1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/dax.h> 29 #include <linux/falloc.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mman.h> 32 #include <linux/fadvise.h> 33 #include <linux/mount.h> 34 35 static const struct vm_operations_struct xfs_file_vm_ops; 36 37 /* 38 * Decide if the given file range is aligned to the size of the fundamental 39 * allocation unit for the file. 40 */ 41 static bool 42 xfs_is_falloc_aligned( 43 struct xfs_inode *ip, 44 loff_t pos, 45 long long int len) 46 { 47 struct xfs_mount *mp = ip->i_mount; 48 uint64_t mask; 49 50 if (XFS_IS_REALTIME_INODE(ip)) { 51 if (!is_power_of_2(mp->m_sb.sb_rextsize)) { 52 u64 rextbytes; 53 u32 mod; 54 55 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); 56 div_u64_rem(pos, rextbytes, &mod); 57 if (mod) 58 return false; 59 div_u64_rem(len, rextbytes, &mod); 60 return mod == 0; 61 } 62 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; 63 } else { 64 mask = mp->m_sb.sb_blocksize - 1; 65 } 66 67 return !((pos | len) & mask); 68 } 69 70 /* 71 * Fsync operations on directories are much simpler than on regular files, 72 * as there is no file data to flush, and thus also no need for explicit 73 * cache flush operations, and there are no non-transaction metadata updates 74 * on directories either. 75 */ 76 STATIC int 77 xfs_dir_fsync( 78 struct file *file, 79 loff_t start, 80 loff_t end, 81 int datasync) 82 { 83 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 84 85 trace_xfs_dir_fsync(ip); 86 return xfs_log_force_inode(ip); 87 } 88 89 static xfs_csn_t 90 xfs_fsync_seq( 91 struct xfs_inode *ip, 92 bool datasync) 93 { 94 if (!xfs_ipincount(ip)) 95 return 0; 96 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 97 return 0; 98 return ip->i_itemp->ili_commit_seq; 99 } 100 101 /* 102 * All metadata updates are logged, which means that we just have to flush the 103 * log up to the latest LSN that touched the inode. 104 * 105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 106 * the log force before we clear the ili_fsync_fields field. This ensures that 107 * we don't get a racing sync operation that does not wait for the metadata to 108 * hit the journal before returning. If we race with clearing ili_fsync_fields, 109 * then all that will happen is the log force will do nothing as the lsn will 110 * already be on disk. We can't race with setting ili_fsync_fields because that 111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 112 * shared until after the ili_fsync_fields is cleared. 113 */ 114 static int 115 xfs_fsync_flush_log( 116 struct xfs_inode *ip, 117 bool datasync, 118 int *log_flushed) 119 { 120 int error = 0; 121 xfs_csn_t seq; 122 123 xfs_ilock(ip, XFS_ILOCK_SHARED); 124 seq = xfs_fsync_seq(ip, datasync); 125 if (seq) { 126 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, 127 log_flushed); 128 129 spin_lock(&ip->i_itemp->ili_lock); 130 ip->i_itemp->ili_fsync_fields = 0; 131 spin_unlock(&ip->i_itemp->ili_lock); 132 } 133 xfs_iunlock(ip, XFS_ILOCK_SHARED); 134 return error; 135 } 136 137 STATIC int 138 xfs_file_fsync( 139 struct file *file, 140 loff_t start, 141 loff_t end, 142 int datasync) 143 { 144 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 145 struct xfs_mount *mp = ip->i_mount; 146 int error = 0; 147 int log_flushed = 0; 148 149 trace_xfs_file_fsync(ip); 150 151 error = file_write_and_wait_range(file, start, end); 152 if (error) 153 return error; 154 155 if (xfs_is_shutdown(mp)) 156 return -EIO; 157 158 xfs_iflags_clear(ip, XFS_ITRUNCATED); 159 160 /* 161 * If we have an RT and/or log subvolume we need to make sure to flush 162 * the write cache the device used for file data first. This is to 163 * ensure newly written file data make it to disk before logging the new 164 * inode size in case of an extending write. 165 */ 166 if (XFS_IS_REALTIME_INODE(ip)) 167 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 168 else if (mp->m_logdev_targp != mp->m_ddev_targp) 169 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 170 171 /* 172 * Any inode that has dirty modifications in the log is pinned. The 173 * racy check here for a pinned inode while not catch modifications 174 * that happen concurrently to the fsync call, but fsync semantics 175 * only require to sync previously completed I/O. 176 */ 177 if (xfs_ipincount(ip)) 178 error = xfs_fsync_flush_log(ip, datasync, &log_flushed); 179 180 /* 181 * If we only have a single device, and the log force about was 182 * a no-op we might have to flush the data device cache here. 183 * This can only happen for fdatasync/O_DSYNC if we were overwriting 184 * an already allocated file and thus do not have any metadata to 185 * commit. 