1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_error.h" 35 #include "xfs_dir2.h" 36 #include "xfs_dir2_priv.h" 37 #include "xfs_ioctl.h" 38 #include "xfs_trace.h" 39 #include "xfs_log.h" 40 #include "xfs_dinode.h" 41 42 #include <linux/aio.h> 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 47 static const struct vm_operations_struct xfs_file_vm_ops; 48 49 /* 50 * Locking primitives for read and write IO paths to ensure we consistently use 51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 52 */ 53 static inline void 54 xfs_rw_ilock( 55 struct xfs_inode *ip, 56 int type) 57 { 58 if (type & XFS_IOLOCK_EXCL) 59 mutex_lock(&VFS_I(ip)->i_mutex); 60 xfs_ilock(ip, type); 61 } 62 63 static inline void 64 xfs_rw_iunlock( 65 struct xfs_inode *ip, 66 int type) 67 { 68 xfs_iunlock(ip, type); 69 if (type & XFS_IOLOCK_EXCL) 70 mutex_unlock(&VFS_I(ip)->i_mutex); 71 } 72 73 static inline void 74 xfs_rw_ilock_demote( 75 struct xfs_inode *ip, 76 int type) 77 { 78 xfs_ilock_demote(ip, type); 79 if (type & XFS_IOLOCK_EXCL) 80 mutex_unlock(&VFS_I(ip)->i_mutex); 81 } 82 83 /* 84 * xfs_iozero 85 * 86 * xfs_iozero clears the specified range of buffer supplied, 87 * and marks all the affected blocks as valid and modified. If 88 * an affected block is not allocated, it will be allocated. If 89 * an affected block is not completely overwritten, and is not 90 * valid before the operation, it will be read from disk before 91 * being partially zeroed. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status; 102 103 mapping = VFS_I(ip)->i_mapping; 104 do { 105 unsigned offset, bytes; 106 void *fsdata; 107 108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 109 bytes = PAGE_CACHE_SIZE - offset; 110 if (bytes > count) 111 bytes = count; 112 113 status = pagecache_write_begin(NULL, mapping, pos, bytes, 114 AOP_FLAG_UNINTERRUPTIBLE, 115 &page, &fsdata); 116 if (status) 117 break; 118 119 zero_user(page, offset, bytes); 120 121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 122 page, fsdata); 123 WARN_ON(status <= 0); /* can't return less than zero! */ 124 pos += bytes; 125 count -= bytes; 126 status = 0; 127 } while (count); 128 129 return (-status); 130 } 131 132 /* 133 * Fsync operations on directories are much simpler than on regular files, 134 * as there is no file data to flush, and thus also no need for explicit 135 * cache flush operations, and there are no non-transaction metadata updates 136 * on directories either. 137 */ 138 STATIC int 139 xfs_dir_fsync( 140 struct file *file, 141 loff_t start, 142 loff_t end, 143 int datasync) 144 { 145 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 146 struct xfs_mount *mp = ip->i_mount; 147 xfs_lsn_t lsn = 0; 148 149 trace_xfs_dir_fsync(ip); 150 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) 153 lsn = ip->i_itemp->ili_last_lsn; 154 xfs_iunlock(ip, XFS_ILOCK_SHARED); 155 156 if (!lsn) 157 return 0; 158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 159 } 160 161 STATIC int 162 xfs_file_fsync( 163 struct file *file, 164 loff_t start, 165 loff_t end, 166 int datasync) 167 { 168 struct inode *inode = file->f_mapping->host; 169 struct xfs_inode *ip = XFS_I(inode); 170 struct xfs_mount *mp = ip->i_mount; 171 int error = 0; 172 int log_flushed = 0; 173 xfs_lsn_t lsn = 0; 174 175 trace_xfs_file_fsync(ip); 176 177 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 178 if (error) 179 return error; 180 181 if (XFS_FORCED_SHUTDOWN(mp)) 182 return -XFS_ERROR(EIO); 183 184 xfs_iflags_clear(ip, XFS_ITRUNCATED); 185 186 if (mp->m_flags & XFS_MOUNT_BARRIER) { 187 /* 188 * If we have an RT and/or log subvolume we need to make sure 189 * to flush the write cache the device used for file data 190 * first. This is to ensure newly written file data make 191 * it to disk before logging the new inode size in case of 192 * an extending write. 193 */ 194 if (XFS_IS_REALTIME_INODE(ip)) 195 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 196 else if (mp->m_logdev_targp != mp->m_ddev_targp) 197 xfs_blkdev_issue_flush(mp->m_ddev_targp); 198 } 199 200 /* 201 * All metadata updates are logged, which means that we just have 202 * to flush the log up to the latest LSN that touched the inode. 