1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 #include <linux/mman.h> 48 49 static const struct vm_operations_struct xfs_file_vm_ops; 50 51 /* 52 * Clear the specified ranges to zero through either the pagecache or DAX. 53 * Holes and unwritten extents will be left as-is as they already are zeroed. 54 */ 55 int 56 xfs_zero_range( 57 struct xfs_inode *ip, 58 xfs_off_t pos, 59 xfs_off_t count, 60 bool *did_zero) 61 { 62 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops); 63 } 64 65 int 66 xfs_update_prealloc_flags( 67 struct xfs_inode *ip, 68 enum xfs_prealloc_flags flags) 69 { 70 struct xfs_trans *tp; 71 int error; 72 73 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 74 0, 0, 0, &tp); 75 if (error) 76 return error; 77 78 xfs_ilock(ip, XFS_ILOCK_EXCL); 79 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 80 81 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 82 VFS_I(ip)->i_mode &= ~S_ISUID; 83 if (VFS_I(ip)->i_mode & S_IXGRP) 84 VFS_I(ip)->i_mode &= ~S_ISGID; 85 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 86 } 87 88 if (flags & XFS_PREALLOC_SET) 89 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 90 if (flags & XFS_PREALLOC_CLEAR) 91 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 92 93 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 94 if (flags & XFS_PREALLOC_SYNC) 95 xfs_trans_set_sync(tp); 96 return xfs_trans_commit(tp); 97 } 98 99 /* 100 * Fsync operations on directories are much simpler than on regular files, 101 * as there is no file data to flush, and thus also no need for explicit 102 * cache flush operations, and there are no non-transaction metadata updates 103 * on directories either. 104 */ 105 STATIC int 106 xfs_dir_fsync( 107 struct file *file, 108 loff_t start, 109 loff_t end, 110 int datasync) 111 { 112 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 113 struct xfs_mount *mp = ip->i_mount; 114 xfs_lsn_t lsn = 0; 115 116 trace_xfs_dir_fsync(ip); 117 118 xfs_ilock(ip, XFS_ILOCK_SHARED); 119 if (xfs_ipincount(ip)) 120 lsn = ip->i_itemp->ili_last_lsn; 121 xfs_iunlock(ip, XFS_ILOCK_SHARED); 122 123 if (!lsn) 124 return 0; 125 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 126 } 127 128 STATIC int 129 xfs_file_fsync( 130 struct file *file, 131 loff_t start, 132 loff_t end, 133 int datasync) 134 { 135 struct inode *inode = file->f_mapping->host; 136 struct xfs_inode *ip = XFS_I(inode); 137 struct xfs_mount *mp = ip->i_mount; 138 int error = 0; 139 int log_flushed = 0; 140 xfs_lsn_t lsn = 0; 141 142 trace_xfs_file_fsync(ip); 143 144 error = file_write_and_wait_range(file, start, end); 145 if (error) 146 return error; 147 148 if (XFS_FORCED_SHUTDOWN(mp)) 149 return -EIO; 150 151 xfs_iflags_clear(ip, XFS_ITRUNCATED); 152 153 /* 154 * If we have an RT and/or log subvolume we need to make sure to flush 155 * the write cache the device used for file data first. This is to 156 * ensure newly written file data make it to disk before logging the new 157 * inode size in case of an extending write. 158 */ 159 if (XFS_IS_REALTIME_INODE(ip)) 160 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 161 else if (mp->m_logdev_targp != mp->m_ddev_targp) 162 xfs_blkdev_issue_flush(mp->m_ddev_targp); 163 164 /* 165 * All metadata updates are logged, which means that we just have to 166 * flush the log up to the latest LSN that touched the inode. If we have 167 * concurrent fsync/fdatasync() calls, we need them to all block on the 168 * log force before we clear the ili_fsync_fields field. This ensures 169 * that we don't get a racing sync operation that does not wait for the 170 * metadata to hit the journal before returning. If we race with 171 * clearing the ili_fsync_fields, then all that will happen is the log 172 * force will do nothing as the lsn will already be on disk. We can't 173 * race with setting ili_fsync_fields because that is done under 174 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 175 * until after the ili_fsync_fields is cleared. 