186 */ 187 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 188 mp->m_logdev_targp == mp->m_ddev_targp) 189 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 190 191 return error; 192 } 193 194 static int 195 xfs_ilock_iocb( 196 struct kiocb *iocb, 197 unsigned int lock_mode) 198 { 199 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 200 201 if (iocb->ki_flags & IOCB_NOWAIT) { 202 if (!xfs_ilock_nowait(ip, lock_mode)) 203 return -EAGAIN; 204 } else { 205 xfs_ilock(ip, lock_mode); 206 } 207 208 return 0; 209 } 210 211 STATIC ssize_t 212 xfs_file_dio_read( 213 struct kiocb *iocb, 214 struct iov_iter *to) 215 { 216 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 217 ssize_t ret; 218 219 trace_xfs_file_direct_read(iocb, to); 220 221 if (!iov_iter_count(to)) 222 return 0; /* skip atime */ 223 224 file_accessed(iocb->ki_filp); 225 226 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 227 if (ret) 228 return ret; 229 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0); 230 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 231 232 return ret; 233 } 234 235 static noinline ssize_t 236 xfs_file_dax_read( 237 struct kiocb *iocb, 238 struct iov_iter *to) 239 { 240 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 241 ssize_t ret = 0; 242 243 trace_xfs_file_dax_read(iocb, to); 244 245 if (!iov_iter_count(to)) 246 return 0; /* skip atime */ 247 248 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 249 if (ret) 250 return ret; 251 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 252 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 253 254 file_accessed(iocb->ki_filp); 255 return ret; 256 } 257 258 STATIC ssize_t 259 xfs_file_buffered_read( 260 struct kiocb *iocb, 261 struct iov_iter *to) 262 { 263 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 264 ssize_t ret; 265 266 trace_xfs_file_buffered_read(iocb, to); 267 268 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 269 if (ret) 270 return ret; 271 ret = generic_file_read_iter(iocb, to); 272 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 273 274 return ret; 275 } 276 277 STATIC ssize_t 278 xfs_file_read_iter( 279 struct kiocb *iocb, 280 struct iov_iter *to) 281 { 282 struct inode *inode = file_inode(iocb->ki_filp); 283 struct xfs_mount *mp = XFS_I(inode)->i_mount; 284 ssize_t ret = 0; 285 286 XFS_STATS_INC(mp, xs_read_calls); 287 288 if (xfs_is_shutdown(mp)) 289 return -EIO; 290 291 if (IS_DAX(inode)) 292 ret = xfs_file_dax_read(iocb, to); 293 else if (iocb->ki_flags & IOCB_DIRECT) 294 ret = xfs_file_dio_read(iocb, to); 295 else 296 ret = xfs_file_buffered_read(iocb, to); 297 298 if (ret > 0) 299 XFS_STATS_ADD(mp, xs_read_bytes, ret); 300 return ret; 301 } 302 303 /* 304 * Common pre-write limit and setup checks. 305 * 306 * Called with the iolocked held either shared and exclusive according to 307 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 308 * if called for a direct write beyond i_size. 309 */ 310 STATIC ssize_t 311 xfs_file_write_checks( 312 struct kiocb *iocb, 313 struct iov_iter *from, 314 unsigned int *iolock) 315 { 316 struct file *file = iocb->ki_filp; 317 struct inode *inode = file->f_mapping->host; 318 struct xfs_inode *ip = XFS_I(inode); 319 ssize_t error = 0; 320 size_t count = iov_iter_count(from); 321 bool drained_dio = false; 322 loff_t isize; 323 324 restart: 325 error = generic_write_checks(iocb, from); 326 if (error <= 0) 327 return error; 328 329 if (iocb->ki_flags & IOCB_NOWAIT) { 330 error = break_layout(inode, false); 331 if (error == -EWOULDBLOCK) 332 error = -EAGAIN; 333 } else { 334 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 335 } 336 337 if (error) 338 return error; 339 340 /* 341 * For changing security info in file_remove_privs() we need i_rwsem 342 * exclusively. 343 */ 344 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 345 xfs_iunlock(ip, *iolock); 346 *iolock = XFS_IOLOCK_EXCL; 347 error = xfs_ilock_iocb(iocb, *iolock); 348 if (error) { 349 *iolock = 0; 350 return error; 351 } 352 goto restart; 353 } 354 355 /* 356 * If the offset is beyond the size of the file, we need to zero any 357 * blocks that fall between the existing EOF and the start of this 358 * write. If zeroing is needed and we are currently holding the iolock 359 * shared, we need to update it to exclusive which implies having to 360 * redo all checks before. 361 * 362 * We need to serialise against EOF updates that occur in IO completions 363 * here. We want to make sure that nobody is changing the size while we 364 * do this check until we have placed an IO barrier (i.e. hold the 365 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The 366 * spinlock effectively forms a memory barrier once we have the 367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and 368 * hence be able to correctly determine if we need to run zeroing. 