203 */ 204 xfs_ilock(ip, XFS_ILOCK_SHARED); 205 if (xfs_ipincount(ip)) { 206 if (!datasync || 207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 208 lsn = ip->i_itemp->ili_last_lsn; 209 } 210 xfs_iunlock(ip, XFS_ILOCK_SHARED); 211 212 if (lsn) 213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 214 215 /* 216 * If we only have a single device, and the log force about was 217 * a no-op we might have to flush the data device cache here. 218 * This can only happen for fdatasync/O_DSYNC if we were overwriting 219 * an already allocated file and thus do not have any metadata to 220 * commit. 221 */ 222 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 223 mp->m_logdev_targp == mp->m_ddev_targp && 224 !XFS_IS_REALTIME_INODE(ip) && 225 !log_flushed) 226 xfs_blkdev_issue_flush(mp->m_ddev_targp); 227 228 return -error; 229 } 230 231 STATIC ssize_t 232 xfs_file_aio_read( 233 struct kiocb *iocb, 234 const struct iovec *iovp, 235 unsigned long nr_segs, 236 loff_t pos) 237 { 238 struct file *file = iocb->ki_filp; 239 struct inode *inode = file->f_mapping->host; 240 struct xfs_inode *ip = XFS_I(inode); 241 struct xfs_mount *mp = ip->i_mount; 242 size_t size = 0; 243 ssize_t ret = 0; 244 int ioflags = 0; 245 xfs_fsize_t n; 246 247 XFS_STATS_INC(xs_read_calls); 248 249 BUG_ON(iocb->ki_pos != pos); 250 251 if (unlikely(file->f_flags & O_DIRECT)) 252 ioflags |= IO_ISDIRECT; 253 if (file->f_mode & FMODE_NOCMTIME) 254 ioflags |= IO_INVIS; 255 256 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 257 if (ret < 0) 258 return ret; 259 260 if (unlikely(ioflags & IO_ISDIRECT)) { 261 xfs_buftarg_t *target = 262 XFS_IS_REALTIME_INODE(ip) ? 263 mp->m_rtdev_targp : mp->m_ddev_targp; 264 if ((pos & target->bt_smask) || (size & target->bt_smask)) { 265 if (pos == i_size_read(inode)) 266 return 0; 267 return -XFS_ERROR(EINVAL); 268 } 269 } 270 271 n = mp->m_super->s_maxbytes - pos; 272 if (n <= 0 || size == 0) 273 return 0; 274 275 if (n < size) 276 size = n; 277 278 if (XFS_FORCED_SHUTDOWN(mp)) 279 return -EIO; 280 281 /* 282 * Locking is a bit tricky here. If we take an exclusive lock 283 * for direct IO, we effectively serialise all new concurrent 284 * read IO to this file and block it behind IO that is currently in 285 * progress because IO in progress holds the IO lock shared. We only 286 * need to hold the lock exclusive to blow away the page cache, so 287 * only take lock exclusively if the page cache needs invalidation. 288 * This allows the normal direct IO case of no page cache pages to 289 * proceeed concurrently without serialisation. 290 */ 291 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 292 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 293 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 294 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 295 296 if (inode->i_mapping->nrpages) { 297 ret = -filemap_write_and_wait_range( 298 VFS_I(ip)->i_mapping, 299 pos, -1); 300 if (ret) { 301 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 302 return ret; 303 } 304 truncate_pagecache_range(VFS_I(ip), pos, -1); 305 } 306 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 307 } 308 309 trace_xfs_file_read(ip, size, pos, ioflags); 310 311 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos); 312 if (ret > 0) 313 XFS_STATS_ADD(xs_read_bytes, ret); 314 315 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 316 return ret; 317 } 318 319 STATIC ssize_t 320 xfs_file_splice_read( 321 struct file *infilp, 322 loff_t *ppos, 323 struct pipe_inode_info *pipe, 324 size_t count, 325 unsigned int flags) 326 { 327 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 328 int ioflags = 0; 329 ssize_t ret; 330 331 XFS_STATS_INC(xs_read_calls); 332 333 if (infilp->f_mode & FMODE_NOCMTIME) 334 ioflags |= IO_INVIS; 335 336 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 337 return -EIO; 338 339 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 340 341 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 342 343 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 344 if (ret > 0) 345 XFS_STATS_ADD(xs_read_bytes, ret); 346 347 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 348 return ret; 349 } 350 351 /* 352 * xfs_file_splice_write() does not use xfs_rw_ilock() because 353 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 354 * couuld cause lock inversions between the aio_write path and the splice path 355 * if someone is doing concurrent splice(2) based writes and write(2) based 356 * writes to the same inode. The only real way to fix this is to re-implement 357 * the generic code here with correct locking orders. 