176 */ 177 xfs_ilock(ip, XFS_ILOCK_SHARED); 178 if (xfs_ipincount(ip)) { 179 if (!datasync || 180 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 181 lsn = ip->i_itemp->ili_last_lsn; 182 } 183 184 if (lsn) { 185 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 186 ip->i_itemp->ili_fsync_fields = 0; 187 } 188 xfs_iunlock(ip, XFS_ILOCK_SHARED); 189 190 /* 191 * If we only have a single device, and the log force about was 192 * a no-op we might have to flush the data device cache here. 193 * This can only happen for fdatasync/O_DSYNC if we were overwriting 194 * an already allocated file and thus do not have any metadata to 195 * commit. 196 */ 197 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 198 mp->m_logdev_targp == mp->m_ddev_targp) 199 xfs_blkdev_issue_flush(mp->m_ddev_targp); 200 201 return error; 202 } 203 204 STATIC ssize_t 205 xfs_file_dio_aio_read( 206 struct kiocb *iocb, 207 struct iov_iter *to) 208 { 209 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 210 size_t count = iov_iter_count(to); 211 ssize_t ret; 212 213 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 214 215 if (!count) 216 return 0; /* skip atime */ 217 218 file_accessed(iocb->ki_filp); 219 220 xfs_ilock(ip, XFS_IOLOCK_SHARED); 221 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 222 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 223 224 return ret; 225 } 226 227 static noinline ssize_t 228 xfs_file_dax_read( 229 struct kiocb *iocb, 230 struct iov_iter *to) 231 { 232 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 233 size_t count = iov_iter_count(to); 234 ssize_t ret = 0; 235 236 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 237 238 if (!count) 239 return 0; /* skip atime */ 240 241 if (iocb->ki_flags & IOCB_NOWAIT) { 242 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 243 return -EAGAIN; 244 } else { 245 xfs_ilock(ip, XFS_IOLOCK_SHARED); 246 } 247 248 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 249 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 250 251 file_accessed(iocb->ki_filp); 252 return ret; 253 } 254 255 STATIC ssize_t 256 xfs_file_buffered_aio_read( 257 struct kiocb *iocb, 258 struct iov_iter *to) 259 { 260 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 261 ssize_t ret; 262 263 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 264 265 if (iocb->ki_flags & IOCB_NOWAIT) { 266 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 267 return -EAGAIN; 268 } else { 269 xfs_ilock(ip, XFS_IOLOCK_SHARED); 270 } 271 ret = generic_file_read_iter(iocb, to); 272 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 273 274 return ret; 275 } 276 277 STATIC ssize_t 278 xfs_file_read_iter( 279 struct kiocb *iocb, 280 struct iov_iter *to) 281 { 282 struct inode *inode = file_inode(iocb->ki_filp); 283 struct xfs_mount *mp = XFS_I(inode)->i_mount; 284 ssize_t ret = 0; 285 286 XFS_STATS_INC(mp, xs_read_calls); 287 288 if (XFS_FORCED_SHUTDOWN(mp)) 289 return -EIO; 290 291 if (IS_DAX(inode)) 292 ret = xfs_file_dax_read(iocb, to); 293 else if (iocb->ki_flags & IOCB_DIRECT) 294 ret = xfs_file_dio_aio_read(iocb, to); 295 else 296 ret = xfs_file_buffered_aio_read(iocb, to); 297 298 if (ret > 0) 299 XFS_STATS_ADD(mp, xs_read_bytes, ret); 300 return ret; 301 } 302 303 /* 304 * Zero any on disk space between the current EOF and the new, larger EOF. 305 * 306 * This handles the normal case of zeroing the remainder of the last block in 307 * the file and the unusual case of zeroing blocks out beyond the size of the 308 * file. This second case only happens with fixed size extents and when the 309 * system crashes before the inode size was updated but after blocks were 310 * allocated. 311 * 312 * Expects the iolock to be held exclusive, and will take the ilock internally. 313 */ 314 int /* error (positive) */ 315 xfs_zero_eof( 316 struct xfs_inode *ip, 317 xfs_off_t offset, /* starting I/O offset */ 318 xfs_fsize_t isize, /* current inode size */ 319 bool *did_zeroing) 320 { 321 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 322 ASSERT(offset > isize); 323 324 trace_xfs_zero_eof(ip, isize, offset - isize); 325 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 326 } 327 328 /* 329 * Common pre-write limit and setup checks. 