369 * 370 * We can do an unlocked check here safely as IO completion can only 371 * extend EOF. Truncate is locked out at this point, so the EOF can 372 * not move backwards, only forwards. Hence we only need to take the 373 * slow path and spin locks when we are at or beyond the current EOF. 374 */ 375 if (iocb->ki_pos <= i_size_read(inode)) 376 goto out; 377 378 spin_lock(&ip->i_flags_lock); 379 isize = i_size_read(inode); 380 if (iocb->ki_pos > isize) { 381 spin_unlock(&ip->i_flags_lock); 382 383 if (iocb->ki_flags & IOCB_NOWAIT) 384 return -EAGAIN; 385 386 if (!drained_dio) { 387 if (*iolock == XFS_IOLOCK_SHARED) { 388 xfs_iunlock(ip, *iolock); 389 *iolock = XFS_IOLOCK_EXCL; 390 xfs_ilock(ip, *iolock); 391 iov_iter_reexpand(from, count); 392 } 393 /* 394 * We now have an IO submission barrier in place, but 395 * AIO can do EOF updates during IO completion and hence 396 * we now need to wait for all of them to drain. Non-AIO 397 * DIO will have drained before we are given the 398 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 399 * no-op. 400 */ 401 inode_dio_wait(inode); 402 drained_dio = true; 403 goto restart; 404 } 405 406 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 407 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); 408 if (error) 409 return error; 410 } else 411 spin_unlock(&ip->i_flags_lock); 412 413 out: 414 return kiocb_modified(iocb); 415 } 416 417 static int 418 xfs_dio_write_end_io( 419 struct kiocb *iocb, 420 ssize_t size, 421 int error, 422 unsigned flags) 423 { 424 struct inode *inode = file_inode(iocb->ki_filp); 425 struct xfs_inode *ip = XFS_I(inode); 426 loff_t offset = iocb->ki_pos; 427 unsigned int nofs_flag; 428 429 trace_xfs_end_io_direct_write(ip, offset, size); 430 431 if (xfs_is_shutdown(ip->i_mount)) 432 return -EIO; 433 434 if (error) 435 return error; 436 if (!size) 437 return 0; 438 439 /* 440 * Capture amount written on completion as we can't reliably account 441 * for it on submission. 442 */ 443 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 444 445 /* 446 * We can allocate memory here while doing writeback on behalf of 447 * memory reclaim. To avoid memory allocation deadlocks set the 448 * task-wide nofs context for the following operations. 449 */ 450 nofs_flag = memalloc_nofs_save(); 451 452 if (flags & IOMAP_DIO_COW) { 453 error = xfs_reflink_end_cow(ip, offset, size); 454 if (error) 455 goto out; 456 } 457 458 /* 459 * Unwritten conversion updates the in-core isize after extent 460 * conversion but before updating the on-disk size. Updating isize any 461 * earlier allows a racing dio read to find unwritten extents before 462 * they are converted. 463 */ 464 if (flags & IOMAP_DIO_UNWRITTEN) { 465 error = xfs_iomap_write_unwritten(ip, offset, size, true); 466 goto out; 467 } 468 469 /* 470 * We need to update the in-core inode size here so that we don't end up 471 * with the on-disk inode size being outside the in-core inode size. We 472 * have no other method of updating EOF for AIO, so always do it here 473 * if necessary. 474 * 475 * We need to lock the test/set EOF update as we can be racing with 476 * other IO completions here to update the EOF. Failing to serialise 477 * here can result in EOF moving backwards and Bad Things Happen when 478 * that occurs. 479 * 480 * As IO completion only ever extends EOF, we can do an unlocked check 481 * here to avoid taking the spinlock. If we land within the current EOF, 482 * then we do not need to do an extending update at all, and we don't 483 * need to take the lock to check this. If we race with an update moving 484 * EOF, then we'll either still be beyond EOF and need to take the lock, 485 * or we'll be within EOF and we don't need to take it at all. 486 */ 487 if (offset + size <= i_size_read(inode)) 488 goto out; 489 490 spin_lock(&ip->i_flags_lock); 491 if (offset + size > i_size_read(inode)) { 492 i_size_write(inode, offset + size); 493 spin_unlock(&ip->i_flags_lock); 494 error = xfs_setfilesize(ip, offset, size); 495 } else { 496 spin_unlock(&ip->i_flags_lock); 497 } 498 499 out: 500 memalloc_nofs_restore(nofs_flag); 501 return error; 502 } 503 504 static const struct iomap_dio_ops xfs_dio_write_ops = { 505 .end_io = xfs_dio_write_end_io, 506 }; 507 508 /* 509 * Handle block aligned direct I/O writes 510 */ 511 static noinline ssize_t 512 xfs_file_dio_write_aligned( 513 struct xfs_inode *ip, 514 struct kiocb *iocb, 515 struct iov_iter *from) 516 { 517 unsigned int iolock = XFS_IOLOCK_SHARED; 518 ssize_t ret; 519 520 ret = xfs_ilock_iocb(iocb, iolock); 521 if (ret) 522 return ret; 523 ret = xfs_file_write_checks(iocb, from, &iolock); 524 if (ret) 525 goto out_unlock; 526 527 /* 528 * We don't need to hold the IOLOCK exclusively across the IO, so demote 529 * the iolock back to shared if we had to take the exclusive lock in 530 * xfs_file_write_checks() for other reasons. 531 */ 532 if (iolock == XFS_IOLOCK_EXCL) { 533 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 534 iolock = XFS_IOLOCK_SHARED; 535 } 536 trace_xfs_file_direct_write(iocb, from); 537 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 538 &xfs_dio_write_ops, 0, NULL, 0); 539 out_unlock: 540 if (iolock) 541 xfs_iunlock(ip, iolock); 542 return ret; 543 } 544 545 /* 546 * Handle block unaligned direct I/O writes 547 * 548 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 549 * them to be done in parallel with reads and other direct I/O writes. However, 550 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 551 * to do sub-block zeroing and that requires serialisation against other direct 552 * I/O to the same block. In this case we need to serialise the submission of 553 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 554 * In the case where sub-block zeroing is not required, we can do concurrent 555 * sub-block dios to the same block successfully. 