358 */ 359 STATIC ssize_t 360 xfs_file_splice_write( 361 struct pipe_inode_info *pipe, 362 struct file *outfilp, 363 loff_t *ppos, 364 size_t count, 365 unsigned int flags) 366 { 367 struct inode *inode = outfilp->f_mapping->host; 368 struct xfs_inode *ip = XFS_I(inode); 369 int ioflags = 0; 370 ssize_t ret; 371 372 XFS_STATS_INC(xs_write_calls); 373 374 if (outfilp->f_mode & FMODE_NOCMTIME) 375 ioflags |= IO_INVIS; 376 377 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 378 return -EIO; 379 380 xfs_ilock(ip, XFS_IOLOCK_EXCL); 381 382 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 383 384 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 385 if (ret > 0) 386 XFS_STATS_ADD(xs_write_bytes, ret); 387 388 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 389 return ret; 390 } 391 392 /* 393 * This routine is called to handle zeroing any space in the last block of the 394 * file that is beyond the EOF. We do this since the size is being increased 395 * without writing anything to that block and we don't want to read the 396 * garbage on the disk. 397 */ 398 STATIC int /* error (positive) */ 399 xfs_zero_last_block( 400 struct xfs_inode *ip, 401 xfs_fsize_t offset, 402 xfs_fsize_t isize) 403 { 404 struct xfs_mount *mp = ip->i_mount; 405 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 406 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 407 int zero_len; 408 int nimaps = 1; 409 int error = 0; 410 struct xfs_bmbt_irec imap; 411 412 xfs_ilock(ip, XFS_ILOCK_EXCL); 413 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 414 xfs_iunlock(ip, XFS_ILOCK_EXCL); 415 if (error) 416 return error; 417 418 ASSERT(nimaps > 0); 419 420 /* 421 * If the block underlying isize is just a hole, then there 422 * is nothing to zero. 423 */ 424 if (imap.br_startblock == HOLESTARTBLOCK) 425 return 0; 426 427 zero_len = mp->m_sb.sb_blocksize - zero_offset; 428 if (isize + zero_len > offset) 429 zero_len = offset - isize; 430 return xfs_iozero(ip, isize, zero_len); 431 } 432 433 /* 434 * Zero any on disk space between the current EOF and the new, larger EOF. 435 * 436 * This handles the normal case of zeroing the remainder of the last block in 437 * the file and the unusual case of zeroing blocks out beyond the size of the 438 * file. This second case only happens with fixed size extents and when the 439 * system crashes before the inode size was updated but after blocks were 440 * allocated. 441 * 442 * Expects the iolock to be held exclusive, and will take the ilock internally. 443 */ 444 int /* error (positive) */ 445 xfs_zero_eof( 446 struct xfs_inode *ip, 447 xfs_off_t offset, /* starting I/O offset */ 448 xfs_fsize_t isize) /* current inode size */ 449 { 450 struct xfs_mount *mp = ip->i_mount; 451 xfs_fileoff_t start_zero_fsb; 452 xfs_fileoff_t end_zero_fsb; 453 xfs_fileoff_t zero_count_fsb; 454 xfs_fileoff_t last_fsb; 455 xfs_fileoff_t zero_off; 456 xfs_fsize_t zero_len; 457 int nimaps; 458 int error = 0; 459 struct xfs_bmbt_irec imap; 460 461 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 462 ASSERT(offset > isize); 463 464 /* 465 * First handle zeroing the block on which isize resides. 466 * 467 * We only zero a part of that block so it is handled specially. 468 */ 469 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 470 error = xfs_zero_last_block(ip, offset, isize); 471 if (error) 472 return error; 473 } 474 475 /* 476 * Calculate the range between the new size and the old where blocks 477 * needing to be zeroed may exist. 478 * 479 * To get the block where the last byte in the file currently resides, 480 * we need to subtract one from the size and truncate back to a block 481 * boundary. We subtract 1 in case the size is exactly on a block 482 * boundary. 