330 * 331 * Called with the iolocked held either shared and exclusive according to 332 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 333 * if called for a direct write beyond i_size. 334 */ 335 STATIC ssize_t 336 xfs_file_aio_write_checks( 337 struct kiocb *iocb, 338 struct iov_iter *from, 339 int *iolock) 340 { 341 struct file *file = iocb->ki_filp; 342 struct inode *inode = file->f_mapping->host; 343 struct xfs_inode *ip = XFS_I(inode); 344 ssize_t error = 0; 345 size_t count = iov_iter_count(from); 346 bool drained_dio = false; 347 348 restart: 349 error = generic_write_checks(iocb, from); 350 if (error <= 0) 351 return error; 352 353 error = xfs_break_layouts(inode, iolock); 354 if (error) 355 return error; 356 357 /* 358 * For changing security info in file_remove_privs() we need i_rwsem 359 * exclusively. 360 */ 361 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 362 xfs_iunlock(ip, *iolock); 363 *iolock = XFS_IOLOCK_EXCL; 364 xfs_ilock(ip, *iolock); 365 goto restart; 366 } 367 /* 368 * If the offset is beyond the size of the file, we need to zero any 369 * blocks that fall between the existing EOF and the start of this 370 * write. If zeroing is needed and we are currently holding the 371 * iolock shared, we need to update it to exclusive which implies 372 * having to redo all checks before. 373 * 374 * We need to serialise against EOF updates that occur in IO 375 * completions here. We want to make sure that nobody is changing the 376 * size while we do this check until we have placed an IO barrier (i.e. 377 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 378 * The spinlock effectively forms a memory barrier once we have the 379 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 380 * and hence be able to correctly determine if we need to run zeroing. 381 */ 382 spin_lock(&ip->i_flags_lock); 383 if (iocb->ki_pos > i_size_read(inode)) { 384 spin_unlock(&ip->i_flags_lock); 385 if (!drained_dio) { 386 if (*iolock == XFS_IOLOCK_SHARED) { 387 xfs_iunlock(ip, *iolock); 388 *iolock = XFS_IOLOCK_EXCL; 389 xfs_ilock(ip, *iolock); 390 iov_iter_reexpand(from, count); 391 } 392 /* 393 * We now have an IO submission barrier in place, but 394 * AIO can do EOF updates during IO completion and hence 395 * we now need to wait for all of them to drain. Non-AIO 396 * DIO will have drained before we are given the 397 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 398 * no-op. 399 */ 400 inode_dio_wait(inode); 401 drained_dio = true; 402 goto restart; 403 } 404 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL); 405 if (error) 406 return error; 407 } else 408 spin_unlock(&ip->i_flags_lock); 409 410 /* 411 * Updating the timestamps will grab the ilock again from 412 * xfs_fs_dirty_inode, so we have to call it after dropping the 413 * lock above. Eventually we should look into a way to avoid 414 * the pointless lock roundtrip. 415 */ 416 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 417 error = file_update_time(file); 418 if (error) 419 return error; 420 } 421 422 /* 423 * If we're writing the file then make sure to clear the setuid and 424 * setgid bits if the process is not being run by root. This keeps 425 * people from modifying setuid and setgid binaries. 426 */ 427 if (!IS_NOSEC(inode)) 428 return file_remove_privs(file); 429 return 0; 430 } 431 432 static int 433 xfs_dio_write_end_io( 434 struct kiocb *iocb, 435 ssize_t size, 436 unsigned flags) 437 { 438 struct inode *inode = file_inode(iocb->ki_filp); 439 struct xfs_inode *ip = XFS_I(inode); 440 loff_t offset = iocb->ki_pos; 441 int error = 0; 442 443 trace_xfs_end_io_direct_write(ip, offset, size); 444 445 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 446 return -EIO; 447 448 if (size <= 0) 449 return size; 450 451 if (flags & IOMAP_DIO_COW) { 452 error = xfs_reflink_end_cow(ip, offset, size); 453 if (error) 454 return error; 455 } 456 457 /* 458 * Unwritten conversion updates the in-core isize after extent 459 * conversion but before updating the on-disk size. Updating isize any 460 * earlier allows a racing dio read to find unwritten extents before 461 * they are converted. 