556 * 557 * Optimistically submit the I/O using the shared lock first, but use the 558 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 559 * if block allocation or partial block zeroing would be required. In that case 560 * we try again with the exclusive lock. 561 */ 562 static noinline ssize_t 563 xfs_file_dio_write_unaligned( 564 struct xfs_inode *ip, 565 struct kiocb *iocb, 566 struct iov_iter *from) 567 { 568 size_t isize = i_size_read(VFS_I(ip)); 569 size_t count = iov_iter_count(from); 570 unsigned int iolock = XFS_IOLOCK_SHARED; 571 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 572 ssize_t ret; 573 574 /* 575 * Extending writes need exclusivity because of the sub-block zeroing 576 * that the DIO code always does for partial tail blocks beyond EOF, so 577 * don't even bother trying the fast path in this case. 578 */ 579 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 580 if (iocb->ki_flags & IOCB_NOWAIT) 581 return -EAGAIN; 582 retry_exclusive: 583 iolock = XFS_IOLOCK_EXCL; 584 flags = IOMAP_DIO_FORCE_WAIT; 585 } 586 587 ret = xfs_ilock_iocb(iocb, iolock); 588 if (ret) 589 return ret; 590 591 /* 592 * We can't properly handle unaligned direct I/O to reflink files yet, 593 * as we can't unshare a partial block. 594 */ 595 if (xfs_is_cow_inode(ip)) { 596 trace_xfs_reflink_bounce_dio_write(iocb, from); 597 ret = -ENOTBLK; 598 goto out_unlock; 599 } 600 601 ret = xfs_file_write_checks(iocb, from, &iolock); 602 if (ret) 603 goto out_unlock; 604 605 /* 606 * If we are doing exclusive unaligned I/O, this must be the only I/O 607 * in-flight. Otherwise we risk data corruption due to unwritten extent 608 * conversions from the AIO end_io handler. Wait for all other I/O to 609 * drain first. 610 */ 611 if (flags & IOMAP_DIO_FORCE_WAIT) 612 inode_dio_wait(VFS_I(ip)); 613 614 trace_xfs_file_direct_write(iocb, from); 615 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 616 &xfs_dio_write_ops, flags, NULL, 0); 617 618 /* 619 * Retry unaligned I/O with exclusive blocking semantics if the DIO 620 * layer rejected it for mapping or locking reasons. If we are doing 621 * nonblocking user I/O, propagate the error. 622 */ 623 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 624 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 625 xfs_iunlock(ip, iolock); 626 goto retry_exclusive; 627 } 628 629 out_unlock: 630 if (iolock) 631 xfs_iunlock(ip, iolock); 632 return ret; 633 } 634 635 static ssize_t 636 xfs_file_dio_write( 637 struct kiocb *iocb, 638 struct iov_iter *from) 639 { 640 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 641 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 642 size_t count = iov_iter_count(from); 643 644 /* direct I/O must be aligned to device logical sector size */ 645 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 646 return -EINVAL; 647 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 648 return xfs_file_dio_write_unaligned(ip, iocb, from); 649 return xfs_file_dio_write_aligned(ip, iocb, from); 650 } 651 652 static noinline ssize_t 653 xfs_file_dax_write( 654 struct kiocb *iocb, 655 struct iov_iter *from) 656 { 657 struct inode *inode = iocb->ki_filp->f_mapping->host; 658 struct xfs_inode *ip = XFS_I(inode); 659 unsigned int iolock = XFS_IOLOCK_EXCL; 660 ssize_t ret, error = 0; 661 loff_t pos; 662 663 ret = xfs_ilock_iocb(iocb, iolock); 664 if (ret) 665 return ret; 666 ret = xfs_file_write_checks(iocb, from, &iolock); 667 if (ret) 668 goto out; 669 670 pos = iocb->ki_pos; 671 672 trace_xfs_file_dax_write(iocb, from); 673 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops); 674 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 675 i_size_write(inode, iocb->ki_pos); 676 error = xfs_setfilesize(ip, pos, ret); 677 } 678 out: 679 if (iolock) 680 xfs_iunlock(ip, iolock); 681 if (error) 682 return error; 683 684 if (ret > 0) { 685 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 686 687 /* Handle various SYNC-type writes */ 688 ret = generic_write_sync(iocb, ret); 689 } 690 return ret; 691 } 692 693 STATIC ssize_t 694 xfs_file_buffered_write( 695 struct kiocb *iocb, 696 struct iov_iter *from) 697 { 698 struct inode *inode = iocb->ki_filp->f_mapping->host; 699 struct xfs_inode *ip = XFS_I(inode); 700 ssize_t ret; 701 bool cleared_space = false; 702 unsigned int iolock; 703 704 write_retry: 705 iolock = XFS_IOLOCK_EXCL; 706 ret = xfs_ilock_iocb(iocb, iolock); 707 if (ret) 708 return ret; 709 710 ret = xfs_file_write_checks(iocb, from, &iolock); 711 if (ret) 712 goto out; 713 714 /* We can write back this queue in page reclaim */ 715 current->backing_dev_info = inode_to_bdi(inode); 716 717 trace_xfs_file_buffered_write(iocb, from); 718 ret = iomap_file_buffered_write(iocb, from, 719 &xfs_buffered_write_iomap_ops); 720 if (likely(ret >= 0)) 721 iocb->ki_pos += ret; 722 723 /* 724 * If we hit a space limit, try to free up some lingering preallocated 725 * space before returning an error. In the case of ENOSPC, first try