483 */ 484 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 485 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 486 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 487 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 488 if (last_fsb == end_zero_fsb) { 489 /* 490 * The size was only incremented on its last block. 491 * We took care of that above, so just return. 492 */ 493 return 0; 494 } 495 496 ASSERT(start_zero_fsb <= end_zero_fsb); 497 while (start_zero_fsb <= end_zero_fsb) { 498 nimaps = 1; 499 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 500 501 xfs_ilock(ip, XFS_ILOCK_EXCL); 502 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 503 &imap, &nimaps, 0); 504 xfs_iunlock(ip, XFS_ILOCK_EXCL); 505 if (error) 506 return error; 507 508 ASSERT(nimaps > 0); 509 510 if (imap.br_state == XFS_EXT_UNWRITTEN || 511 imap.br_startblock == HOLESTARTBLOCK) { 512 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 513 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 514 continue; 515 } 516 517 /* 518 * There are blocks we need to zero. 519 */ 520 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 521 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 522 523 if ((zero_off + zero_len) > offset) 524 zero_len = offset - zero_off; 525 526 error = xfs_iozero(ip, zero_off, zero_len); 527 if (error) 528 return error; 529 530 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 531 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 532 } 533 534 return 0; 535 } 536 537 /* 538 * Common pre-write limit and setup checks. 539 * 540 * Called with the iolocked held either shared and exclusive according to 541 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 542 * if called for a direct write beyond i_size. 543 */ 544 STATIC ssize_t 545 xfs_file_aio_write_checks( 546 struct file *file, 547 loff_t *pos, 548 size_t *count, 549 int *iolock) 550 { 551 struct inode *inode = file->f_mapping->host; 552 struct xfs_inode *ip = XFS_I(inode); 553 int error = 0; 554 555 restart: 556 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 557 if (error) 558 return error; 559 560 /* 561 * If the offset is beyond the size of the file, we need to zero any 562 * blocks that fall between the existing EOF and the start of this 563 * write. If zeroing is needed and we are currently holding the 564 * iolock shared, we need to update it to exclusive which implies 565 * having to redo all checks before. 566 */ 567 if (*pos > i_size_read(inode)) { 568 if (*iolock == XFS_IOLOCK_SHARED) { 569 xfs_rw_iunlock(ip, *iolock); 570 *iolock = XFS_IOLOCK_EXCL; 571 xfs_rw_ilock(ip, *iolock); 572 goto restart; 573 } 574 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 575 if (error) 576 return error; 577 } 578 579 /* 580 * Updating the timestamps will grab the ilock again from 581 * xfs_fs_dirty_inode, so we have to call it after dropping the 582 * lock above. Eventually we should look into a way to avoid 583 * the pointless lock roundtrip. 584 */ 585 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 586 error = file_update_time(file); 587 if (error) 588 return error; 589 } 590 591 /* 592 * If we're writing the file then make sure to clear the setuid and 593 * setgid bits if the process is not being run by root. This keeps 594 * people from modifying setuid and setgid binaries. 595 */ 596 return file_remove_suid(file); 597 } 598 599 /* 600 * xfs_file_dio_aio_write - handle direct IO writes 601 * 602 * Lock the inode appropriately to prepare for and issue a direct IO write. 603 * By separating it from the buffered write path we remove all the tricky to 604 * follow locking changes and looping. 605 * 606 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 607 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 608 * pages are flushed out. 609 * 610 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 611 * allowing them to be done in parallel with reads and other direct IO writes. 612 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 613 * needs to do sub-block zeroing and that requires serialisation against other 614 * direct IOs to the same block. In this case we need to serialise the 615 * submission of the unaligned IOs so that we don't get racing block zeroing in 616 * the dio layer. To avoid the problem with aio, we also need to wait for 617 * outstanding IOs to complete so that unwritten extent conversion is completed 618 * before we try to map the overlapping block. This is currently implemented by 619 * hitting it with a big hammer (i.e. inode_dio_wait()). 