462 */ 463 if (flags & IOMAP_DIO_UNWRITTEN) 464 return xfs_iomap_write_unwritten(ip, offset, size, true); 465 466 /* 467 * We need to update the in-core inode size here so that we don't end up 468 * with the on-disk inode size being outside the in-core inode size. We 469 * have no other method of updating EOF for AIO, so always do it here 470 * if necessary. 471 * 472 * We need to lock the test/set EOF update as we can be racing with 473 * other IO completions here to update the EOF. Failing to serialise 474 * here can result in EOF moving backwards and Bad Things Happen when 475 * that occurs. 476 */ 477 spin_lock(&ip->i_flags_lock); 478 if (offset + size > i_size_read(inode)) { 479 i_size_write(inode, offset + size); 480 spin_unlock(&ip->i_flags_lock); 481 error = xfs_setfilesize(ip, offset, size); 482 } else { 483 spin_unlock(&ip->i_flags_lock); 484 } 485 486 return error; 487 } 488 489 /* 490 * xfs_file_dio_aio_write - handle direct IO writes 491 * 492 * Lock the inode appropriately to prepare for and issue a direct IO write. 493 * By separating it from the buffered write path we remove all the tricky to 494 * follow locking changes and looping. 495 * 496 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 497 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 498 * pages are flushed out. 499 * 500 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 501 * allowing them to be done in parallel with reads and other direct IO writes. 502 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 503 * needs to do sub-block zeroing and that requires serialisation against other 504 * direct IOs to the same block. In this case we need to serialise the 505 * submission of the unaligned IOs so that we don't get racing block zeroing in 506 * the dio layer. To avoid the problem with aio, we also need to wait for 507 * outstanding IOs to complete so that unwritten extent conversion is completed 508 * before we try to map the overlapping block. This is currently implemented by 509 * hitting it with a big hammer (i.e. inode_dio_wait()). 510 * 511 * Returns with locks held indicated by @iolock and errors indicated by 512 * negative return values. 513 */ 514 STATIC ssize_t 515 xfs_file_dio_aio_write( 516 struct kiocb *iocb, 517 struct iov_iter *from) 518 { 519 struct file *file = iocb->ki_filp; 520 struct address_space *mapping = file->f_mapping; 521 struct inode *inode = mapping->host; 522 struct xfs_inode *ip = XFS_I(inode); 523 struct xfs_mount *mp = ip->i_mount; 524 ssize_t ret = 0; 525 int unaligned_io = 0; 526 int iolock; 527 size_t count = iov_iter_count(from); 528 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 529 mp->m_rtdev_targp : mp->m_ddev_targp; 530 531 /* DIO must be aligned to device logical sector size */ 532 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 533 return -EINVAL; 534 535 /* 536 * Don't take the exclusive iolock here unless the I/O is unaligned to 537 * the file system block size. We don't need to consider the EOF 538 * extension case here because xfs_file_aio_write_checks() will relock 539 * the inode as necessary for EOF zeroing cases and fill out the new 540 * inode size as appropriate. 541 */ 542 if ((iocb->ki_pos & mp->m_blockmask) || 543 ((iocb->ki_pos + count) & mp->m_blockmask)) { 544 unaligned_io = 1; 545 546 /* 547 * We can't properly handle unaligned direct I/O to reflink 548 * files yet, as we can't unshare a partial block. 549 */ 550 if (xfs_is_reflink_inode(ip)) { 551 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 552 return -EREMCHG; 553 } 554 iolock = XFS_IOLOCK_EXCL; 555 } else { 556 iolock = XFS_IOLOCK_SHARED; 557 } 558 559 if (iocb->ki_flags & IOCB_NOWAIT) { 560 if (!xfs_ilock_nowait(ip, iolock)) 561 return -EAGAIN; 562 } else { 563 xfs_ilock(ip, iolock); 564 } 565 566 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 567 if (ret) 568 goto out; 569 count = iov_iter_count(from); 570 571 /* 572 * If we are doing unaligned IO, wait for all other IO to drain, 573 * otherwise demote the lock if we had to take the exclusive lock 574 * for other reasons in xfs_file_aio_write_checks. 