to 726 * write back all dirty inodes to free up some of the excess reserved 727 * metadata space. This reduces the chances that the eofblocks scan 728 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 729 * also behaves as a filter to prevent too many eofblocks scans from 730 * running at the same time. Use a synchronous scan to increase the 731 * effectiveness of the scan. 732 */ 733 if (ret == -EDQUOT && !cleared_space) { 734 xfs_iunlock(ip, iolock); 735 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); 736 cleared_space = true; 737 goto write_retry; 738 } else if (ret == -ENOSPC && !cleared_space) { 739 struct xfs_icwalk icw = {0}; 740 741 cleared_space = true; 742 xfs_flush_inodes(ip->i_mount); 743 744 xfs_iunlock(ip, iolock); 745 icw.icw_flags = XFS_ICWALK_FLAG_SYNC; 746 xfs_blockgc_free_space(ip->i_mount, &icw); 747 goto write_retry; 748 } 749 750 current->backing_dev_info = NULL; 751 out: 752 if (iolock) 753 xfs_iunlock(ip, iolock); 754 755 if (ret > 0) { 756 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 757 /* Handle various SYNC-type writes */ 758 ret = generic_write_sync(iocb, ret); 759 } 760 return ret; 761 } 762 763 STATIC ssize_t 764 xfs_file_write_iter( 765 struct kiocb *iocb, 766 struct iov_iter *from) 767 { 768 struct inode *inode = iocb->ki_filp->f_mapping->host; 769 struct xfs_inode *ip = XFS_I(inode); 770 ssize_t ret; 771 size_t ocount = iov_iter_count(from); 772 773 XFS_STATS_INC(ip->i_mount, xs_write_calls); 774 775 if (ocount == 0) 776 return 0; 777 778 if (xfs_is_shutdown(ip->i_mount)) 779 return -EIO; 780 781 if (IS_DAX(inode)) 782 return xfs_file_dax_write(iocb, from); 783 784 if (iocb->ki_flags & IOCB_DIRECT) { 785 /* 786 * Allow a directio write to fall back to a buffered 787 * write *only* in the case that we're doing a reflink 788 * CoW. In all other directio scenarios we do not 789 * allow an operation to fall back to buffered mode. 790 */ 791 ret = xfs_file_dio_write(iocb, from); 792 if (ret != -ENOTBLK) 793 return ret; 794 } 795 796 return xfs_file_buffered_write(iocb, from); 797 } 798 799 static void 800 xfs_wait_dax_page( 801 struct inode *inode) 802 { 803 struct xfs_inode *ip = XFS_I(inode); 804 805 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 806 schedule(); 807 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 808 } 809 810 int 811 xfs_break_dax_layouts( 812 struct inode *inode, 813 bool *retry) 814 { 815 struct page *page; 816 817 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 818 819 page = dax_layout_busy_page(inode->i_mapping); 820 if (!page) 821 return 0; 822 823 *retry = true; 824 return ___wait_var_event(&page->_refcount, 825 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 826 0, 0, xfs_wait_dax_page(inode)); 827 } 828 829 int 830 xfs_break_layouts( 831 struct inode *inode, 832 uint *iolock, 833 enum layout_break_reason reason) 834 { 835 bool retry; 836 int error; 837 838 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 839 840 do { 841 retry = false; 842 switch (reason) { 843 case BREAK_UNMAP: 844 error = xfs_break_dax_layouts(inode, &retry); 845 if (error || retry) 846 break; 847 fallthrough; 848 case BREAK_WRITE: 849 error = xfs_break_leased_layouts(inode, iolock, &retry); 850 break; 851 default: 852 WARN_ON_ONCE(1); 853 error = -EINVAL; 854 } 855 } while (error == 0 && retry); 856 857 return error; 858 } 859 860 /* Does this file, inode, or mount want synchronous writes? */ 861 static inline bool xfs_file_sync_writes(struct file *filp) 862 { 863 struct xfs_inode *ip = XFS_I(file_inode(filp)); 864 865 if (xfs_has_wsync(ip->i_mount)) 866 return true; 867 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 868 return true; 869 if (IS_SYNC(file_inode(filp))) 870 return true; 871 872 return false; 873 } 874 875 #define XFS_FALLOC_FL_SUPPORTED \ 876 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 877 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 878 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 879 880 STATIC long 881 xfs_file_fallocate( 882 struct file *file, 883 int mode, 884 loff_t offset, 885 loff_t len) 886 { 887 struct inode *inode = file_inode(file); 888 struct xfs_inode *ip = XFS_I(inode); 889 long error; 890 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 891 loff_t new_size = 0; 892 bool do_file_insert = false; 893 894 if (!S_ISREG(inode->i_mode)) 895 return -EINVAL; 896 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 897 return -EOPNOTSUPP; 898 899 xfs_ilock(ip, iolock); 900 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 901 if (error) 902 goto out_unlock; 903 904 /* 905 * Must wait for all AIO to complete before we continue as AIO can 906 * change the file size on completion without holding any locks we 907 * currently hold. We must do this first because AIO can update both 908 * the on disk and in memory inode sizes, and the operations that follow 909 * require the in-memory size to be fully up-to-date. 910 */ 911 inode_dio_wait(inode); 912 913 /* 914 * Now AIO and DIO has drained we flush and (if necessary) invalidate 915 * the cached range over the first operation we are about to run. 916 * 917 * We care about zero and collapse here because they both run a hole 918 * punch over the range first. Because that can zero data, and the range 919 * of invalidation for the shift operations is much larger, we still do 920 * the required flush for collapse in xfs_prepare_shift(). 