xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 7b7dfdd2)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
41 
42 #include <linux/aio.h>
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 
47 static const struct vm_operations_struct xfs_file_vm_ops;
48 
49 /*
50  * Locking primitives for read and write IO paths to ensure we consistently use
51  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52  */
53 static inline void
54 xfs_rw_ilock(
55 	struct xfs_inode	*ip,
56 	int			type)
57 {
58 	if (type & XFS_IOLOCK_EXCL)
59 		mutex_lock(&VFS_I(ip)->i_mutex);
60 	xfs_ilock(ip, type);
61 }
62 
63 static inline void
64 xfs_rw_iunlock(
65 	struct xfs_inode	*ip,
66 	int			type)
67 {
68 	xfs_iunlock(ip, type);
69 	if (type & XFS_IOLOCK_EXCL)
70 		mutex_unlock(&VFS_I(ip)->i_mutex);
71 }
72 
73 static inline void
74 xfs_rw_ilock_demote(
75 	struct xfs_inode	*ip,
76 	int			type)
77 {
78 	xfs_ilock_demote(ip, type);
79 	if (type & XFS_IOLOCK_EXCL)
80 		mutex_unlock(&VFS_I(ip)->i_mutex);
81 }
82 
83 /*
84  *	xfs_iozero
85  *
86  *	xfs_iozero clears the specified range of buffer supplied,
87  *	and marks all the affected blocks as valid and modified.  If
88  *	an affected block is not allocated, it will be allocated.  If
89  *	an affected block is not completely overwritten, and is not
90  *	valid before the operation, it will be read from disk before
91  *	being partially zeroed.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status;
102 
103 	mapping = VFS_I(ip)->i_mapping;
104 	do {
105 		unsigned offset, bytes;
106 		void *fsdata;
107 
108 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 		bytes = PAGE_CACHE_SIZE - offset;
110 		if (bytes > count)
111 			bytes = count;
112 
113 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 					AOP_FLAG_UNINTERRUPTIBLE,
115 					&page, &fsdata);
116 		if (status)
117 			break;
118 
119 		zero_user(page, offset, bytes);
120 
121 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 					page, fsdata);
123 		WARN_ON(status <= 0); /* can't return less than zero! */
124 		pos += bytes;
125 		count -= bytes;
126 		status = 0;
127 	} while (count);
128 
129 	return (-status);
130 }
131 
132 /*
133  * Fsync operations on directories are much simpler than on regular files,
134  * as there is no file data to flush, and thus also no need for explicit
135  * cache flush operations, and there are no non-transaction metadata updates
136  * on directories either.
137  */
138 STATIC int
139 xfs_dir_fsync(
140 	struct file		*file,
141 	loff_t			start,
142 	loff_t			end,
143 	int			datasync)
144 {
145 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
146 	struct xfs_mount	*mp = ip->i_mount;
147 	xfs_lsn_t		lsn = 0;
148 
149 	trace_xfs_dir_fsync(ip);
150 
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip))
153 		lsn = ip->i_itemp->ili_last_lsn;
154 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
155 
156 	if (!lsn)
157 		return 0;
158 	return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160 
161 STATIC int
162 xfs_file_fsync(
163 	struct file		*file,
164 	loff_t			start,
165 	loff_t			end,
166 	int			datasync)
167 {
168 	struct inode		*inode = file->f_mapping->host;
169 	struct xfs_inode	*ip = XFS_I(inode);
170 	struct xfs_mount	*mp = ip->i_mount;
171 	int			error = 0;
172 	int			log_flushed = 0;
173 	xfs_lsn_t		lsn = 0;
174 
175 	trace_xfs_file_fsync(ip);
176 
177 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 	if (error)
179 		return error;
180 
181 	if (XFS_FORCED_SHUTDOWN(mp))
182 		return -XFS_ERROR(EIO);
183 
184 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 
186 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 		/*
188 		 * If we have an RT and/or log subvolume we need to make sure
189 		 * to flush the write cache the device used for file data
190 		 * first.  This is to ensure newly written file data make
191 		 * it to disk before logging the new inode size in case of
192 		 * an extending write.
193 		 */
194 		if (XFS_IS_REALTIME_INODE(ip))
195 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 	}
199 
200 	/*
201 	 * All metadata updates are logged, which means that we just have
202 	 * to flush the log up to the latest LSN that touched the inode.
203 	 */
204 	xfs_ilock(ip, XFS_ILOCK_SHARED);
205 	if (xfs_ipincount(ip)) {
206 		if (!datasync ||
207 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 			lsn = ip->i_itemp->ili_last_lsn;
209 	}
210 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
211 
212 	if (lsn)
213 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214 
215 	/*
216 	 * If we only have a single device, and the log force about was
217 	 * a no-op we might have to flush the data device cache here.
218 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 	 * an already allocated file and thus do not have any metadata to
220 	 * commit.
