1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Clear the specified ranges to zero through either the pagecache or DAX. 52 * Holes and unwritten extents will be left as-is as they already are zeroed. 53 */ 54 int 55 xfs_zero_range( 56 struct xfs_inode *ip, 57 xfs_off_t pos, 58 xfs_off_t count, 59 bool *did_zero) 60 { 61 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops); 62 } 63 64 int 65 xfs_update_prealloc_flags( 66 struct xfs_inode *ip, 67 enum xfs_prealloc_flags flags) 68 { 69 struct xfs_trans *tp; 70 int error; 71 72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 73 0, 0, 0, &tp); 74 if (error) 75 return error; 76 77 xfs_ilock(ip, XFS_ILOCK_EXCL); 78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 79 80 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 81 VFS_I(ip)->i_mode &= ~S_ISUID; 82 if (VFS_I(ip)->i_mode & S_IXGRP) 83 VFS_I(ip)->i_mode &= ~S_ISGID; 84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 85 } 86 87 if (flags & XFS_PREALLOC_SET) 88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 89 if (flags & XFS_PREALLOC_CLEAR) 90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 91 92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 93 if (flags & XFS_PREALLOC_SYNC) 94 xfs_trans_set_sync(tp); 95 return xfs_trans_commit(tp); 96 } 97 98 /* 99 * Fsync operations on directories are much simpler than on regular files, 100 * as there is no file data to flush, and thus also no need for explicit 101 * cache flush operations, and there are no non-transaction metadata updates 102 * on directories either. 103 */ 104 STATIC int 105 xfs_dir_fsync( 106 struct file *file, 107 loff_t start, 108 loff_t end, 109 int datasync) 110 { 111 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 112 struct xfs_mount *mp = ip->i_mount; 113 xfs_lsn_t lsn = 0; 114 115 trace_xfs_dir_fsync(ip); 116 117 xfs_ilock(ip, XFS_ILOCK_SHARED); 118 if (xfs_ipincount(ip)) 119 lsn = ip->i_itemp->ili_last_lsn; 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 122 if (!lsn) 123 return 0; 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 int error = 0; 138 int log_flushed = 0; 139 xfs_lsn_t lsn = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = file_write_and_wait_range(file, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -EIO; 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 /* 153 * If we have an RT and/or log subvolume we need to make sure to flush 154 * the write cache the device used for file data first. This is to 155 * ensure newly written file data make it to disk before logging the new 156 * inode size in case of an extending write. 157 */ 158 if (XFS_IS_REALTIME_INODE(ip)) 159 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 160 else if (mp->m_logdev_targp != mp->m_ddev_targp) 161 xfs_blkdev_issue_flush(mp->m_ddev_targp); 162 163 /* 164 * All metadata updates are logged, which means that we just have to 165 * flush the log up to the latest LSN that touched the inode. If we have 166 * concurrent fsync/fdatasync() calls, we need them to all block on the 167 * log force before we clear the ili_fsync_fields field. This ensures 168 * that we don't get a racing sync operation that does not wait for the 169 * metadata to hit the journal before returning. If we race with 170 * clearing the ili_fsync_fields, then all that will happen is the log 171 * force will do nothing as the lsn will already be on disk. We can't 172 * race with setting ili_fsync_fields because that is done under 173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 174 * until after the ili_fsync_fields is cleared. 175 */ 176 xfs_ilock(ip, XFS_ILOCK_SHARED); 177 if (xfs_ipincount(ip)) { 178 if (!datasync || 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 180 lsn = ip->i_itemp->ili_last_lsn; 181 } 182 183 if (lsn) { 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 185 ip->i_itemp->ili_fsync_fields = 0; 186 } 187 xfs_iunlock(ip, XFS_ILOCK_SHARED); 188 189 /* 190 * If we only have a single device, and the log force about was 191 * a no-op we might have to flush the data device cache here. 192 * This can only happen for fdatasync/O_DSYNC if we were overwriting 193 * an already allocated file and thus do not have any metadata to 194 * commit. 