620 * 621 * Returns with locks held indicated by @iolock and errors indicated by 622 * negative return values. 623 */ 624 STATIC ssize_t 625 xfs_file_dio_aio_write( 626 struct kiocb *iocb, 627 const struct iovec *iovp, 628 unsigned long nr_segs, 629 loff_t pos, 630 size_t ocount) 631 { 632 struct file *file = iocb->ki_filp; 633 struct address_space *mapping = file->f_mapping; 634 struct inode *inode = mapping->host; 635 struct xfs_inode *ip = XFS_I(inode); 636 struct xfs_mount *mp = ip->i_mount; 637 ssize_t ret = 0; 638 size_t count = ocount; 639 int unaligned_io = 0; 640 int iolock; 641 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 642 mp->m_rtdev_targp : mp->m_ddev_targp; 643 644 if ((pos & target->bt_smask) || (count & target->bt_smask)) 645 return -XFS_ERROR(EINVAL); 646 647 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 648 unaligned_io = 1; 649 650 /* 651 * We don't need to take an exclusive lock unless there page cache needs 652 * to be invalidated or unaligned IO is being executed. We don't need to 653 * consider the EOF extension case here because 654 * xfs_file_aio_write_checks() will relock the inode as necessary for 655 * EOF zeroing cases and fill out the new inode size as appropriate. 656 */ 657 if (unaligned_io || mapping->nrpages) 658 iolock = XFS_IOLOCK_EXCL; 659 else 660 iolock = XFS_IOLOCK_SHARED; 661 xfs_rw_ilock(ip, iolock); 662 663 /* 664 * Recheck if there are cached pages that need invalidate after we got 665 * the iolock to protect against other threads adding new pages while 666 * we were waiting for the iolock. 667 */ 668 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 669 xfs_rw_iunlock(ip, iolock); 670 iolock = XFS_IOLOCK_EXCL; 671 xfs_rw_ilock(ip, iolock); 672 } 673 674 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 675 if (ret) 676 goto out; 677 678 if (mapping->nrpages) { 679 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 680 pos, -1); 681 if (ret) 682 goto out; 683 truncate_pagecache_range(VFS_I(ip), pos, -1); 684 } 685 686 /* 687 * If we are doing unaligned IO, wait for all other IO to drain, 688 * otherwise demote the lock if we had to flush cached pages 689 */ 690 if (unaligned_io) 691 inode_dio_wait(inode); 692 else if (iolock == XFS_IOLOCK_EXCL) { 693 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 694 iolock = XFS_IOLOCK_SHARED; 695 } 696 697 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 698 ret = generic_file_direct_write(iocb, iovp, 699 &nr_segs, pos, &iocb->ki_pos, count, ocount); 700 701 out: 702 xfs_rw_iunlock(ip, iolock); 703 704 /* No fallback to buffered IO on errors for XFS. */ 705 ASSERT(ret < 0 || ret == count); 706 return ret; 707 } 708 709 STATIC ssize_t 710 xfs_file_buffered_aio_write( 711 struct kiocb *iocb, 712 const struct iovec *iovp, 713 unsigned long nr_segs, 714 loff_t pos, 715 size_t ocount) 716 { 717 struct file *file = iocb->ki_filp; 718 struct address_space *mapping = file->f_mapping; 719 struct inode *inode = mapping->host; 720 struct xfs_inode *ip = XFS_I(inode); 721 ssize_t ret; 722 int enospc = 0; 723 int iolock = XFS_IOLOCK_EXCL; 724 size_t count = ocount; 725 726 xfs_rw_ilock(ip, iolock); 727 728 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 729 if (ret) 730 goto out; 731 732 /* We can write back this queue in page reclaim */ 733 current->backing_dev_info = mapping->backing_dev_info; 734 735 write_retry: 736 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 737 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 738 pos, &iocb->ki_pos, count, 0); 739 740 /* 741 * If we just got an ENOSPC, try to write back all dirty inodes to 742 * convert delalloc space to free up some of the excess reserved 743 * metadata space. 