221 	 */
222 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 	    mp->m_logdev_targp == mp->m_ddev_targp &&
224 	    !XFS_IS_REALTIME_INODE(ip) &&
225 	    !log_flushed)
226 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
227 
228 	return -error;
229 }
230 
231 STATIC ssize_t
232 xfs_file_read_iter(
233 	struct kiocb		*iocb,
234 	struct iov_iter		*to)
235 {
236 	struct file		*file = iocb->ki_filp;
237 	struct inode		*inode = file->f_mapping->host;
238 	struct xfs_inode	*ip = XFS_I(inode);
239 	struct xfs_mount	*mp = ip->i_mount;
240 	size_t			size = iov_iter_count(to);
241 	ssize_t			ret = 0;
242 	int			ioflags = 0;
243 	xfs_fsize_t		n;
244 	loff_t			pos = iocb->ki_pos;
245 
246 	XFS_STATS_INC(xs_read_calls);
247 
248 	if (unlikely(file->f_flags & O_DIRECT))
249 		ioflags |= IO_ISDIRECT;
250 	if (file->f_mode & FMODE_NOCMTIME)
251 		ioflags |= IO_INVIS;
252 
253 	if (unlikely(ioflags & IO_ISDIRECT)) {
254 		xfs_buftarg_t	*target =
255 			XFS_IS_REALTIME_INODE(ip) ?
256 				mp->m_rtdev_targp : mp->m_ddev_targp;
257 		/* DIO must be aligned to device logical sector size */
258 		if ((pos | size) & target->bt_logical_sectormask) {
259 			if (pos == i_size_read(inode))
260 				return 0;
261 			return -XFS_ERROR(EINVAL);
262 		}
263 	}
264 
265 	n = mp->m_super->s_maxbytes - pos;
266 	if (n <= 0 || size == 0)
267 		return 0;
268 
269 	if (n < size)
270 		size = n;
271 
272 	if (XFS_FORCED_SHUTDOWN(mp))
273 		return -EIO;
274 
275 	/*
276 	 * Locking is a bit tricky here. If we take an exclusive lock
277 	 * for direct IO, we effectively serialise all new concurrent
278 	 * read IO to this file and block it behind IO that is currently in
279 	 * progress because IO in progress holds the IO lock shared. We only
280 	 * need to hold the lock exclusive to blow away the page cache, so
281 	 * only take lock exclusively if the page cache needs invalidation.
282 	 * This allows the normal direct IO case of no page cache pages to
283 	 * proceeed concurrently without serialisation.
284 	 */
285 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
287 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289 
290 		if (inode->i_mapping->nrpages) {
291 			ret = filemap_write_and_wait_range(
292 							VFS_I(ip)->i_mapping,
293 							pos, -1);
294 			if (ret) {
295 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
296 				return ret;
297 			}
298 			truncate_pagecache_range(VFS_I(ip), pos, -1);
299 		}
300 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
301 	}
302 
303 	trace_xfs_file_read(ip, size, pos, ioflags);
304 
305 	ret = generic_file_read_iter(iocb, to);
306 	if (ret > 0)
307 		XFS_STATS_ADD(xs_read_bytes, ret);
308 
309 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
310 	return ret;
311 }
312 
313 STATIC ssize_t
314 xfs_file_splice_read(
315 	struct file		*infilp,
316 	loff_t			*ppos,
317 	struct pipe_inode_info	*pipe,
318 	size_t			count,
319 	unsigned int		flags)
320 {
321 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
322 	int			ioflags = 0;
323 	ssize_t			ret;
324 
325 	XFS_STATS_INC(xs_read_calls);
326 
327 	if (infilp->f_mode & FMODE_NOCMTIME)
328 		ioflags |= IO_INVIS;
329 
330 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
331 		return -EIO;
332 
333 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
334 
335 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
336 
337 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
338 	if (ret > 0)
339 		XFS_STATS_ADD(xs_read_bytes, ret);
340 
341 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
342 	return ret;
343 }
344 
345 /*
346  * This routine is called to handle zeroing any space in the last block of the
347  * file that is beyond the EOF.  We do this since the size is being increased
348  * without writing anything to that block and we don't want to read the
349  * garbage on the disk.
350  */
351 STATIC int				/* error (positive) */
352 xfs_zero_last_block(
353 	struct xfs_inode	*ip,
354 	xfs_fsize_t		offset,
355 	xfs_fsize_t		isize)
356 {
357 	struct xfs_mount	*mp = ip->i_mount;
358 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
359 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
360 	int			zero_len;
361 	int			nimaps = 1;
362 	int			error = 0;
363 	struct xfs_bmbt_irec	imap;
364 
365 	xfs_ilock(ip, XFS_ILOCK_EXCL);
366 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
367 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
368 	if (error)
369 		return error;
370 
371 	ASSERT(nimaps > 0);
372 
373 	/*
374 	 * If the block underlying isize is just a hole, then there
375 	 * is nothing to zero.
376 	 */
377 	if (imap.br_startblock == HOLESTARTBLOCK)
378 		return 0;
379 
380 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
381 	if (isize + zero_len > offset)
382 		zero_len = offset - isize;
383 	return xfs_iozero(ip, isize, zero_len);
384 }
385 
386 /*
387  * Zero any on disk space between the current EOF and the new, larger EOF.
388  *
389  * This handles the normal case of zeroing the remainder of the last block in
390  * the file and the unusual case of zeroing blocks out beyond the size of the
391  * file.  This second case only happens with fixed size extents and when the
392  * system crashes before the inode size was updated but after blocks were
393  * allocated.
394  *
395  * Expects the iolock to be held exclusive, and will take the ilock internally.
396  */
397 int					/* error (positive) */
398 xfs_zero_eof(
399 	struct xfs_inode	*ip,
400 	xfs_off_t		offset,		/* starting I/O offset */
401 	xfs_fsize_t		isize)		/* current inode size */
402 {
403 	struct xfs_mount	*mp = ip->i_mount;
404 	xfs_fileoff_t		start_zero_fsb;
405 	xfs_fileoff_t		end_zero_fsb;
406 	xfs_fileoff_t		zero_count_fsb;
407 	xfs_fileoff_t		last_fsb;
408 	xfs_fileoff_t		zero_off;
409 	xfs_fsize_t		zero_len;
410 	int			nimaps;
411 	int			error = 0;
412 	struct xfs_bmbt_irec	imap;
413 
414 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
415 	ASSERT(offset > isize);
416 
417 	/*
418 	 * First handle zeroing the block on which isize resides.