195 */ 196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 197 mp->m_logdev_targp == mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 200 return error; 201 } 202 203 STATIC ssize_t 204 xfs_file_dio_aio_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 209 size_t count = iov_iter_count(to); 210 ssize_t ret; 211 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 file_accessed(iocb->ki_filp); 218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 222 223 return ret; 224 } 225 226 static noinline ssize_t 227 xfs_file_dax_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 232 size_t count = iov_iter_count(to); 233 ssize_t ret = 0; 234 235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 236 237 if (!count) 238 return 0; /* skip atime */ 239 240 if (iocb->ki_flags & IOCB_NOWAIT) { 241 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 242 return -EAGAIN; 243 } else { 244 xfs_ilock(ip, XFS_IOLOCK_SHARED); 245 } 246 247 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 248 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 249 250 file_accessed(iocb->ki_filp); 251 return ret; 252 } 253 254 STATIC ssize_t 255 xfs_file_buffered_aio_read( 256 struct kiocb *iocb, 257 struct iov_iter *to) 258 { 259 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 260 ssize_t ret; 261 262 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 263 264 if (iocb->ki_flags & IOCB_NOWAIT) { 265 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 266 return -EAGAIN; 267 } else { 268 xfs_ilock(ip, XFS_IOLOCK_SHARED); 269 } 270 ret = generic_file_read_iter(iocb, to); 271 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 272 273 return ret; 274 } 275 276 STATIC ssize_t 277 xfs_file_read_iter( 278 struct kiocb *iocb, 279 struct iov_iter *to) 280 { 281 struct inode *inode = file_inode(iocb->ki_filp); 282 struct xfs_mount *mp = XFS_I(inode)->i_mount; 283 ssize_t ret = 0; 284 285 XFS_STATS_INC(mp, xs_read_calls); 286 287 if (XFS_FORCED_SHUTDOWN(mp)) 288 return -EIO; 289 290 if (IS_DAX(inode)) 291 ret = xfs_file_dax_read(iocb, to); 292 else if (iocb->ki_flags & IOCB_DIRECT) 293 ret = xfs_file_dio_aio_read(iocb, to); 294 else 295 ret = xfs_file_buffered_aio_read(iocb, to); 296 297 if (ret > 0) 298 XFS_STATS_ADD(mp, xs_read_bytes, ret); 299 return ret; 300 } 301 302 /* 303 * Zero any on disk space between the current EOF and the new, larger EOF. 304 * 305 * This handles the normal case of zeroing the remainder of the last block in 306 * the file and the unusual case of zeroing blocks out beyond the size of the 307 * file. This second case only happens with fixed size extents and when the 308 * system crashes before the inode size was updated but after blocks were 309 * allocated. 310 * 311 * Expects the iolock to be held exclusive, and will take the ilock internally. 312 */ 313 int /* error (positive) */ 314 xfs_zero_eof( 315 struct xfs_inode *ip, 316 xfs_off_t offset, /* starting I/O offset */ 317 xfs_fsize_t isize, /* current inode size */ 318 bool *did_zeroing) 319 { 320 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 321 ASSERT(offset > isize); 322 323 trace_xfs_zero_eof(ip, isize, offset - isize); 324 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 325 } 326 327 /* 328 * Common pre-write limit and setup checks. 329 * 330 * Called with the iolocked held either shared and exclusive according to 331 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 332 * if called for a direct write beyond i_size. 333 */ 334 STATIC ssize_t 335 xfs_file_aio_write_checks( 336 struct kiocb *iocb, 337 struct iov_iter *from, 338 int *iolock) 339 { 340 struct file *file = iocb->ki_filp; 341 struct inode *inode = file->f_mapping->host; 342 struct xfs_inode *ip = XFS_I(inode); 343 ssize_t error = 0; 344 size_t count = iov_iter_count(from); 345 bool drained_dio = false; 346 347 restart: 348 error = generic_write_checks(iocb, from); 349 if (error <= 0) 350 return error; 351 352 error = xfs_break_layouts(inode, iolock); 353 if (error) 354 return error; 355 356 /* 357 * For changing security info in file_remove_privs() we need i_rwsem 358 * exclusively. 