575 */ 576 if (unaligned_io) { 577 /* If we are going to wait for other DIO to finish, bail */ 578 if (iocb->ki_flags & IOCB_NOWAIT) { 579 if (atomic_read(&inode->i_dio_count)) 580 return -EAGAIN; 581 } else { 582 inode_dio_wait(inode); 583 } 584 } else if (iolock == XFS_IOLOCK_EXCL) { 585 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 586 iolock = XFS_IOLOCK_SHARED; 587 } 588 589 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 590 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 591 out: 592 xfs_iunlock(ip, iolock); 593 594 /* 595 * No fallback to buffered IO on errors for XFS, direct IO will either 596 * complete fully or fail. 597 */ 598 ASSERT(ret < 0 || ret == count); 599 return ret; 600 } 601 602 static noinline ssize_t 603 xfs_file_dax_write( 604 struct kiocb *iocb, 605 struct iov_iter *from) 606 { 607 struct inode *inode = iocb->ki_filp->f_mapping->host; 608 struct xfs_inode *ip = XFS_I(inode); 609 int iolock = XFS_IOLOCK_EXCL; 610 ssize_t ret, error = 0; 611 size_t count; 612 loff_t pos; 613 614 if (iocb->ki_flags & IOCB_NOWAIT) { 615 if (!xfs_ilock_nowait(ip, iolock)) 616 return -EAGAIN; 617 } else { 618 xfs_ilock(ip, iolock); 619 } 620 621 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 622 if (ret) 623 goto out; 624 625 pos = iocb->ki_pos; 626 count = iov_iter_count(from); 627 628 trace_xfs_file_dax_write(ip, count, pos); 629 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 630 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 631 i_size_write(inode, iocb->ki_pos); 632 error = xfs_setfilesize(ip, pos, ret); 633 } 634 out: 635 xfs_iunlock(ip, iolock); 636 return error ? error : ret; 637 } 638 639 STATIC ssize_t 640 xfs_file_buffered_aio_write( 641 struct kiocb *iocb, 642 struct iov_iter *from) 643 { 644 struct file *file = iocb->ki_filp; 645 struct address_space *mapping = file->f_mapping; 646 struct inode *inode = mapping->host; 647 struct xfs_inode *ip = XFS_I(inode); 648 ssize_t ret; 649 int enospc = 0; 650 int iolock; 651 652 if (iocb->ki_flags & IOCB_NOWAIT) 653 return -EOPNOTSUPP; 654 655 write_retry: 656 iolock = XFS_IOLOCK_EXCL; 657 xfs_ilock(ip, iolock); 658 659 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 660 if (ret) 661 goto out; 662 663 /* We can write back this queue in page reclaim */ 664 current->backing_dev_info = inode_to_bdi(inode); 665 666 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 667 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 668 if (likely(ret >= 0)) 669 iocb->ki_pos += ret; 670 671 /* 672 * If we hit a space limit, try to free up some lingering preallocated 673 * space before returning an error. In the case of ENOSPC, first try to 674 * write back all dirty inodes to free up some of the excess reserved 675 * metadata space. This reduces the chances that the eofblocks scan 676 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 677 * also behaves as a filter to prevent too many eofblocks scans from 678 * running at the same time. 679 */ 680 if (ret == -EDQUOT && !enospc) { 681 xfs_iunlock(ip, iolock); 682 enospc = xfs_inode_free_quota_eofblocks(ip); 683 if (enospc) 684 goto write_retry; 685 enospc = xfs_inode_free_quota_cowblocks(ip); 686 if (enospc) 687 goto write_retry; 688 iolock = 0; 689 } else if (ret == -ENOSPC && !enospc) { 690 struct xfs_eofblocks eofb = {0}; 691 692 enospc = 1; 693 xfs_flush_inodes(ip->i_mount); 694 695 xfs_iunlock(ip, iolock); 696 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 697 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 698 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 699 goto write_retry; 700 } 701 702 current->backing_dev_info = NULL; 703 out: 704 if (iolock) 705 xfs_iunlock(ip, iolock); 706 return ret; 707 } 708 709 STATIC ssize_t 710 xfs_file_write_iter( 711 struct kiocb *iocb, 712 struct iov_iter *from) 713 { 