921 * 922 * Insert has the same range requirements as collapse, and we extend the 923 * file first which can zero data. Hence insert has the same 924 * flush/invalidate requirements as collapse and so they are both 925 * handled at the right time by xfs_prepare_shift(). 926 */ 927 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 928 FALLOC_FL_COLLAPSE_RANGE)) { 929 error = xfs_flush_unmap_range(ip, offset, len); 930 if (error) 931 goto out_unlock; 932 } 933 934 error = file_modified(file); 935 if (error) 936 goto out_unlock; 937 938 if (mode & FALLOC_FL_PUNCH_HOLE) { 939 error = xfs_free_file_space(ip, offset, len); 940 if (error) 941 goto out_unlock; 942 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 943 if (!xfs_is_falloc_aligned(ip, offset, len)) { 944 error = -EINVAL; 945 goto out_unlock; 946 } 947 948 /* 949 * There is no need to overlap collapse range with EOF, 950 * in which case it is effectively a truncate operation 951 */ 952 if (offset + len >= i_size_read(inode)) { 953 error = -EINVAL; 954 goto out_unlock; 955 } 956 957 new_size = i_size_read(inode) - len; 958 959 error = xfs_collapse_file_space(ip, offset, len); 960 if (error) 961 goto out_unlock; 962 } else if (mode & FALLOC_FL_INSERT_RANGE) { 963 loff_t isize = i_size_read(inode); 964 965 if (!xfs_is_falloc_aligned(ip, offset, len)) { 966 error = -EINVAL; 967 goto out_unlock; 968 } 969 970 /* 971 * New inode size must not exceed ->s_maxbytes, accounting for 972 * possible signed overflow. 973 */ 974 if (inode->i_sb->s_maxbytes - isize < len) { 975 error = -EFBIG; 976 goto out_unlock; 977 } 978 new_size = isize + len; 979 980 /* Offset should be less than i_size */ 981 if (offset >= isize) { 982 error = -EINVAL; 983 goto out_unlock; 984 } 985 do_file_insert = true; 986 } else { 987 if (!(mode & FALLOC_FL_KEEP_SIZE) && 988 offset + len > i_size_read(inode)) { 989 new_size = offset + len; 990 error = inode_newsize_ok(inode, new_size); 991 if (error) 992 goto out_unlock; 993 } 994 995 if (mode & FALLOC_FL_ZERO_RANGE) { 996 /* 997 * Punch a hole and prealloc the range. We use a hole 998 * punch rather than unwritten extent conversion for two 999 * reasons: 1000 * 1001 * 1.) Hole punch handles partial block zeroing for us. 1002 * 2.) If prealloc returns ENOSPC, the file range is 1003 * still zero-valued by virtue of the hole punch. 1004 */ 1005 unsigned int blksize = i_blocksize(inode); 1006 1007 trace_xfs_zero_file_space(ip); 1008 1009 error = xfs_free_file_space(ip, offset, len); 1010 if (error) 1011 goto out_unlock; 1012 1013 len = round_up(offset + len, blksize) - 1014 round_down(offset, blksize); 1015 offset = round_down(offset, blksize); 1016 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 1017 error = xfs_reflink_unshare(ip, offset, len); 1018 if (error) 1019 goto out_unlock; 1020 } else { 1021 /* 1022 * If always_cow mode we can't use preallocations and 1023 * thus should not create them. 1024 */ 1025 if (xfs_is_always_cow_inode(ip)) { 1026 error = -EOPNOTSUPP; 1027 goto out_unlock; 1028 } 1029 } 1030 1031 if (!xfs_is_always_cow_inode(ip)) { 1032 error = xfs_alloc_file_space(ip, offset, len); 1033 if (error) 1034 goto out_unlock; 1035 } 1036 } 1037 1038 /* Change file size if needed */ 1039 if (new_size) { 1040 struct iattr iattr; 1041 1042 iattr.ia_valid = ATTR_SIZE; 1043 iattr.ia_size = new_size; 1044 error = xfs_vn_setattr_size(file_mnt_user_ns(file), 1045 file_dentry(file), &iattr); 1046 if (error) 1047 goto out_unlock; 1048 } 1049 1050 /* 1051 * Perform hole insertion now that the file size has been 1052 * updated so that if we crash during the operation we don't 1053 * leave shifted extents past EOF and hence losing access to 1054 * the data that is contained within them. 1055 */ 1056 if (do_file_insert) { 1057 error = xfs_insert_file_space(ip, offset, len); 1058 if (error) 1059 goto out_unlock; 1060 } 1061 1062 if (xfs_file_sync_writes(file)) 1063 error = xfs_log_force_inode(ip); 1064 1065 out_unlock: 1066 xfs_iunlock(ip, iolock); 1067 return error; 1068 } 1069 1070 STATIC int 1071 xfs_file_fadvise( 1072 struct file *file, 1073 loff_t start, 1074 loff_t end, 1075 int advice) 1076 { 1077 struct xfs_inode *ip = XFS_I(file_inode(file)); 1078 int ret; 1079 int lockflags = 0; 1080 1081 /* 1082 * Operations creating pages in page cache need protection from hole 1083 * punching and similar ops 1084 */ 1085 if (advice == POSIX_FADV_WILLNEED) { 1086 lockflags = XFS_IOLOCK_SHARED; 1087 xfs_ilock(ip, lockflags); 1088 } 1089 ret = generic_fadvise(file, start, end, advice); 1090 if (lockflags) 1091 xfs_iunlock(ip, lockflags); 1092 return ret; 1093 } 1094 1095 STATIC loff_t 1096 xfs_file_remap_range( 1097 struct file *file_in, 1098 loff_t pos_in, 1099 struct file *file_out, 1100 loff_t pos_out, 1101 loff_t