359 */ 360 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 361 xfs_iunlock(ip, *iolock); 362 *iolock = XFS_IOLOCK_EXCL; 363 xfs_ilock(ip, *iolock); 364 goto restart; 365 } 366 /* 367 * If the offset is beyond the size of the file, we need to zero any 368 * blocks that fall between the existing EOF and the start of this 369 * write. If zeroing is needed and we are currently holding the 370 * iolock shared, we need to update it to exclusive which implies 371 * having to redo all checks before. 372 * 373 * We need to serialise against EOF updates that occur in IO 374 * completions here. We want to make sure that nobody is changing the 375 * size while we do this check until we have placed an IO barrier (i.e. 376 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 377 * The spinlock effectively forms a memory barrier once we have the 378 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 379 * and hence be able to correctly determine if we need to run zeroing. 380 */ 381 spin_lock(&ip->i_flags_lock); 382 if (iocb->ki_pos > i_size_read(inode)) { 383 spin_unlock(&ip->i_flags_lock); 384 if (!drained_dio) { 385 if (*iolock == XFS_IOLOCK_SHARED) { 386 xfs_iunlock(ip, *iolock); 387 *iolock = XFS_IOLOCK_EXCL; 388 xfs_ilock(ip, *iolock); 389 iov_iter_reexpand(from, count); 390 } 391 /* 392 * We now have an IO submission barrier in place, but 393 * AIO can do EOF updates during IO completion and hence 394 * we now need to wait for all of them to drain. Non-AIO 395 * DIO will have drained before we are given the 396 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 397 * no-op. 398 */ 399 inode_dio_wait(inode); 400 drained_dio = true; 401 goto restart; 402 } 403 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL); 404 if (error) 405 return error; 406 } else 407 spin_unlock(&ip->i_flags_lock); 408 409 /* 410 * Updating the timestamps will grab the ilock again from 411 * xfs_fs_dirty_inode, so we have to call it after dropping the 412 * lock above. Eventually we should look into a way to avoid 413 * the pointless lock roundtrip. 414 */ 415 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 416 error = file_update_time(file); 417 if (error) 418 return error; 419 } 420 421 /* 422 * If we're writing the file then make sure to clear the setuid and 423 * setgid bits if the process is not being run by root. This keeps 424 * people from modifying setuid and setgid binaries. 425 */ 426 if (!IS_NOSEC(inode)) 427 return file_remove_privs(file); 428 return 0; 429 } 430 431 static int 432 xfs_dio_write_end_io( 433 struct kiocb *iocb, 434 ssize_t size, 435 unsigned flags) 436 { 437 struct inode *inode = file_inode(iocb->ki_filp); 438 struct xfs_inode *ip = XFS_I(inode); 439 loff_t offset = iocb->ki_pos; 440 int error = 0; 441 442 trace_xfs_end_io_direct_write(ip, offset, size); 443 444 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 445 return -EIO; 446 447 if (size <= 0) 448 return size; 449 450 if (flags & IOMAP_DIO_COW) { 451 error = xfs_reflink_end_cow(ip, offset, size); 452 if (error) 453 return error; 454 } 455 456 /* 457 * Unwritten conversion updates the in-core isize after extent 458 * conversion but before updating the on-disk size. Updating isize any 459 * earlier allows a racing dio read to find unwritten extents before 460 * they are converted. 461 */ 462 if (flags & IOMAP_DIO_UNWRITTEN) 463 return xfs_iomap_write_unwritten(ip, offset, size, true); 464 465 /* 466 * We need to update the in-core inode size here so that we don't end up 467 * with the on-disk inode size being outside the in-core inode size. We 468 * have no other method of updating EOF for AIO, so always do it here 469 * if necessary. 