419 	 *
420 	 * We only zero a part of that block so it is handled specially.
421 	 */
422 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
423 		error = xfs_zero_last_block(ip, offset, isize);
424 		if (error)
425 			return error;
426 	}
427 
428 	/*
429 	 * Calculate the range between the new size and the old where blocks
430 	 * needing to be zeroed may exist.
431 	 *
432 	 * To get the block where the last byte in the file currently resides,
433 	 * we need to subtract one from the size and truncate back to a block
434 	 * boundary.  We subtract 1 in case the size is exactly on a block
435 	 * boundary.
436 	 */
437 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
438 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
439 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
440 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
441 	if (last_fsb == end_zero_fsb) {
442 		/*
443 		 * The size was only incremented on its last block.
444 		 * We took care of that above, so just return.
445 		 */
446 		return 0;
447 	}
448 
449 	ASSERT(start_zero_fsb <= end_zero_fsb);
450 	while (start_zero_fsb <= end_zero_fsb) {
451 		nimaps = 1;
452 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
453 
454 		xfs_ilock(ip, XFS_ILOCK_EXCL);
455 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
456 					  &imap, &nimaps, 0);
457 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
458 		if (error)
459 			return error;
460 
461 		ASSERT(nimaps > 0);
462 
463 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
464 		    imap.br_startblock == HOLESTARTBLOCK) {
465 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
466 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
467 			continue;
468 		}
469 
470 		/*
471 		 * There are blocks we need to zero.
472 		 */
473 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
474 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
475 
476 		if ((zero_off + zero_len) > offset)
477 			zero_len = offset - zero_off;
478 
479 		error = xfs_iozero(ip, zero_off, zero_len);
480 		if (error)
481 			return error;
482 
483 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
484 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
485 	}
486 
487 	return 0;
488 }
489 
490 /*
491  * Common pre-write limit and setup checks.
492  *
493  * Called with the iolocked held either shared and exclusive according to
494  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
495  * if called for a direct write beyond i_size.
496  */
497 STATIC ssize_t
498 xfs_file_aio_write_checks(
499 	struct file		*file,
500 	loff_t			*pos,
501 	size_t			*count,
502 	int			*iolock)
503 {
504 	struct inode		*inode = file->f_mapping->host;
505 	struct xfs_inode	*ip = XFS_I(inode);
506 	int			error = 0;
507 
508 restart:
509 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
510 	if (error)
511 		return error;
512 
513 	/*
514 	 * If the offset is beyond the size of the file, we need to zero any
515 	 * blocks that fall between the existing EOF and the start of this
516 	 * write.  If zeroing is needed and we are currently holding the
517 	 * iolock shared, we need to update it to exclusive which implies
518 	 * having to redo all checks before.
519 	 */
520 	if (*pos > i_size_read(inode)) {
521 		if (*iolock == XFS_IOLOCK_SHARED) {
522 			xfs_rw_iunlock(ip, *iolock);
523 			*iolock = XFS_IOLOCK_EXCL;
524 			xfs_rw_ilock(ip, *iolock);
525 			goto restart;
526 		}
527 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
528 		if (error)
529 			return error;
530 	}
531 
532 	/*
533 	 * Updating the timestamps will grab the ilock again from
534 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
535 	 * lock above.  Eventually we should look into a way to avoid
536 	 * the pointless lock roundtrip.
537 	 */
538 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
539 		error = file_update_time(file);
540 		if (error)
541 			return error;
542 	}
543 
544 	/*
545 	 * If we're writing the file then make sure to clear the setuid and
546 	 * setgid bits if the process is not being run by root.  This keeps
547 	 * people from modifying setuid and setgid binaries.
548 	 */
549 	return file_remove_suid(file);
550 }
551 
552 /*
553  * xfs_file_dio_aio_write - handle direct IO writes
554  *
555  * Lock the inode appropriately to prepare for and issue a direct IO write.
556  * By separating it from the buffered write path we remove all the tricky to
557  * follow locking changes and looping.
558  *
559  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
560  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
561  * pages are flushed out.
562  *
563  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
564  * allowing them to be done in parallel with reads and other direct IO writes.
565  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
566  * needs to do sub-block zeroing and that requires serialisation against other
567  * direct IOs to the same block. In this case we need to serialise the
568  * submission of the unaligned IOs so that we don't get racing block zeroing in
569  * the dio layer.  To avoid the problem with aio, we also need to wait for
570  * outstanding IOs to complete so that unwritten extent conversion is completed
571  * before we try to map the overlapping block. This is currently implemented by
572  * hitting it with a big hammer (i.e. inode_dio_wait()).
573  *
574  * Returns with locks held indicated by @iolock and errors indicated by
575  * negative return values.