len, 1102 unsigned int remap_flags) 1103 { 1104 struct inode *inode_in = file_inode(file_in); 1105 struct xfs_inode *src = XFS_I(inode_in); 1106 struct inode *inode_out = file_inode(file_out); 1107 struct xfs_inode *dest = XFS_I(inode_out); 1108 struct xfs_mount *mp = src->i_mount; 1109 loff_t remapped = 0; 1110 xfs_extlen_t cowextsize; 1111 int ret; 1112 1113 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1114 return -EINVAL; 1115 1116 if (!xfs_has_reflink(mp)) 1117 return -EOPNOTSUPP; 1118 1119 if (xfs_is_shutdown(mp)) 1120 return -EIO; 1121 1122 /* Prepare and then clone file data. */ 1123 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1124 &len, remap_flags); 1125 if (ret || len == 0) 1126 return ret; 1127 1128 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1129 1130 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1131 &remapped); 1132 if (ret) 1133 goto out_unlock; 1134 1135 /* 1136 * Carry the cowextsize hint from src to dest if we're sharing the 1137 * entire source file to the entire destination file, the source file 1138 * has a cowextsize hint, and the destination file does not. 1139 */ 1140 cowextsize = 0; 1141 if (pos_in == 0 && len == i_size_read(inode_in) && 1142 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 1143 pos_out == 0 && len >= i_size_read(inode_out) && 1144 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) 1145 cowextsize = src->i_cowextsize; 1146 1147 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1148 remap_flags); 1149 if (ret) 1150 goto out_unlock; 1151 1152 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1153 xfs_log_force_inode(dest); 1154 out_unlock: 1155 xfs_iunlock2_io_mmap(src, dest); 1156 if (ret) 1157 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1158 return remapped > 0 ? remapped : ret; 1159 } 1160 1161 STATIC int 1162 xfs_file_open( 1163 struct inode *inode, 1164 struct file *file) 1165 { 1166 if (xfs_is_shutdown(XFS_M(inode->i_sb))) 1167 return -EIO; 1168 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC; 1169 return generic_file_open(inode, file); 1170 } 1171 1172 STATIC int 1173 xfs_dir_open( 1174 struct inode *inode, 1175 struct file *file) 1176 { 1177 struct xfs_inode *ip = XFS_I(inode); 1178 unsigned int mode; 1179 int error; 1180 1181 error = xfs_file_open(inode, file); 1182 if (error) 1183 return error; 1184 1185 /* 1186 * If there are any blocks, read-ahead block 0 as we're almost 1187 * certain to have the next operation be a read there. 1188 */ 1189 mode = xfs_ilock_data_map_shared(ip); 1190 if (ip->i_df.if_nextents > 0) 1191 error = xfs_dir3_data_readahead(ip, 0, 0); 1192 xfs_iunlock(ip, mode); 1193 return error; 1194 } 1195 1196 STATIC int 1197 xfs_file_release( 1198 struct inode *inode, 1199 struct file *filp) 1200 { 1201 return xfs_release(XFS_I(inode)); 1202 } 1203 1204 STATIC int 1205 xfs_file_readdir( 1206 struct file *file, 1207 struct dir_context *ctx) 1208 { 1209 struct inode *inode = file_inode(file); 1210 xfs_inode_t *ip = XFS_I(inode); 1211 size_t bufsize; 1212 1213 /* 1214 * The Linux API doesn't pass down the total size of the buffer 1215 * we read into down to the filesystem. With the filldir concept 1216 * it's not needed for correct information, but the XFS dir2 leaf 1217 * code wants an estimate of the buffer size to calculate it's 1218 * readahead window and size the buffers used for mapping to 1219 * physical blocks. 1220 * 1221 * Try to give it an estimate that's good enough, maybe at some 1222 * point we can change the ->readdir prototype to include the 1223 * buffer size. For now we use the current glibc buffer size. 1224 */ 1225 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); 1226 1227 return xfs_readdir(NULL, ip, ctx, bufsize); 1228 } 1229 1230 STATIC loff_t 1231 xfs_file_llseek( 1232 struct file *file, 1233 loff_t offset, 1234 int whence) 1235 { 1236 struct inode *inode = file->f_mapping->host; 1237 1238 if (xfs_is_shutdown(XFS_I(inode)->i_mount)) 1239 return -EIO; 1240 1241 switch (whence) { 1242 default: 1243 return generic_file_llseek(file, offset, whence); 1244 case SEEK_HOLE: 1245 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1246 break; 1247 case SEEK_DATA: 1248 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1249 break; 1250 } 1251 1252 if (offset < 0) 1253 return offset; 1254 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1255 } 1256 1257 #ifdef CONFIG_FS_DAX 1258 static int 1259 xfs_dax_fault( 1260 struct vm_fault *vmf, 1261 enum page_entry_size pe_size, 1262 bool write_fault, 1263 pfn_t *pfn) 1264 { 1265 return dax_iomap_fault(vmf, pe_size, pfn, NULL, 1266 (write_fault && !vmf->cow_page) ? 