470 * 471 * We need to lock the test/set EOF update as we can be racing with 472 * other IO completions here to update the EOF. Failing to serialise 473 * here can result in EOF moving backwards and Bad Things Happen when 474 * that occurs. 475 */ 476 spin_lock(&ip->i_flags_lock); 477 if (offset + size > i_size_read(inode)) { 478 i_size_write(inode, offset + size); 479 spin_unlock(&ip->i_flags_lock); 480 error = xfs_setfilesize(ip, offset, size); 481 } else { 482 spin_unlock(&ip->i_flags_lock); 483 } 484 485 return error; 486 } 487 488 /* 489 * xfs_file_dio_aio_write - handle direct IO writes 490 * 491 * Lock the inode appropriately to prepare for and issue a direct IO write. 492 * By separating it from the buffered write path we remove all the tricky to 493 * follow locking changes and looping. 494 * 495 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 496 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 497 * pages are flushed out. 498 * 499 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 500 * allowing them to be done in parallel with reads and other direct IO writes. 501 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 502 * needs to do sub-block zeroing and that requires serialisation against other 503 * direct IOs to the same block. In this case we need to serialise the 504 * submission of the unaligned IOs so that we don't get racing block zeroing in 505 * the dio layer. To avoid the problem with aio, we also need to wait for 506 * outstanding IOs to complete so that unwritten extent conversion is completed 507 * before we try to map the overlapping block. This is currently implemented by 508 * hitting it with a big hammer (i.e. inode_dio_wait()). 509 * 510 * Returns with locks held indicated by @iolock and errors indicated by 511 * negative return values. 512 */ 513 STATIC ssize_t 514 xfs_file_dio_aio_write( 515 struct kiocb *iocb, 516 struct iov_iter *from) 517 { 518 struct file *file = iocb->ki_filp; 519 struct address_space *mapping = file->f_mapping; 520 struct inode *inode = mapping->host; 521 struct xfs_inode *ip = XFS_I(inode); 522 struct xfs_mount *mp = ip->i_mount; 523 ssize_t ret = 0; 524 int unaligned_io = 0; 525 int iolock; 526 size_t count = iov_iter_count(from); 527 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 528 mp->m_rtdev_targp : mp->m_ddev_targp; 529 530 /* DIO must be aligned to device logical sector size */ 531 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 532 return -EINVAL; 533 534 /* 535 * Don't take the exclusive iolock here unless the I/O is unaligned to 536 * the file system block size. We don't need to consider the EOF 537 * extension case here because xfs_file_aio_write_checks() will relock 538 * the inode as necessary for EOF zeroing cases and fill out the new 539 * inode size as appropriate. 540 */ 541 if ((iocb->ki_pos & mp->m_blockmask) || 542 ((iocb->ki_pos + count) & mp->m_blockmask)) { 543 unaligned_io = 1; 544 545 /* 546 * We can't properly handle unaligned direct I/O to reflink 547 * files yet, as we can't unshare a partial block. 548 */ 549 if (xfs_is_reflink_inode(ip)) { 550 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 551 return -EREMCHG; 552 } 553 iolock = XFS_IOLOCK_EXCL; 554 } else { 555 iolock = XFS_IOLOCK_SHARED; 556 } 557 558 if (iocb->ki_flags & IOCB_NOWAIT) { 559 if (!xfs_ilock_nowait(ip, iolock)) 560 return -EAGAIN; 561 } else { 562 xfs_ilock(ip, iolock); 563 } 564 565 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 566 if (ret) 567 goto out; 568 count = iov_iter_count(from); 569 570 /* 571 * If we are doing unaligned IO, wait for all other IO to drain, 572 * otherwise demote the lock if we had to take the exclusive lock 573 * for other reasons in xfs_file_aio_write_checks. 