576  */
577 STATIC ssize_t
578 xfs_file_dio_aio_write(
579 	struct kiocb		*iocb,
580 	struct iov_iter		*from)
581 {
582 	struct file		*file = iocb->ki_filp;
583 	struct address_space	*mapping = file->f_mapping;
584 	struct inode		*inode = mapping->host;
585 	struct xfs_inode	*ip = XFS_I(inode);
586 	struct xfs_mount	*mp = ip->i_mount;
587 	ssize_t			ret = 0;
588 	int			unaligned_io = 0;
589 	int			iolock;
590 	size_t			count = iov_iter_count(from);
591 	loff_t			pos = iocb->ki_pos;
592 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
593 					mp->m_rtdev_targp : mp->m_ddev_targp;
594 
595 	/* DIO must be aligned to device logical sector size */
596 	if ((pos | count) & target->bt_logical_sectormask)
597 		return -XFS_ERROR(EINVAL);
598 
599 	/* "unaligned" here means not aligned to a filesystem block */
600 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
601 		unaligned_io = 1;
602 
603 	/*
604 	 * We don't need to take an exclusive lock unless there page cache needs
605 	 * to be invalidated or unaligned IO is being executed. We don't need to
606 	 * consider the EOF extension case here because
607 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
608 	 * EOF zeroing cases and fill out the new inode size as appropriate.
609 	 */
610 	if (unaligned_io || mapping->nrpages)
611 		iolock = XFS_IOLOCK_EXCL;
612 	else
613 		iolock = XFS_IOLOCK_SHARED;
614 	xfs_rw_ilock(ip, iolock);
615 
616 	/*
617 	 * Recheck if there are cached pages that need invalidate after we got
618 	 * the iolock to protect against other threads adding new pages while
619 	 * we were waiting for the iolock.
620 	 */
621 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
622 		xfs_rw_iunlock(ip, iolock);
623 		iolock = XFS_IOLOCK_EXCL;
624 		xfs_rw_ilock(ip, iolock);
625 	}
626 
627 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
628 	if (ret)
629 		goto out;
630 	iov_iter_truncate(from, count);
631 
632 	if (mapping->nrpages) {
633 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
634 						    pos, -1);
635 		if (ret)
636 			goto out;
637 		truncate_pagecache_range(VFS_I(ip), pos, -1);
638 	}
639 
640 	/*
641 	 * If we are doing unaligned IO, wait for all other IO to drain,
642 	 * otherwise demote the lock if we had to flush cached pages
643 	 */
644 	if (unaligned_io)
645 		inode_dio_wait(inode);
646 	else if (iolock == XFS_IOLOCK_EXCL) {
647 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
648 		iolock = XFS_IOLOCK_SHARED;
649 	}
650 
651 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
652 	ret = generic_file_direct_write(iocb, from, pos);
653 
654 out:
655 	xfs_rw_iunlock(ip, iolock);
656 
657 	/* No fallback to buffered IO on errors for XFS. */
658 	ASSERT(ret < 0 || ret == count);
659 	return ret;
660 }
661 
662 STATIC ssize_t
663 xfs_file_buffered_aio_write(
664 	struct kiocb		*iocb,
665 	struct iov_iter		*from)
666 {
667 	struct file		*file = iocb->ki_filp;
668 	struct address_space	*mapping = file->f_mapping;
669 	struct inode		*inode = mapping->host;
670 	struct xfs_inode	*ip = XFS_I(inode);
671 	ssize_t			ret;
672 	int			enospc = 0;
673 	int			iolock = XFS_IOLOCK_EXCL;
674 	loff_t			pos = iocb->ki_pos;
675 	size_t			count = iov_iter_count(from);
676 
677 	xfs_rw_ilock(ip, iolock);
678 
679 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
680 	if (ret)
681 		goto out;
682 
683 	iov_iter_truncate(from, count);
684 	/* We can write back this queue in page reclaim */
685 	current->backing_dev_info = mapping->backing_dev_info;
686 
687 write_retry:
688 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
689 	ret = generic_perform_write(file, from, pos);
690 	if (likely(ret >= 0))
691 		iocb->ki_pos = pos + ret;
692 	/*
693 	 * If we just got an ENOSPC, try to write back all dirty inodes to
694 	 * convert delalloc space to free up some of the excess reserved
695 	 * metadata space.