744 */ 745 if (ret == -ENOSPC && !enospc) { 746 enospc = 1; 747 xfs_flush_inodes(ip->i_mount); 748 goto write_retry; 749 } 750 751 current->backing_dev_info = NULL; 752 out: 753 xfs_rw_iunlock(ip, iolock); 754 return ret; 755 } 756 757 STATIC ssize_t 758 xfs_file_aio_write( 759 struct kiocb *iocb, 760 const struct iovec *iovp, 761 unsigned long nr_segs, 762 loff_t pos) 763 { 764 struct file *file = iocb->ki_filp; 765 struct address_space *mapping = file->f_mapping; 766 struct inode *inode = mapping->host; 767 struct xfs_inode *ip = XFS_I(inode); 768 ssize_t ret; 769 size_t ocount = 0; 770 771 XFS_STATS_INC(xs_write_calls); 772 773 BUG_ON(iocb->ki_pos != pos); 774 775 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 776 if (ret) 777 return ret; 778 779 if (ocount == 0) 780 return 0; 781 782 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 783 ret = -EIO; 784 goto out; 785 } 786 787 if (unlikely(file->f_flags & O_DIRECT)) 788 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 789 else 790 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 791 ocount); 792 793 if (ret > 0) { 794 ssize_t err; 795 796 XFS_STATS_ADD(xs_write_bytes, ret); 797 798 /* Handle various SYNC-type writes */ 799 err = generic_write_sync(file, pos, ret); 800 if (err < 0) 801 ret = err; 802 } 803 804 out: 805 return ret; 806 } 807 808 STATIC long 809 xfs_file_fallocate( 810 struct file *file, 811 int mode, 812 loff_t offset, 813 loff_t len) 814 { 815 struct inode *inode = file_inode(file); 816 struct xfs_inode *ip = XFS_I(inode); 817 struct xfs_trans *tp; 818 long error; 819 loff_t new_size = 0; 820 821 if (!S_ISREG(inode->i_mode)) 822 return -EINVAL; 823 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 824 return -EOPNOTSUPP; 825 826 xfs_ilock(ip, XFS_IOLOCK_EXCL); 827 if (mode & FALLOC_FL_PUNCH_HOLE) { 828 error = xfs_free_file_space(ip, offset, len); 829 if (error) 830 goto out_unlock; 831 } else { 832 if (!(mode & FALLOC_FL_KEEP_SIZE) && 833 offset + len > i_size_read(inode)) { 834 new_size = offset + len; 835 error = -inode_newsize_ok(inode, new_size); 836 if (error) 837 goto out_unlock; 838 } 839 840 error = xfs_alloc_file_space(ip, offset, len, 841 XFS_BMAPI_PREALLOC); 842 if (error) 843 goto out_unlock; 844 } 845 846 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 847 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 848 if (error) { 849 xfs_trans_cancel(tp, 0); 850 goto out_unlock; 851 } 852 853 xfs_ilock(ip, XFS_ILOCK_EXCL); 854 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 855 ip->i_d.di_mode &= ~S_ISUID; 856 if (ip->i_d.di_mode & S_IXGRP) 857 ip->i_d.di_mode &= ~S_ISGID; 858 859 if (!(mode & FALLOC_FL_PUNCH_HOLE)) 860 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 861 862 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 863 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 864 865 if (file->f_flags & O_DSYNC) 866 xfs_trans_set_sync(tp); 867 error = xfs_trans_commit(tp, 0); 868 if (error) 869 goto out_unlock; 870 871 /* Change file size if needed */ 872 if (new_size) { 873 struct iattr iattr; 874 875 iattr.ia_valid = ATTR_SIZE; 876 iattr.ia_size = new_size; 877 error = xfs_setattr_size(ip, &iattr); 878 } 879 880 out_unlock: 881 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 882 return -error; 883 } 884 885 886 STATIC int 887 xfs_file_open( 888 struct inode *inode, 889 struct file *file) 890 { 891 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 892 return -EFBIG; 893 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 894 return -EIO; 895 return 0; 896 } 897 898 STATIC int 899 xfs_dir_open( 900 struct inode *inode, 901 struct file *file) 902 { 903 struct xfs_inode *ip = XFS_I(inode); 904 int mode; 905 int error; 906 907 error = xfs_file_open(inode, file); 908 if (error) 909 return error; 910 911 /* 912 * If there are any blocks, read-ahead block 0 as we're almost 913 * certain to have the next operation be a read there. 914 */ 915 mode = xfs_ilock_map_shared(ip); 916 if (ip->i_d.di_nextents > 0) 917 xfs_dir3_data_readahead(NULL, ip, 0, -1); 918 xfs_iunlock(ip, mode); 919 return 0; 920 } 921 922 STATIC int 923 xfs_file_release( 924 struct inode *inode, 925 struct file *filp) 926 { 927 return -xfs_release(XFS_I(inode)); 928 } 929 930 STATIC int 931 xfs_file_readdir( 932 struct file *file, 933 struct dir_context *ctx) 934 { 935 struct inode *inode = file_inode(file); 936 xfs_inode_t *ip = XFS_I(inode); 937 int error; 938 size_t bufsize; 939 940 /* 941 * The Linux API doesn't pass down the total size of the buffer 942 * we read into down to the filesystem. With the filldir concept 943 * it's not needed for correct information, but the XFS dir2 leaf 944 * code wants an estimate of the buffer size to calculate it's 945 * readahead window and size the buffers used for mapping to 946 * physical blocks. 