574 */ 575 if (unaligned_io) { 576 /* If we are going to wait for other DIO to finish, bail */ 577 if (iocb->ki_flags & IOCB_NOWAIT) { 578 if (atomic_read(&inode->i_dio_count)) 579 return -EAGAIN; 580 } else { 581 inode_dio_wait(inode); 582 } 583 } else if (iolock == XFS_IOLOCK_EXCL) { 584 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 585 iolock = XFS_IOLOCK_SHARED; 586 } 587 588 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 589 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 590 out: 591 xfs_iunlock(ip, iolock); 592 593 /* 594 * No fallback to buffered IO on errors for XFS, direct IO will either 595 * complete fully or fail. 596 */ 597 ASSERT(ret < 0 || ret == count); 598 return ret; 599 } 600 601 static noinline ssize_t 602 xfs_file_dax_write( 603 struct kiocb *iocb, 604 struct iov_iter *from) 605 { 606 struct inode *inode = iocb->ki_filp->f_mapping->host; 607 struct xfs_inode *ip = XFS_I(inode); 608 int iolock = XFS_IOLOCK_EXCL; 609 ssize_t ret, error = 0; 610 size_t count; 611 loff_t pos; 612 613 if (iocb->ki_flags & IOCB_NOWAIT) { 614 if (!xfs_ilock_nowait(ip, iolock)) 615 return -EAGAIN; 616 } else { 617 xfs_ilock(ip, iolock); 618 } 619 620 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 621 if (ret) 622 goto out; 623 624 pos = iocb->ki_pos; 625 count = iov_iter_count(from); 626 627 trace_xfs_file_dax_write(ip, count, pos); 628 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 629 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 630 i_size_write(inode, iocb->ki_pos); 631 error = xfs_setfilesize(ip, pos, ret); 632 } 633 out: 634 xfs_iunlock(ip, iolock); 635 return error ? error : ret; 636 } 637 638 STATIC ssize_t 639 xfs_file_buffered_aio_write( 640 struct kiocb *iocb, 641 struct iov_iter *from) 642 { 643 struct file *file = iocb->ki_filp; 644 struct address_space *mapping = file->f_mapping; 645 struct inode *inode = mapping->host; 646 struct xfs_inode *ip = XFS_I(inode); 647 ssize_t ret; 648 int enospc = 0; 649 int iolock; 650 651 if (iocb->ki_flags & IOCB_NOWAIT) 652 return -EOPNOTSUPP; 653 654 write_retry: 655 iolock = XFS_IOLOCK_EXCL; 656 xfs_ilock(ip, iolock); 657 658 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 659 if (ret) 660 goto out; 661 662 /* We can write back this queue in page reclaim */ 663 current->backing_dev_info = inode_to_bdi(inode); 664 665 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 666 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 667 if (likely(ret >= 0)) 668 iocb->ki_pos += ret; 669 670 /* 671 * If we hit a space limit, try to free up some lingering preallocated 672 * space before returning an error. In the case of ENOSPC, first try to 673 * write back all dirty inodes to free up some of the excess reserved 674 * metadata space. This reduces the chances that the eofblocks scan 675 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 676 * also behaves as a filter to prevent too many eofblocks scans from 677 * running at the same time. 678 */ 679 if (ret == -EDQUOT && !enospc) { 680 xfs_iunlock(ip, iolock); 681 enospc = xfs_inode_free_quota_eofblocks(ip); 682 if (enospc) 683 goto write_retry; 684 enospc = xfs_inode_free_quota_cowblocks(ip); 685 if (enospc) 686 goto write_retry; 687 iolock = 0; 688 } else if (ret == -ENOSPC && !enospc) { 689 struct xfs_eofblocks eofb = {0}; 690 691 enospc = 1; 692 xfs_flush_inodes(ip->i_mount); 693 694 xfs_iunlock(ip, iolock); 695 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 696 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 697 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 698 goto write_retry; 699 } 700 701 current->backing_dev_info = NULL; 702 out: 703 if (iolock) 704 xfs_iunlock(ip, iolock); 705 return ret; 706 } 707 708 STATIC ssize_t 709 xfs_file_write_iter( 710 struct kiocb *iocb, 711 struct iov_iter *from) 712 { 713 struct file *file = iocb->ki_filp; 714 struct address_space *mapping = file->f_mapping; 715 struct inode *inode = mapping->host; 716 struct xfs_inode *ip = XFS_I(inode); 717 ssize_t ret; 718 size_t ocount = iov_iter_count(from); 719 720 XFS_STATS_INC(ip->i_mount, xs_write_calls); 721 722 if (ocount == 0) 723 return 0; 724 725 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 726 return -EIO; 727 728 if (IS_DAX(inode)) 729 ret = xfs_file_dax_write(iocb, from); 730 