714 struct file *file = iocb->ki_filp; 715 struct address_space *mapping = file->f_mapping; 716 struct inode *inode = mapping->host; 717 struct xfs_inode *ip = XFS_I(inode); 718 ssize_t ret; 719 size_t ocount = iov_iter_count(from); 720 721 XFS_STATS_INC(ip->i_mount, xs_write_calls); 722 723 if (ocount == 0) 724 return 0; 725 726 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 727 return -EIO; 728 729 if (IS_DAX(inode)) 730 ret = xfs_file_dax_write(iocb, from); 731 else if (iocb->ki_flags & IOCB_DIRECT) { 732 /* 733 * Allow a directio write to fall back to a buffered 734 * write *only* in the case that we're doing a reflink 735 * CoW. In all other directio scenarios we do not 736 * allow an operation to fall back to buffered mode. 737 */ 738 ret = xfs_file_dio_aio_write(iocb, from); 739 if (ret == -EREMCHG) 740 goto buffered; 741 } else { 742 buffered: 743 ret = xfs_file_buffered_aio_write(iocb, from); 744 } 745 746 if (ret > 0) { 747 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 748 749 /* Handle various SYNC-type writes */ 750 ret = generic_write_sync(iocb, ret); 751 } 752 return ret; 753 } 754 755 #define XFS_FALLOC_FL_SUPPORTED \ 756 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 757 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 758 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 759 760 STATIC long 761 xfs_file_fallocate( 762 struct file *file, 763 int mode, 764 loff_t offset, 765 loff_t len) 766 { 767 struct inode *inode = file_inode(file); 768 struct xfs_inode *ip = XFS_I(inode); 769 long error; 770 enum xfs_prealloc_flags flags = 0; 771 uint iolock = XFS_IOLOCK_EXCL; 772 loff_t new_size = 0; 773 bool do_file_insert = false; 774 775 if (!S_ISREG(inode->i_mode)) 776 return -EINVAL; 777 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 778 return -EOPNOTSUPP; 779 780 xfs_ilock(ip, iolock); 781 error = xfs_break_layouts(inode, &iolock); 782 if (error) 783 goto out_unlock; 784 785 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 786 iolock |= XFS_MMAPLOCK_EXCL; 787 788 if (mode & FALLOC_FL_PUNCH_HOLE) { 789 error = xfs_free_file_space(ip, offset, len); 790 if (error) 791 goto out_unlock; 792 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 793 unsigned int blksize_mask = i_blocksize(inode) - 1; 794 795 if (offset & blksize_mask || len & blksize_mask) { 796 error = -EINVAL; 797 goto out_unlock; 798 } 799 800 /* 801 * There is no need to overlap collapse range with EOF, 802 * in which case it is effectively a truncate operation 803 */ 804 if (offset + len >= i_size_read(inode)) { 805 error = -EINVAL; 806 goto out_unlock; 807 } 808 809 new_size = i_size_read(inode) - len; 810 811 error = xfs_collapse_file_space(ip, offset, len); 812 if (error) 813 goto out_unlock; 814 } else if (mode & FALLOC_FL_INSERT_RANGE) { 815 unsigned int blksize_mask = i_blocksize(inode) - 1; 816 817 new_size = i_size_read(inode) + len; 818 if (offset & blksize_mask || len & blksize_mask) { 819 error = -EINVAL; 820 goto out_unlock; 821 } 822 823 /* check the new inode size does not wrap through zero */ 824 if (new_size > inode->i_sb->s_maxbytes) { 825 error = -EFBIG; 826 goto out_unlock; 827 } 828 829 /* Offset should be less than i_size */ 830 if (offset >= i_size_read(inode)) { 831 error = -EINVAL; 832 goto out_unlock; 833 } 834 do_file_insert = true; 835 } else { 836 flags |= XFS_PREALLOC_SET; 837 838 if (!(mode & FALLOC_FL_KEEP_SIZE) && 839 offset + len > i_size_read(inode)) { 840 new_size = offset + len; 841 error = inode_newsize_ok(inode, new_size); 842 if (error) 843 goto out_unlock; 844 } 845 846 if (mode & FALLOC_FL_ZERO_RANGE) 847 error = xfs_zero_file_space(ip, offset, len); 848 else { 849 if (mode & FALLOC_FL_UNSHARE_RANGE) { 850 error = xfs_reflink_unshare(ip, offset, len); 851 if (error) 852 goto out_unlock; 853 } 854 error = xfs_alloc_file_space(ip, offset, len, 855 XFS_BMAPI_PREALLOC); 856 } 857 if (error) 858 goto out_unlock; 859 } 860 861 if (file->f_flags & O_DSYNC) 862 flags |= XFS_PREALLOC_SYNC; 863 864 error = xfs_update_prealloc_flags(ip, flags); 865 