947 * 948 * Try to give it an estimate that's good enough, maybe at some 949 * point we can change the ->readdir prototype to include the 950 * buffer size. For now we use the current glibc buffer size. 951 */ 952 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 953 954 error = xfs_readdir(ip, ctx, bufsize); 955 if (error) 956 return -error; 957 return 0; 958 } 959 960 STATIC int 961 xfs_file_mmap( 962 struct file *filp, 963 struct vm_area_struct *vma) 964 { 965 vma->vm_ops = &xfs_file_vm_ops; 966 967 file_accessed(filp); 968 return 0; 969 } 970 971 /* 972 * mmap()d file has taken write protection fault and is being made 973 * writable. We can set the page state up correctly for a writable 974 * page, which means we can do correct delalloc accounting (ENOSPC 975 * checking!) and unwritten extent mapping. 976 */ 977 STATIC int 978 xfs_vm_page_mkwrite( 979 struct vm_area_struct *vma, 980 struct vm_fault *vmf) 981 { 982 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 983 } 984 985 /* 986 * This type is designed to indicate the type of offset we would like 987 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 988 */ 989 enum { 990 HOLE_OFF = 0, 991 DATA_OFF, 992 }; 993 994 /* 995 * Lookup the desired type of offset from the given page. 996 * 997 * On success, return true and the offset argument will point to the 998 * start of the region that was found. Otherwise this function will 999 * return false and keep the offset argument unchanged. 1000 */ 1001 STATIC bool 1002 xfs_lookup_buffer_offset( 1003 struct page *page, 1004 loff_t *offset, 1005 unsigned int type) 1006 { 1007 loff_t lastoff = page_offset(page); 1008 bool found = false; 1009 struct buffer_head *bh, *head; 1010 1011 bh = head = page_buffers(page); 1012 do { 1013 /* 1014 * Unwritten extents that have data in the page 1015 * cache covering them can be identified by the 1016 * BH_Unwritten state flag. Pages with multiple 1017 * buffers might have a mix of holes, data and 1018 * unwritten extents - any buffer with valid 1019 * data in it should have BH_Uptodate flag set 1020 * on it. 1021 */ 1022 if (buffer_unwritten(bh) || 1023 buffer_uptodate(bh)) { 1024 if (type == DATA_OFF) 1025 found = true; 1026 } else { 1027 if (type == HOLE_OFF) 1028 found = true; 1029 } 1030 1031 if (found) { 1032 *offset = lastoff; 1033 break; 1034 } 1035 lastoff += bh->b_size; 1036 } while ((bh = bh->b_this_page) != head); 1037 1038 return found; 1039 } 1040 1041 /* 1042 * This routine is called to find out and return a data or hole offset 1043 * from the page cache for unwritten extents according to the desired 1044 * type for xfs_seek_data() or xfs_seek_hole(). 1045 * 1046 * The argument offset is used to tell where we start to search from the 1047 * page cache. Map is used to figure out the end points of the range to 1048 * lookup pages. 1049 * 1050 * Return true if the desired type of offset was found, and the argument 1051 * offset is filled with that address. Otherwise, return false and keep 1052 * offset unchanged. 1053 */ 1054 STATIC bool 1055 xfs_find_get_desired_pgoff( 1056 struct inode *inode, 1057 struct xfs_bmbt_irec *map, 1058 unsigned int type, 1059 loff_t *offset) 1060 { 1061 struct xfs_inode *ip = XFS_I(inode); 1062 struct xfs_mount *mp = ip->i_mount; 1063 struct pagevec pvec; 1064 pgoff_t index; 1065 pgoff_t end; 1066 loff_t endoff; 1067 loff_t startoff = *offset; 1068 loff_t lastoff = startoff; 1069 bool found = false; 1070 1071 pagevec_init(&pvec, 0); 1072 1073 index = startoff >> PAGE_CACHE_SHIFT; 1074 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1075 end = endoff >> PAGE_CACHE_SHIFT; 1076 do { 1077 int want; 1078 unsigned nr_pages; 1079 unsigned int i; 1080 1081 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1082 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1083 want); 1084 /* 1085 * No page mapped into given range. If we are searching holes 1086 * and if this is the first time we got into the loop, it means 1087 * that the given offset is landed in a