else if (iocb->ki_flags & IOCB_DIRECT) { 731 /* 732 * Allow a directio write to fall back to a buffered 733 * write *only* in the case that we're doing a reflink 734 * CoW. In all other directio scenarios we do not 735 * allow an operation to fall back to buffered mode. 736 */ 737 ret = xfs_file_dio_aio_write(iocb, from); 738 if (ret == -EREMCHG) 739 goto buffered; 740 } else { 741 buffered: 742 ret = xfs_file_buffered_aio_write(iocb, from); 743 } 744 745 if (ret > 0) { 746 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 747 748 /* Handle various SYNC-type writes */ 749 ret = generic_write_sync(iocb, ret); 750 } 751 return ret; 752 } 753 754 #define XFS_FALLOC_FL_SUPPORTED \ 755 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 756 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 757 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 758 759 STATIC long 760 xfs_file_fallocate( 761 struct file *file, 762 int mode, 763 loff_t offset, 764 loff_t len) 765 { 766 struct inode *inode = file_inode(file); 767 struct xfs_inode *ip = XFS_I(inode); 768 long error; 769 enum xfs_prealloc_flags flags = 0; 770 uint iolock = XFS_IOLOCK_EXCL; 771 loff_t new_size = 0; 772 bool do_file_insert = false; 773 774 if (!S_ISREG(inode->i_mode)) 775 return -EINVAL; 776 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 777 return -EOPNOTSUPP; 778 779 xfs_ilock(ip, iolock); 780 error = xfs_break_layouts(inode, &iolock); 781 if (error) 782 goto out_unlock; 783 784 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 785 iolock |= XFS_MMAPLOCK_EXCL; 786 787 if (mode & FALLOC_FL_PUNCH_HOLE) { 788 error = xfs_free_file_space(ip, offset, len); 789 if (error) 790 goto out_unlock; 791 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 792 unsigned int blksize_mask = i_blocksize(inode) - 1; 793 794 if (offset & blksize_mask || len & blksize_mask) { 795 error = -EINVAL; 796 goto out_unlock; 797 } 798 799 /* 800 * There is no need to overlap collapse range with EOF, 801 * in which case it is effectively a truncate operation 802 */ 803 if (offset + len >= i_size_read(inode)) { 804 error = -EINVAL; 805 goto out_unlock; 806 } 807 808 new_size = i_size_read(inode) - len; 809 810 error = xfs_collapse_file_space(ip, offset, len); 811 if (error) 812 goto out_unlock; 813 } else if (mode & FALLOC_FL_INSERT_RANGE) { 814 unsigned int blksize_mask = i_blocksize(inode) - 1; 815 816 new_size = i_size_read(inode) + len; 817 if (offset & blksize_mask || len & blksize_mask) { 818 error = -EINVAL; 819 goto out_unlock; 820 } 821 822 /* check the new inode size does not wrap through zero */ 823 if (new_size > inode->i_sb->s_maxbytes) { 824 error = -EFBIG; 825 goto out_unlock; 826 } 827 828 /* Offset should be less than i_size */ 829 if (offset >= i_size_read(inode)) { 830 error = -EINVAL; 831 goto out_unlock; 832 } 833 do_file_insert = true; 834 } else { 835 flags |= XFS_PREALLOC_SET; 836 837 if (!(mode & FALLOC_FL_KEEP_SIZE) && 838 offset + len > i_size_read(inode)) { 839 new_size = offset + len; 840 error = inode_newsize_ok(inode, new_size); 841 if (error) 842 goto out_unlock; 843 } 844 845 if (mode & FALLOC_FL_ZERO_RANGE) 846 error = xfs_zero_file_space(ip, offset, len); 847 else { 848 if (mode & FALLOC_FL_UNSHARE_RANGE) { 849 error = xfs_reflink_unshare(ip, offset, len); 850 if (error) 851 goto out_unlock; 852 } 853 error = xfs_alloc_file_space(ip, offset, len, 854 XFS_BMAPI_PREALLOC); 855 } 856 if (error) 857 goto out_unlock; 858 } 859 860 if (file->f_flags & O_DSYNC) 861 flags |= XFS_PREALLOC_SYNC; 862 863 error = xfs_update_prealloc_flags(ip, flags); 864 if (error) 865 goto out_unlock; 866 867 /* Change file size if needed */ 868 if (new_size) { 869 struct iattr iattr; 870 871 iattr.ia_valid = ATTR_SIZE; 872 iattr.ia_size = new_size; 873 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 874 if (error) 875 goto out_unlock; 876 } 877 878 /* 879 * Perform hole insertion now that the file size has been 880 * updated so that if we crash during the operation we don't 881 * leave shifted extents past EOF and hence losing access to 882 * the data that is contained within them. 883 */ 884 if (do_file_insert) 885 error = xfs_insert_file_space(ip, offset, len); 886 887 out_unlock: 888 xfs_iunlock(ip, iolock); 889 return error; 890 } 891 892 STATIC int 893 xfs_file_clone_range( 894 struct file *file_in, 895 loff_t pos_in, 896 struct file *file_out, 897 loff_t pos_out, 898 u64 len) 899 { 900 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 901 len, false); 902 } 903 904 STATIC ssize_t 905 xfs_file_dedupe_range( 906 struct file *src_file, 907 u64 loff, 908 u64 len, 909 struct file *dst_file, 910 u64 dst_loff) 911 { 912 int error; 913 914 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 915 len, true); 916 if (error) 917 return error; 918 return len; 919 } 920 921 STATIC int 922 xfs_file_open( 923 struct inode *inode, 924 struct file *file) 925 { 926 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 927 return -EFBIG; 928 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 929 return -EIO; 930 file->f_mode |= FMODE_NOWAIT; 931 return 0; 932 } 933 934 STATIC int 935 xfs_dir_open( 936 struct inode *inode, 937 struct file *file) 938 { 939 struct xfs_inode *ip = XFS_I(inode); 940 int mode; 941 int error; 942 943 error = xfs_file_open(inode, file); 944 if (error) 945 return error; 946 947 /* 948 * If there are any blocks, read-ahead block 0 as we're almost 949 * certain to have the next operation be a read there. 950 */ 951 mode = xfs_ilock_data_map_shared(ip); 952 if (ip->i_d.di_nextents > 0) 953 error = xfs_dir3_data_readahead(ip, 0, -1); 954 xfs_iunlock(ip, mode); 955 return error; 956 } 957 958 STATIC int 959 xfs_file_release( 960 struct inode *inode, 961 struct file *filp) 962 { 963 return xfs_release(XFS_I(inode)); 964 } 965 966 STATIC int 967 xfs_file_readdir( 968 struct file *file, 969 struct dir_context *ctx) 970 { 971 struct inode *inode = file_inode(file); 972 xfs_inode_t *ip = XFS_I(inode); 973 size_t bufsize; 974 975 /* 976 * The Linux API doesn't pass down the total size of the buffer 977 * we read into down to the filesystem. With the filldir concept 978 * it's not needed for correct information, but the XFS dir2 leaf 979 * code wants an estimate of the buffer size to calculate it's 980 * readahead window and size the buffers used for mapping to 981 * physical blocks. 982 * 983 * Try to give it an estimate that's good enough, maybe at some 984 * point we can change the ->readdir prototype to include the 985 * buffer size. For now we use the current glibc buffer size. 986 */ 987 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 988 989 return xfs_readdir(NULL, ip, ctx, bufsize); 990 } 991 992 STATIC loff_t 993 xfs_file_llseek( 994 struct file *file, 995 loff_t offset, 996 int whence) 997 { 998 struct inode *inode = file->f_mapping->host; 999 1000 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1001 return -EIO; 1002 1003 switch (whence) { 1004 default: 1005 return generic_file_llseek(file, offset, whence); 1006 case SEEK_HOLE: 1007 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 1008 break; 1009 case SEEK_DATA: 1010 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 1011 break; 1012 } 1013 1014 if (offset < 0) 1015 return offset; 1016 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1017 } 1018 1019 /* 1020 * Locking for serialisation of IO during page faults. This results in a lock 1021 * ordering of: 1022 * 1023 * mmap_sem (MM) 1024 * sb_start_pagefault(vfs, freeze) 1025 * i_mmaplock (XFS - truncate serialisation) 1026 * page_lock (MM) 1027 * i_lock (XFS - extent map serialisation) 1028 */ 1029 static int 1030 __xfs_filemap_fault( 1031 struct vm_fault *vmf, 1032 enum page_entry_size pe_size, 1033 bool write_fault) 1034 { 1035 struct inode *inode = file_inode(vmf->vma->vm_file); 1036 struct xfs_inode *ip = XFS_I(inode); 1037 int ret; 1038 1039 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1040 1041 if (write_fault) { 1042 sb_start_pagefault(inode->i_sb); 1043 