696 	 */
697 	if (ret == -ENOSPC && !enospc) {
698 		enospc = 1;
699 		xfs_flush_inodes(ip->i_mount);
700 		goto write_retry;
701 	}
702 
703 	current->backing_dev_info = NULL;
704 out:
705 	xfs_rw_iunlock(ip, iolock);
706 	return ret;
707 }
708 
709 STATIC ssize_t
710 xfs_file_write_iter(
711 	struct kiocb		*iocb,
712 	struct iov_iter		*from)
713 {
714 	struct file		*file = iocb->ki_filp;
715 	struct address_space	*mapping = file->f_mapping;
716 	struct inode		*inode = mapping->host;
717 	struct xfs_inode	*ip = XFS_I(inode);
718 	ssize_t			ret;
719 	size_t			ocount = iov_iter_count(from);
720 
721 	XFS_STATS_INC(xs_write_calls);
722 
723 	if (ocount == 0)
724 		return 0;
725 
726 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
727 		return -EIO;
728 
729 	if (unlikely(file->f_flags & O_DIRECT))
730 		ret = xfs_file_dio_aio_write(iocb, from);
731 	else
732 		ret = xfs_file_buffered_aio_write(iocb, from);
733 
734 	if (ret > 0) {
735 		ssize_t err;
736 
737 		XFS_STATS_ADD(xs_write_bytes, ret);
738 
739 		/* Handle various SYNC-type writes */
740 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
741 		if (err < 0)
742 			ret = err;
743 	}
744 	return ret;
745 }
746 
747 STATIC long
748 xfs_file_fallocate(
749 	struct file		*file,
750 	int			mode,
751 	loff_t			offset,
752 	loff_t			len)
753 {
754 	struct inode		*inode = file_inode(file);
755 	struct xfs_inode	*ip = XFS_I(inode);
756 	struct xfs_trans	*tp;
757 	long			error;
758 	loff_t			new_size = 0;
759 
760 	if (!S_ISREG(inode->i_mode))
761 		return -EINVAL;
762 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
763 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
764 		return -EOPNOTSUPP;
765 
766 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
767 	if (mode & FALLOC_FL_PUNCH_HOLE) {
768 		error = xfs_free_file_space(ip, offset, len);
769 		if (error)
770 			goto out_unlock;
771 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
772 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
773 
774 		if (offset & blksize_mask || len & blksize_mask) {
775 			error = EINVAL;
776 			goto out_unlock;
777 		}
778 
779 		/*
780 		 * There is no need to overlap collapse range with EOF,
781 		 * in which case it is effectively a truncate operation
782 		 */
783 		if (offset + len >= i_size_read(inode)) {
784 			error = EINVAL;
785 			goto out_unlock;
786 		}
787 
788 		new_size = i_size_read(inode) - len;
789 
790 		error = xfs_collapse_file_space(ip, offset, len);
791 		if (error)
792 			goto out_unlock;
793 	} else {
794 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
795 		    offset + len > i_size_read(inode)) {
796 			new_size = offset + len;
797 			error = -inode_newsize_ok(inode, new_size);
798 			if (error)
799 				goto out_unlock;
800 		}
801 
802 		if (mode & FALLOC_FL_ZERO_RANGE)
803 			error = xfs_zero_file_space(ip, offset, len);
804 		else
805 			error = xfs_alloc_file_space(ip, offset, len,
806 						     XFS_BMAPI_PREALLOC);
807 		if (error)
808 			goto out_unlock;
809 	}
810 
811 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
812 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
813 	if (error) {
814 		xfs_trans_cancel(tp, 0);
815 		goto out_unlock;
816 	}
817 
818 	xfs_ilock(ip, XFS_ILOCK_EXCL);
819 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
820 	ip->i_d.di_mode &= ~S_ISUID;
821 	if (ip->i_d.di_mode & S_IXGRP)
822 		ip->i_d.di_mode &= ~S_ISGID;
823 
824 	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
825 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
826 
827 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
828 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
829 
830 	if (file->f_flags & O_DSYNC)
831 		xfs_trans_set_sync(tp);
832 	error = xfs_trans_commit(tp, 0);
833 	if (error)
834 		goto out_unlock;
835 
836 	/* Change file size if needed */
837 	if (new_size) {
838 		struct iattr iattr;
839 
840 		iattr.ia_valid = ATTR_SIZE;
841 		iattr.ia_size = new_size;
842 		error = xfs_setattr_size(ip, &iattr);
843 	}
844 
845 out_unlock:
846 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
847 	return -error;
848 }
849 
850 
851 STATIC int
852 xfs_file_open(
853 	struct inode	*inode,
854 	struct file	*file)
855 {
856 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
857 		return -EFBIG;
858 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
859 		return -EIO;
860 	return 0;
861 }
862 
863 STATIC int
864 xfs_dir_open(
865 	struct inode	*inode,
866 	struct file	*file)
867 {
868 	struct xfs_inode *ip = XFS_I(inode);
869 	int		mode;
870 	int		error;
871 
872 	error = xfs_file_open(inode, file);
873 	if (error)
874 		return error;
875 
876 	/*
877 	 * If there are any blocks, read-ahead block 0 as we're almost
878 	 * certain to have the next operation be a read there.
879 	 */
880 	mode = xfs_ilock_data_map_shared(ip);
881 	if (ip->i_d.di_nextents > 0)
882 		xfs_dir3_data_readahead(ip, 0, -1);
883 	xfs_iunlock(ip, mode);
884 	return 0;
885 }
886 
887 STATIC int
888 xfs_file_release(
889 	struct inode	*inode,
890 	struct file	*filp)
891 {
892 	return -xfs_release(XFS_I(inode));
893 }
894 
895 STATIC int
896 xfs_file_readdir(
897 	struct file	*file,
898 	struct dir_context *ctx)
899 {
900 	struct inode	*inode = file_inode(file);
901 	xfs_inode_t	*ip = XFS_I(inode);
902 	int		error;
903 	size_t		bufsize;
904 
905 	/*
906 	 * The Linux API doesn't pass down the total size of the buffer
907 	 * we read into down to the filesystem.  With the filldir concept
908 	 * it's not needed for correct information, but the XFS dir2 leaf
909 	 * code wants an estimate of the buffer size to calculate it's
910 	 * readahead window and size the buffers used for mapping to
911 	 * physical blocks.
912 	 *
913 	 * Try to give it an estimate that's good enough, maybe at some
914 	 * point we can change the ->readdir prototype to include the
915 	 * buffer size.  For now we use the current glibc buffer size.
916 	 */
917 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
918 
919 	error = xfs_readdir(ip, ctx, bufsize);
920 	if (error)
921 		return -error;
922 	return 0;
923 }
924 
925 STATIC int
926 xfs_file_mmap(
927 	struct file	*filp,
928 	struct vm_area_struct *vma)
929 {
930 	vma->vm_ops = &xfs_file_vm_ops;
931 
932 	file_accessed(filp);
933 	return 0;
934 }
935 
936 /*
937  * mmap()d file has taken write protection fault and is being made
938  * writable. We can set the page state up correctly for a writable
939  * page, which means we can do correct delalloc accounting (ENOSPC
940  * checking!) and unwritten extent mapping.
