE_OFF, &offset))
1346 					goto out;
1347 			}
1348 		}
1349 
1350 		/*
1351 		 * map[0] contains data or its unwritten but contains
1352 		 * data in page cache, probably means that we are
1353 		 * reading after EOF.  We should fix offset to point
1354 		 * to the end of the file(i.e., there is an implicit
1355 		 * hole at the end of any file).
1356 		 */
1357 		if (nmap == 1) {
1358 			offset = isize;
1359 			break;
1360 		}
1361 
1362 		ASSERT(i > 1);
1363 
1364 		/*
1365 		 * Both mappings contains data, proceed to the next round of
1366 		 * search if the current reading offset not beyond or hit EOF.
1367 		 */
1368 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1369 		start = XFS_FSB_TO_B(mp, fsbno);
1370 		if (start >= isize) {
1371 			offset = isize;
1372 			break;
1373 		}
1374 	}
1375 
1376 out:
1377 	/*
1378 	 * At this point, we must have found a hole.  However, the returned
1379 	 * offset may be bigger than the file size as it may be aligned to
1380 	 * page boundary for unwritten extents, we need to deal with this
1381 	 * situation in particular.
1382 	 */
1383 	offset = min_t(loff_t, offset, isize);
1384 	if (offset != file->f_pos)
1385 		file->f_pos = offset;
1386 
1387 out_unlock:
1388 	xfs_iunlock_map_shared(ip, lock);
1389 
1390 	if (error)
1391 		return -error;
1392 	return offset;
1393 }
1394 
1395 STATIC loff_t
1396 xfs_file_llseek(
1397 	struct file	*file,
1398 	loff_t		offset,
1399 	int		origin)
1400 {
1401 	switch (origin) {
1402 	case SEEK_END:
1403 	case SEEK_CUR:
1404 	case SEEK_SET:
1405 		return generic_file_llseek(file, offset, origin);
1406 	case SEEK_DATA:
1407 		return xfs_seek_data(file, offset);
1408 	case SEEK_HOLE:
1409 		return xfs_seek_hole(file, offset);
1410 	default:
1411 		return -EINVAL;
1412 	}
1413 }
1414 
1415 const struct file_operations xfs_file_operations = {
1416 	.llseek		= xfs_file_llseek,
1417 	.read		= do_sync_read,
1418 	.write		= do_sync_write,
1419 	.aio_read	= xfs_file_aio_read,
1420 	.aio_write	= xfs_file_aio_write,
1421 	.splice_read	= xfs_file_splice_read,
1422 	.splice_write	= xfs_file_splice_write,
1423 	.unlocked_ioctl	= xfs_file_ioctl,
1424 #ifdef CONFIG_COMPAT
1425 	.compat_ioctl	= xfs_file_compat_ioctl,
1426 #endif
1427 	.mmap		= xfs_file_mmap,
1428 	.open		= xfs_file_open,
1429 	.release	= xfs_file_release,
1430 	.fsync		= xfs_file_fsync,
1431 	.fallocate	= xfs_file_fallocate,
1432 };
1433 
1434 const struct file_operations xfs_dir_file_operations = {
1435 	.open		= xfs_dir_open,
1436 	.read		= generic_read_dir,
1437 	.readdir	= xfs_file_readdir,
1438 	.llseek		= generic_file_llseek,
1439 	.unlocked_ioctl	= xfs_file_ioctl,
1440 #ifdef CONFIG_COMPAT
1441 	.compat_ioctl	= xfs_file_compat_ioctl,
1442 #endif
1443 	.fsync		= xfs_dir_fsync,
1444 };
1445 
1446 static const struct vm_operations_struct xfs_file_vm_ops = {
1447 	.fault		= filemap_fault,
1448 	.page_mkwrite	= xfs_vm_page_mkwrite,
1449 	.remap_pages	= generic_file_remap_pages,
1450 };
1451