file_update_time(vmf->vma->vm_file); 1044 } 1045 1046 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1047 if (IS_DAX(inode)) { 1048 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops); 1049 } else { 1050 if (write_fault) 1051 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1052 else 1053 ret = filemap_fault(vmf); 1054 } 1055 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1056 1057 if (write_fault) 1058 sb_end_pagefault(inode->i_sb); 1059 return ret; 1060 } 1061 1062 static int 1063 xfs_filemap_fault( 1064 struct vm_fault *vmf) 1065 { 1066 /* DAX can shortcut the normal fault path on write faults! */ 1067 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1068 IS_DAX(file_inode(vmf->vma->vm_file)) && 1069 (vmf->flags & FAULT_FLAG_WRITE)); 1070 } 1071 1072 static int 1073 xfs_filemap_huge_fault( 1074 struct vm_fault *vmf, 1075 enum page_entry_size pe_size) 1076 { 1077 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1078 return VM_FAULT_FALLBACK; 1079 1080 /* DAX can shortcut the normal fault path on write faults! */ 1081 return __xfs_filemap_fault(vmf, pe_size, 1082 (vmf->flags & FAULT_FLAG_WRITE)); 1083 } 1084 1085 static int 1086 xfs_filemap_page_mkwrite( 1087 struct vm_fault *vmf) 1088 { 1089 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1090 } 1091 1092 /* 1093 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1094 * updates on write faults. In reality, it's need to serialise against 1095 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1096 * to ensure we serialise the fault barrier in place. 1097 */ 1098 static int 1099 xfs_filemap_pfn_mkwrite( 1100 struct vm_fault *vmf) 1101 { 1102 1103 struct inode *inode = file_inode(vmf->vma->vm_file); 1104 struct xfs_inode *ip = XFS_I(inode); 1105 int ret = VM_FAULT_NOPAGE; 1106 loff_t size; 1107 1108 trace_xfs_filemap_pfn_mkwrite(ip); 1109 1110 sb_start_pagefault(inode->i_sb); 1111 file_update_time(vmf->vma->vm_file); 1112 1113 /* check if the faulting page hasn't raced with truncate */ 1114 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1115 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1116 if (vmf->pgoff >= size) 1117 ret = VM_FAULT_SIGBUS; 1118 else if (IS_DAX(inode)) 1119 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1120 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1121 sb_end_pagefault(inode->i_sb); 1122 return ret; 1123 1124 } 1125 1126 static const struct vm_operations_struct xfs_file_vm_ops = { 1127 .fault = xfs_filemap_fault, 1128 .huge_fault = xfs_filemap_huge_fault, 1129 .map_pages = filemap_map_pages, 1130 .page_mkwrite = xfs_filemap_page_mkwrite, 1131 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1132 }; 1133 1134 STATIC int 1135 xfs_file_mmap( 1136 struct file *filp, 1137 struct vm_area_struct *vma) 1138 { 1139 file_accessed(filp); 1140 vma->vm_ops = &xfs_file_vm_ops; 1141 if (IS_DAX(file_inode(filp))) 1142 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1143 return 0; 1144 } 1145 1146 const struct file_operations xfs_file_operations = { 1147 .llseek = xfs_file_llseek, 1148 .read_iter = xfs_file_read_iter, 1149 .write_iter = xfs_file_write_iter, 1150 .splice_read = generic_file_splice_read, 1151 .splice_write = iter_file_splice_write, 1152 .unlocked_ioctl = xfs_file_ioctl, 1153 #ifdef CONFIG_COMPAT 1154 .compat_ioctl = xfs_file_compat_ioctl, 1155 #endif 1156 .mmap = xfs_file_mmap, 1157 .open = xfs_file_open, 1158 .release = xfs_file_release, 1159 .fsync = xfs_file_fsync, 1160 .get_unmapped_area = thp_get_unmapped_area, 1161 .fallocate = xfs_file_fallocate, 1162 .clone_file_range = xfs_file_clone_range, 1163 .dedupe_file_range = xfs_file_dedupe_range, 1164 }; 1165 1166 const struct file_operations xfs_dir_file_operations = { 1167 .open = xfs_dir_open, 1168 .read = generic_read_dir, 1169 .iterate_shared = xfs_file_readdir, 1170 .llseek = generic_file_llseek, 1171 .unlocked_ioctl = xfs_file_ioctl, 1172 #ifdef CONFIG_COMPAT 1173 .compat_ioctl = xfs_file_compat_ioctl, 1174 #endif 1175 .fsync = xfs_dir_fsync, 1176 }; 1177