941  */
942 STATIC int
943 xfs_vm_page_mkwrite(
944 	struct vm_area_struct	*vma,
945 	struct vm_fault		*vmf)
946 {
947 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
948 }
949 
950 /*
951  * This type is designed to indicate the type of offset we would like
952  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
953  */
954 enum {
955 	HOLE_OFF = 0,
956 	DATA_OFF,
957 };
958 
959 /*
960  * Lookup the desired type of offset from the given page.
961  *
962  * On success, return true and the offset argument will point to the
963  * start of the region that was found.  Otherwise this function will
964  * return false and keep the offset argument unchanged.
965  */
966 STATIC bool
967 xfs_lookup_buffer_offset(
968 	struct page		*page,
969 	loff_t			*offset,
970 	unsigned int		type)
971 {
972 	loff_t			lastoff = page_offset(page);
973 	bool			found = false;
974 	struct buffer_head	*bh, *head;
975 
976 	bh = head = page_buffers(page);
977 	do {
978 		/*
979 		 * Unwritten extents that have data in the page
980 		 * cache covering them can be identified by the
981 		 * BH_Unwritten state flag.  Pages with multiple
982 		 * buffers might have a mix of holes, data and
983 		 * unwritten extents - any buffer with valid
984 		 * data in it should have BH_Uptodate flag set
985 		 * on it.
986 		 */
987 		if (buffer_unwritten(bh) ||
988 		    buffer_uptodate(bh)) {
989 			if (type == DATA_OFF)
990 				found = true;
991 		} else {
992 			if (type == HOLE_OFF)
993 				found = true;
994 		}
995 
996 		if (found) {
997 			*offset = lastoff;
998 			break;
999 		}
1000 		lastoff += bh->b_size;
1001 	} while ((bh = bh->b_this_page) != head);
1002 
1003 	return found;
1004 }
1005 
1006 /*
1007  * This routine is called to find out and return a data or hole offset
1008  * from the page cache for unwritten extents according to the desired
1009  * type for xfs_seek_data() or xfs_seek_hole().
1010  *
1011  * The argument offset is used to tell where we start to search from the
1012  * page cache.  Map is used to figure out the end points of the range to
1013  * lookup pages.
1014  *
1015  * Return true if the desired type of offset was found, and the argument
1016  * offset is filled with that address.  Otherwise, return false and keep
1017  * offset unchanged.
1018  */
1019 STATIC bool
1020 xfs_find_get_desired_pgoff(
1021 	struct inode		*inode,
1022 	struct xfs_bmbt_irec	*map,
1023 	unsigned int		type,
1024 	loff_t			*offset)
1025 {
1026 	struct xfs_inode	*ip = XFS_I(inode);
1027 	struct xfs_mount	*mp = ip->i_mount;
1028 	struct pagevec		pvec;
1029 	pgoff_t			index;
1030 	pgoff_t			end;
1031 	loff_t			endoff;
1032 	loff_t			startoff = *offset;
1033 	loff_t			lastoff = startoff;
1034 	bool			found = false;
1035 
1036 	pagevec_init(&pvec, 0);
1037 
1038 	index = startoff >> PAGE_CACHE_SHIFT;
1039 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1040 	end = endoff >> PAGE_CACHE_SHIFT;
1041 	do {
1042 		int		want;
1043 		unsigned	nr_pages;
1044 		unsigned int	i;
1045 
1046 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1047 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1048 					  want);
1049 		/*
1050 		 * No page mapped into given range.  If we are searching holes
1051 		 * and if this is the first time we got into the loop, it means
1052 		 * that the given offset is landed in a hole, return it.
1053 		 *
1054 		 * If we have already stepped through some block buffers to find
1055 		 * holes but they all contains data.  In this case, the last
1056 		 * offset is already updated and pointed to the end of the last
1057 		 * mapped page, if it does not reach the endpoint to search,
1058 		 * that means there should be a hole between them.
1059 		 */
1060 		if (nr_pages == 0) {
1061 			/* Data search found nothing */
1062 			if (type == DATA_OFF)
1063 				break;
1064 
1065 			ASSERT(type == HOLE_OFF);
1066 			if (lastoff == startoff || lastoff < endoff) {
1067 				found = true;
1068 				*offset = lastoff;
1069 			}
1070 			break;
1071 		}
1072 
1073 		/*
1074 		 * At lease we found one page.  If this is the first time we
1075 		 * step into the loop, and if the first page index offset is
1076 		 * greater than the given search offset, a hole was found.
1077 		 */
1078 		if (type == HOLE_OFF && lastoff == startoff &&
1079 		    lastoff < page_offset(pvec.pages[0])) {
1080 			found = true;
1081 			break;
1082 		}
1083 
1084 		for (i = 0; i < nr_pages; i++) {
1085 			struct page	*page = pvec.pages[i];
1086 			loff_t		b_offset;
1087 
1088 			/*
1089 			 * At this point, the page may be truncated or
1090 			 * invalidated (changing page->mapping to NULL),
1091 			 * or even swizzled back from swapper_space to tmpfs
1092 			 * file mapping. However, page->index will not change
1093 			 * because we have a reference on the page.
1094 			 *
1095 			 * Searching done if the page index is out of range.
1096 			 * If the current offset is not reaches the end of
1097 			 * the specified search range, there should be a hole
1098 			 * between them.