if (error) 866 goto out_unlock; 867 868 /* Change file size if needed */ 869 if (new_size) { 870 struct iattr iattr; 871 872 iattr.ia_valid = ATTR_SIZE; 873 iattr.ia_size = new_size; 874 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 875 if (error) 876 goto out_unlock; 877 } 878 879 /* 880 * Perform hole insertion now that the file size has been 881 * updated so that if we crash during the operation we don't 882 * leave shifted extents past EOF and hence losing access to 883 * the data that is contained within them. 884 */ 885 if (do_file_insert) 886 error = xfs_insert_file_space(ip, offset, len); 887 888 out_unlock: 889 xfs_iunlock(ip, iolock); 890 return error; 891 } 892 893 STATIC int 894 xfs_file_clone_range( 895 struct file *file_in, 896 loff_t pos_in, 897 struct file *file_out, 898 loff_t pos_out, 899 u64 len) 900 { 901 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 902 len, false); 903 } 904 905 STATIC ssize_t 906 xfs_file_dedupe_range( 907 struct file *src_file, 908 u64 loff, 909 u64 len, 910 struct file *dst_file, 911 u64 dst_loff) 912 { 913 int error; 914 915 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 916 len, true); 917 if (error) 918 return error; 919 return len; 920 } 921 922 STATIC int 923 xfs_file_open( 924 struct inode *inode, 925 struct file *file) 926 { 927 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 928 return -EFBIG; 929 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 930 return -EIO; 931 file->f_mode |= FMODE_NOWAIT; 932 return 0; 933 } 934 935 STATIC int 936 xfs_dir_open( 937 struct inode *inode, 938 struct file *file) 939 { 940 struct xfs_inode *ip = XFS_I(inode); 941 int mode; 942 int error; 943 944 error = xfs_file_open(inode, file); 945 if (error) 946 return error; 947 948 /* 949 * If there are any blocks, read-ahead block 0 as we're almost 950 * certain to have the next operation be a read there. 951 */ 952 mode = xfs_ilock_data_map_shared(ip); 953 if (ip->i_d.di_nextents > 0) 954 error = xfs_dir3_data_readahead(ip, 0, -1); 955 xfs_iunlock(ip, mode); 956 return error; 957 } 958 959 STATIC int 960 xfs_file_release( 961 struct inode *inode, 962 struct file *filp) 963 { 964 return xfs_release(XFS_I(inode)); 965 } 966 967 STATIC int 968 xfs_file_readdir( 969 struct file *file, 970 struct dir_context *ctx) 971 { 972 struct inode *inode = file_inode(file); 973 xfs_inode_t *ip = XFS_I(inode); 974 size_t bufsize; 975 976 /* 977 * The Linux API doesn't pass down the total size of the buffer 978 * we read into down to the filesystem. With the filldir concept 979 * it's not needed for correct information, but the XFS dir2 leaf 980 * code wants an estimate of the buffer size to calculate it's 981 * readahead window and size the buffers used for mapping to 982 * physical blocks. 983 * 984 * Try to give it an estimate that's good enough, maybe at some 985 * point we can change the ->readdir prototype to include the 986 * buffer size. For now we use the current glibc buffer size. 987 */ 988 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 989 990 return xfs_readdir(NULL, ip, ctx, bufsize); 991 } 992 993 STATIC loff_t 994 xfs_file_llseek( 995 struct file *file, 996 loff_t offset, 997 int whence) 998 { 999 struct inode *inode = file->f_mapping->host; 1000 1001 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1002 return -EIO; 1003 1004 switch (whence) { 1005 default: 1006 return generic_file_llseek(file, offset, whence); 1007 case SEEK_HOLE: 1008 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 1009 break; 1010 case SEEK_DATA: 1011 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 1012 break; 1013 } 1014 1015 if (offset < 0) 1016 return offset; 1017 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1018 } 1019 1020 /* 1021 * Locking for serialisation of IO during page faults. This results in a lock 1022 * ordering of: 1023 * 1024 * mmap_sem (MM) 1025 * sb_start_pagefault(vfs, freeze) 1026 * i_mmaplock (XFS - truncate serialisation) 1027 * page_lock (MM) 1028 * i_lock (XFS - extent map serialisation) 1029 */ 1030 static int 