1267 &xfs_dax_write_iomap_ops : 1268 &xfs_read_iomap_ops); 1269 } 1270 #else 1271 static int 1272 xfs_dax_fault( 1273 struct vm_fault *vmf, 1274 enum page_entry_size pe_size, 1275 bool write_fault, 1276 pfn_t *pfn) 1277 { 1278 return 0; 1279 } 1280 #endif 1281 1282 /* 1283 * Locking for serialisation of IO during page faults. This results in a lock 1284 * ordering of: 1285 * 1286 * mmap_lock (MM) 1287 * sb_start_pagefault(vfs, freeze) 1288 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) 1289 * page_lock (MM) 1290 * i_lock (XFS - extent map serialisation) 1291 */ 1292 static vm_fault_t 1293 __xfs_filemap_fault( 1294 struct vm_fault *vmf, 1295 enum page_entry_size pe_size, 1296 bool write_fault) 1297 { 1298 struct inode *inode = file_inode(vmf->vma->vm_file); 1299 struct xfs_inode *ip = XFS_I(inode); 1300 vm_fault_t ret; 1301 1302 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1303 1304 if (write_fault) { 1305 sb_start_pagefault(inode->i_sb); 1306 file_update_time(vmf->vma->vm_file); 1307 } 1308 1309 if (IS_DAX(inode)) { 1310 pfn_t pfn; 1311 1312 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1313 ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn); 1314 if (ret & VM_FAULT_NEEDDSYNC) 1315 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1316 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1317 } else { 1318 if (write_fault) { 1319 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1320 ret = iomap_page_mkwrite(vmf, 1321 &xfs_buffered_write_iomap_ops); 1322 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1323 } else { 1324 ret = filemap_fault(vmf); 1325 } 1326 } 1327 1328 if (write_fault) 1329 sb_end_pagefault(inode->i_sb); 1330 return ret; 1331 } 1332 1333 static inline bool 1334 xfs_is_write_fault( 1335 struct vm_fault *vmf) 1336 { 1337 return (vmf->flags & FAULT_FLAG_WRITE) && 1338 (vmf->vma->vm_flags & VM_SHARED); 1339 } 1340 1341 static vm_fault_t 1342 xfs_filemap_fault( 1343 struct vm_fault *vmf) 1344 { 1345 /* DAX can shortcut the normal fault path on write faults! */ 1346 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1347 IS_DAX(file_inode(vmf->vma->vm_file)) && 1348 xfs_is_write_fault(vmf)); 1349 } 1350 1351 static vm_fault_t 1352 xfs_filemap_huge_fault( 1353 struct vm_fault *vmf, 1354 enum page_entry_size pe_size) 1355 { 1356 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1357 return VM_FAULT_FALLBACK; 1358 1359 /* DAX can shortcut the normal fault path on write faults! */ 1360 return __xfs_filemap_fault(vmf, pe_size, 1361 xfs_is_write_fault(vmf)); 1362 } 1363 1364 static vm_fault_t 1365 xfs_filemap_page_mkwrite( 1366 struct vm_fault *vmf) 1367 { 1368 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1369 } 1370 1371 /* 1372 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1373 * on write faults. In reality, it needs to serialise against truncate and 1374 * prepare memory for writing so handle is as standard write fault. 1375 */ 1376 static vm_fault_t 1377 xfs_filemap_pfn_mkwrite( 1378 struct vm_fault *vmf) 1379 { 1380 1381 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1382 } 1383 1384 static vm_fault_t 1385 xfs_filemap_map_pages( 1386 struct vm_fault *vmf, 1387 pgoff_t start_pgoff, 1388 pgoff_t end_pgoff) 1389 { 1390 struct inode *inode = file_inode(vmf->vma->vm_file); 1391 vm_fault_t ret; 1392 1393 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1394 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff); 1395 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1396 return ret; 1397 } 1398 1399 static const struct vm_operations_struct xfs_file_vm_ops = { 1400 .fault = xfs_filemap_fault, 1401 .huge_fault = xfs_filemap_huge_fault, 1402 .map_pages = xfs_filemap_map_pages, 1403 .page_mkwrite = xfs_filemap_page_mkwrite, 1404 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1405 }; 1406 1407 STATIC int 1408 xfs_file_mmap( 1409 struct file *file, 1410 struct vm_area_struct *vma) 1411 { 1412 struct inode *inode = file_inode(file); 1413 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1414 1415 /* 1416 * We don't support synchronous mappings for non-DAX files and 1417 * for DAX files if underneath dax_device is not synchronous. 1418 */ 1419 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1420 return -EOPNOTSUPP; 1421 1422 file_accessed(file); 1423 vma->vm_ops = &xfs_file_vm_ops; 1424 if (IS_DAX(inode)) 1425 vma->vm_flags |= VM_HUGEPAGE; 1426 return 0; 1427 } 1428 1429 const struct file_operations xfs_file_operations = { 1430 .llseek = xfs_file_llseek, 1431 .read_iter = xfs_file_read_iter, 1432 .write_iter = xfs_file_write_iter, 1433 .splice_read = generic_file_splice_read, 1434 .splice_write = iter_file_splice_write, 1435 .iopoll = iocb_bio_iopoll, 1436 .unlocked_ioctl = xfs_file_ioctl, 1437 #ifdef CONFIG_COMPAT 1438 .compat_ioctl = xfs_file_compat_ioctl, 1439 #endif 1440 .mmap = xfs_file_mmap, 1441 .mmap_supported_flags = MAP_SYNC, 1442 .open = xfs_file_open, 1443 .release = xfs_file_release, 1444 .fsync = xfs_file_fsync, 1445 .get_unmapped_area = thp_get_unmapped_area, 1446 .fallocate = xfs_file_fallocate, 1447 .fadvise = xfs_file_fadvise, 1448 .remap_file_range = xfs_file_remap_range, 1449 }; 1450 1451 const struct file_operations xfs_dir_file_operations = { 1452 .open = xfs_dir_open, 1453 .read = generic_read_dir, 1454 .iterate_shared = xfs_file_readdir, 1455 .llseek = generic_file_llseek, 1456 .unlocked_ioctl = xfs_file_ioctl, 1457 #ifdef CONFIG_COMPAT 1458 .compat_ioctl = xfs_file_compat_ioctl, 1459 #endif 1460 .fsync = xfs_dir_fsync, 1461 }; 1462