1099 			 */
1100 			if (page->index > end) {
1101 				if (type == HOLE_OFF && lastoff < endoff) {
1102 					*offset = lastoff;
1103 					found = true;
1104 				}
1105 				goto out;
1106 			}
1107 
1108 			lock_page(page);
1109 			/*
1110 			 * Page truncated or invalidated(page->mapping == NULL).
1111 			 * We can freely skip it and proceed to check the next
1112 			 * page.
1113 			 */
1114 			if (unlikely(page->mapping != inode->i_mapping)) {
1115 				unlock_page(page);
1116 				continue;
1117 			}
1118 
1119 			if (!page_has_buffers(page)) {
1120 				unlock_page(page);
1121 				continue;
1122 			}
1123 
1124 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1125 			if (found) {
1126 				/*
1127 				 * The found offset may be less than the start
1128 				 * point to search if this is the first time to
1129 				 * come here.
1130 				 */
1131 				*offset = max_t(loff_t, startoff, b_offset);
1132 				unlock_page(page);
1133 				goto out;
1134 			}
1135 
1136 			/*
1137 			 * We either searching data but nothing was found, or
1138 			 * searching hole but found a data buffer.  In either
1139 			 * case, probably the next page contains the desired
1140 			 * things, update the last offset to it so.
1141 			 */
1142 			lastoff = page_offset(page) + PAGE_SIZE;
1143 			unlock_page(page);
1144 		}
1145 
1146 		/*
1147 		 * The number of returned pages less than our desired, search
1148 		 * done.  In this case, nothing was found for searching data,
1149 		 * but we found a hole behind the last offset.
1150 		 */
1151 		if (nr_pages < want) {
1152 			if (type == HOLE_OFF) {
1153 				*offset = lastoff;
1154 				found = true;
1155 			}
1156 			break;
1157 		}
1158 
1159 		index = pvec.pages[i - 1]->index + 1;
1160 		pagevec_release(&pvec);
1161 	} while (index <= end);
1162 
1163 out:
1164 	pagevec_release(&pvec);
1165 	return found;
1166 }
1167 
1168 STATIC loff_t
1169 xfs_seek_data(
1170 	struct file		*file,
1171 	loff_t			start)
1172 {
1173 	struct inode		*inode = file->f_mapping->host;
1174 	struct xfs_inode	*ip = XFS_I(inode);
1175 	struct xfs_mount	*mp = ip->i_mount;
1176 	loff_t			uninitialized_var(offset);
1177 	xfs_fsize_t		isize;
1178 	xfs_fileoff_t		fsbno;
1179 	xfs_filblks_t		end;
1180 	uint			lock;
1181 	int			error;
1182 
1183 	lock = xfs_ilock_data_map_shared(ip);
1184 
1185 	isize = i_size_read(inode);
1186 	if (start >= isize) {
1187 		error = ENXIO;
1188 		goto out_unlock;
1189 	}
1190 
1191 	/*
1192 	 * Try to read extents from the first block indicated
1193 	 * by fsbno to the end block of the file.
1194 	 */
1195 	fsbno = XFS_B_TO_FSBT(mp, start);
1196 	end = XFS_B_TO_FSB(mp, isize);
1197 	for (;;) {
1198 		struct xfs_bmbt_irec	map[2];
1199 		int			nmap = 2;
1200 		unsigned int		i;
1201 
1202 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1203 				       XFS_BMAPI_ENTIRE);
1204 		if (error)
1205 			goto out_unlock;
1206 
1207 		/* No extents at given offset, must be beyond EOF */
1208 		if (nmap == 0) {
1209 			error = ENXIO;
1210 			goto out_unlock;
1211 		}
1212 
1213 		for (i = 0; i < nmap; i++) {
1214 			offset = max_t(loff_t, start,
1215 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1216 
1217 			/* Landed in a data extent */
1218 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1219 			    (map[i].br_state == XFS_EXT_NORM &&
1220 			     !isnullstartblock(map[i].br_startblock)))
1221 				goto out;
1222 
1223 			/*
1224 			 * Landed in an unwritten extent, try to search data
1225 			 * from page cache.
1226 			 */
1227 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1228 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1229 							DATA_OFF, &offset))
1230 					goto out;
1231 			}
1232 		}
1233 
1234 		/*
1235 		 * map[0] is hole or its an unwritten extent but
1236 		 * without data in page cache.  Probably means that
1237 		 * we are reading after EOF if nothing in map[1].
1238 		 */
1239 		if (nmap == 1) {
1240 			error = ENXIO;
1241 			goto out_unlock;
1242 		}
1243 
1244 		ASSERT(i > 1);
1245 
1246 		/*
1247 		 * Nothing was found, proceed to the next round of search
1248 		 * if reading offset not beyond or hit EOF.