1031 __xfs_filemap_fault( 1032 struct vm_fault *vmf, 1033 enum page_entry_size pe_size, 1034 bool write_fault) 1035 { 1036 struct inode *inode = file_inode(vmf->vma->vm_file); 1037 struct xfs_inode *ip = XFS_I(inode); 1038 int ret; 1039 1040 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1041 1042 if (write_fault) { 1043 sb_start_pagefault(inode->i_sb); 1044 file_update_time(vmf->vma->vm_file); 1045 } 1046 1047 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1048 if (IS_DAX(inode)) { 1049 pfn_t pfn; 1050 1051 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1052 if (ret & VM_FAULT_NEEDDSYNC) 1053 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1054 } else { 1055 if (write_fault) 1056 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1057 else 1058 ret = filemap_fault(vmf); 1059 } 1060 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1061 1062 if (write_fault) 1063 sb_end_pagefault(inode->i_sb); 1064 return ret; 1065 } 1066 1067 static int 1068 xfs_filemap_fault( 1069 struct vm_fault *vmf) 1070 { 1071 /* DAX can shortcut the normal fault path on write faults! */ 1072 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1073 IS_DAX(file_inode(vmf->vma->vm_file)) && 1074 (vmf->flags & FAULT_FLAG_WRITE)); 1075 } 1076 1077 static int 1078 xfs_filemap_huge_fault( 1079 struct vm_fault *vmf, 1080 enum page_entry_size pe_size) 1081 { 1082 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1083 return VM_FAULT_FALLBACK; 1084 1085 /* DAX can shortcut the normal fault path on write faults! */ 1086 return __xfs_filemap_fault(vmf, pe_size, 1087 (vmf->flags & FAULT_FLAG_WRITE)); 1088 } 1089 1090 static int 1091 xfs_filemap_page_mkwrite( 1092 struct vm_fault *vmf) 1093 { 1094 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1095 } 1096 1097 /* 1098 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1099 * on write faults. In reality, it needs to serialise against truncate and 1100 * prepare memory for writing so handle is as standard write fault. 1101 */ 1102 static int 1103 xfs_filemap_pfn_mkwrite( 1104 struct vm_fault *vmf) 1105 { 1106 1107 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1108 } 1109 1110 static const struct vm_operations_struct xfs_file_vm_ops = { 1111 .fault = xfs_filemap_fault, 1112 .huge_fault = xfs_filemap_huge_fault, 1113 .map_pages = filemap_map_pages, 1114 .page_mkwrite = xfs_filemap_page_mkwrite, 1115 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1116 }; 1117 1118 STATIC int 1119 xfs_file_mmap( 1120 struct file *filp, 1121 struct vm_area_struct *vma) 1122 { 1123 /* 1124 * We don't support synchronous mappings for non-DAX files. At least 1125 * until someone comes with a sensible use case. 1126 */ 1127 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) 1128 return -EOPNOTSUPP; 1129 1130 file_accessed(filp); 1131 vma->vm_ops = &xfs_file_vm_ops; 1132 if (IS_DAX(file_inode(filp))) 1133 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1134 return 0; 1135 } 1136 1137 const struct file_operations xfs_file_operations = { 1138 .llseek = xfs_file_llseek, 1139 .read_iter = xfs_file_read_iter, 1140 .write_iter = xfs_file_write_iter, 1141 .splice_read = generic_file_splice_read, 1142 .splice_write = iter_file_splice_write, 1143 .unlocked_ioctl = xfs_file_ioctl, 1144 #ifdef CONFIG_COMPAT 1145 .compat_ioctl = xfs_file_compat_ioctl, 1146 #endif 1147 .mmap = xfs_file_mmap, 1148 .mmap_supported_flags = MAP_SYNC, 1149 .open = xfs_file_open, 1150 .release = xfs_file_release, 1151 .fsync = xfs_file_fsync, 1152 .get_unmapped_area = thp_get_unmapped_area, 1153 .fallocate = xfs_file_fallocate, 1154 .clone_file_range = xfs_file_clone_range, 1155 .dedupe_file_range = xfs_file_dedupe_range, 1156 }; 1157 1158 const struct file_operations xfs_dir_file_operations = { 1159 .open = xfs_dir_open, 1160 .read = generic_read_dir, 1161 .iterate_shared = xfs_file_readdir, 1162 .llseek = generic_file_llseek, 1163 .unlocked_ioctl = xfs_file_ioctl, 1164 #ifdef CONFIG_COMPAT 1165 .compat_ioctl = xfs_file_compat_ioctl, 1166 #endif 1167 .fsync = xfs_dir_fsync, 1168 }; 1169