1249 		 */
1250 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1251 		start = XFS_FSB_TO_B(mp, fsbno);
1252 		if (start >= isize) {
1253 			error = ENXIO;
1254 			goto out_unlock;
1255 		}
1256 	}
1257 
1258 out:
1259 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1260 
1261 out_unlock:
1262 	xfs_iunlock(ip, lock);
1263 
1264 	if (error)
1265 		return -error;
1266 	return offset;
1267 }
1268 
1269 STATIC loff_t
1270 xfs_seek_hole(
1271 	struct file		*file,
1272 	loff_t			start)
1273 {
1274 	struct inode		*inode = file->f_mapping->host;
1275 	struct xfs_inode	*ip = XFS_I(inode);
1276 	struct xfs_mount	*mp = ip->i_mount;
1277 	loff_t			uninitialized_var(offset);
1278 	xfs_fsize_t		isize;
1279 	xfs_fileoff_t		fsbno;
1280 	xfs_filblks_t		end;
1281 	uint			lock;
1282 	int			error;
1283 
1284 	if (XFS_FORCED_SHUTDOWN(mp))
1285 		return -XFS_ERROR(EIO);
1286 
1287 	lock = xfs_ilock_data_map_shared(ip);
1288 
1289 	isize = i_size_read(inode);
1290 	if (start >= isize) {
1291 		error = ENXIO;
1292 		goto out_unlock;
1293 	}
1294 
1295 	fsbno = XFS_B_TO_FSBT(mp, start);
1296 	end = XFS_B_TO_FSB(mp, isize);
1297 
1298 	for (;;) {
1299 		struct xfs_bmbt_irec	map[2];
1300 		int			nmap = 2;
1301 		unsigned int		i;
1302 
1303 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1304 				       XFS_BMAPI_ENTIRE);
1305 		if (error)
1306 			goto out_unlock;
1307 
1308 		/* No extents at given offset, must be beyond EOF */
1309 		if (nmap == 0) {
1310 			error = ENXIO;
1311 			goto out_unlock;
1312 		}
1313 
1314 		for (i = 0; i < nmap; i++) {
1315 			offset = max_t(loff_t, start,
1316 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1317 
1318 			/* Landed in a hole */
1319 			if (map[i].br_startblock == HOLESTARTBLOCK)
1320 				goto out;
1321 
1322 			/*
1323 			 * Landed in an unwritten extent, try to search hole
1324 			 * from page cache.
1325 			 */
1326 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1327 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1328 							HOLE_OFF, &offset))
1329 					goto out;
1330 			}
1331 		}
1332 
1333 		/*
1334 		 * map[0] contains data or its unwritten but contains
1335 		 * data in page cache, probably means that we are
1336 		 * reading after EOF.  We should fix offset to point
1337 		 * to the end of the file(i.e., there is an implicit
1338 		 * hole at the end of any file).
1339 		 */
1340 		if (nmap == 1) {
1341 			offset = isize;
1342 			break;
1343 		}
1344 
1345 		ASSERT(i > 1);
1346 
1347 		/*
1348 		 * Both mappings contains data, proceed to the next round of
1349 		 * search if the current reading offset not beyond or hit EOF.
1350 		 */
1351 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1352 		start = XFS_FSB_TO_B(mp, fsbno);
1353 		if (start >= isize) {
1354 			offset = isize;
1355 			break;
1356 		}
1357 	}
1358 
1359 out:
1360 	/*
1361 	 * At this point, we must have found a hole.  However, the returned
1362 	 * offset may be bigger than the file size as it may be aligned to
1363 	 * page boundary for unwritten extents, we need to deal with this
1364 	 * situation in particular.
1365 	 */
1366 	offset = min_t(loff_t, offset, isize);
1367 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1368 
1369 out_unlock:
1370 	xfs_iunlock(ip, lock);
1371 
1372 	if (error)
1373 		return -error;
1374 	return offset;
1375 }
1376 
1377 STATIC loff_t
1378 xfs_file_llseek(
1379 	struct file	*file,
1380 	loff_t		offset,
1381 	int		origin)
1382 {
1383 	switch (origin) {
1384 	case SEEK_END:
1385 	case SEEK_CUR:
1386 	case SEEK_SET:
1387 		return generic_file_llseek(file, offset, origin);
1388 	case SEEK_DATA:
1389 		return xfs_seek_data(file, offset);
1390 	case SEEK_HOLE:
1391 		return xfs_seek_hole(file, offset);
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 }
1396 
1397 const struct file_operations xfs_file_operations = {
1398 	.llseek		= xfs_file_llseek,
1399 	.read		= new_sync_read,
1400 	.write		= new_sync_write,
1401 	.read_iter	= xfs_file_read_iter,
1402 	.write_iter	= xfs_file_write_iter,
1403 	.splice_read	= xfs_file_splice_read,
1404 	.splice_write	= iter_file_splice_write,
1405 	.unlocked_ioctl	= xfs_file_ioctl,
1406 #ifdef CONFIG_COMPAT
1407 	.compat_ioctl	= xfs_file_compat_ioctl,
1408 #endif
1409 	.mmap		= xfs_file_mmap,
1410 	.open		= xfs_file_open,
1411 	.release	= xfs_file_release,
1412 	.fsync		= xfs_file_fsync,
1413 	.fallocate	= xfs_file_fallocate,
1414 };
1415 
1416 const struct file_operations xfs_dir_file_operations = {
1417 	.open		= xfs_dir_open,
1418 	.read		= generic_read_dir,
1419 	.iterate	= xfs_file_readdir,
1420 	.llseek		= generic_file_llseek,
1421 	.unlocked_ioctl	= xfs_file_ioctl,
1422 #ifdef CONFIG_COMPAT
1423 	.compat_ioctl	= xfs_file_compat_ioctl,
1424 #endif
1425 	.fsync		= xfs_dir_fsync,
1426 };
1427 
1428 static const struct vm_operations_struct xfs_file_vm_ops = {
1429 	.fault		= filemap_fault,
1430 	.map_pages	= filemap_map_pages,
1431 	.page_mkwrite	= xfs_vm_page_mkwrite,
1432 	.remap_pages	= generic_file_remap_pages,
1433 };
1434