hole, return it. 1088 * 1089 * If we have already stepped through some block buffers to find 1090 * holes but they all contains data. In this case, the last 1091 * offset is already updated and pointed to the end of the last 1092 * mapped page, if it does not reach the endpoint to search, 1093 * that means there should be a hole between them. 1094 */ 1095 if (nr_pages == 0) { 1096 /* Data search found nothing */ 1097 if (type == DATA_OFF) 1098 break; 1099 1100 ASSERT(type == HOLE_OFF); 1101 if (lastoff == startoff || lastoff < endoff) { 1102 found = true; 1103 *offset = lastoff; 1104 } 1105 break; 1106 } 1107 1108 /* 1109 * At lease we found one page. If this is the first time we 1110 * step into the loop, and if the first page index offset is 1111 * greater than the given search offset, a hole was found. 1112 */ 1113 if (type == HOLE_OFF && lastoff == startoff && 1114 lastoff < page_offset(pvec.pages[0])) { 1115 found = true; 1116 break; 1117 } 1118 1119 for (i = 0; i < nr_pages; i++) { 1120 struct page *page = pvec.pages[i]; 1121 loff_t b_offset; 1122 1123 /* 1124 * At this point, the page may be truncated or 1125 * invalidated (changing page->mapping to NULL), 1126 * or even swizzled back from swapper_space to tmpfs 1127 * file mapping. However, page->index will not change 1128 * because we have a reference on the page. 1129 * 1130 * Searching done if the page index is out of range. 1131 * If the current offset is not reaches the end of 1132 * the specified search range, there should be a hole 1133 * between them. 1134 */ 1135 if (page->index > end) { 1136 if (type == HOLE_OFF && lastoff < endoff) { 1137 *offset = lastoff; 1138 found = true; 1139 } 1140 goto out; 1141 } 1142 1143 lock_page(page); 1144 /* 1145 * Page truncated or invalidated(page->mapping == NULL). 1146 * We can freely skip it and proceed to check the next 1147 * page. 1148 */ 1149 if (unlikely(page->mapping != inode->i_mapping)) { 1150 unlock_page(page); 1151 continue; 1152 } 1153 1154 if (!page_has_buffers(page)) { 1155 unlock_page(page); 1156 continue; 1157 } 1158 1159 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1160 if (found) { 1161 /* 1162 * The found offset may be less than the start 1163 * point to search if this is the first time to 1164 * come here. 1165 */ 1166 *offset = max_t(loff_t, startoff, b_offset); 1167 unlock_page(page); 1168 goto out; 1169 } 1170 1171 /* 1172 * We either searching data but nothing was found, or 1173 * searching hole but found a data buffer. In either 1174 * case, probably the next page contains the desired 1175 * things, update the last offset to it so. 1176 */ 1177 lastoff = page_offset(page) + PAGE_SIZE; 1178 unlock_page(page); 1179 } 1180 1181 /* 1182 * The number of returned pages less than our desired, search 1183 * done. In this case, nothing was found for searching data, 1184 * but we found a hole behind the last offset. 1185 */ 1186 if (nr_pages < want) { 1187 if (type == HOLE_OFF) { 1188 *offset = lastoff; 1189 found = true; 1190 } 1191 break; 1192 } 1193 1194 index = pvec.pages[i - 1]->index + 1; 1195 pagevec_release(&pvec); 1196 } while (index <= end); 1197 1198 out: 1199 pagevec_release(&pvec); 1200 return found; 1201 } 1202 1203 STATIC loff_t 1204 xfs_seek_data( 1205 struct file *file, 1206 loff_t start) 1207 { 1208 struct inode *inode = file->f_mapping->host; 1209 struct xfs_inode *ip = XFS_I(inode); 1210 struct xfs_mount *mp = ip->i_mount; 1211 loff_t uninitialized_var(offset); 1212 xfs_fsize_t isize; 1213 xfs_fileoff_t fsbno; 1214 xfs_filblks_t end; 1215 uint lock; 1216 int error; 1217 1218 lock = xfs_ilock_map_shared(ip); 1219 1220 isize = i_size_read(inode); 1221 if (start >= isize) { 1222 error = ENXIO; 1223 goto out_unlock; 1224 } 1225 1226 /* 1227 * Try to read extents from the first block indicated 1228 * by fsbno to the end block of the file. 1229 */ 1230 fsbno = XFS_B_TO_FSBT(mp, start); 1231 end = XFS_B_TO_FSB(mp, isize); 1232 for (;;) { 1233 struct xfs_bmbt_irec map[2]; 1234 int nmap = 2; 1235 unsigned int i; 1236 1237 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1238 XFS_BMAPI_ENTIRE); 1239 if (error) 1240 goto out_unlock; 1241 1242 /* No extents at given offset, must be beyond EOF */ 1243 if (nmap == 0) { 1244 error = ENXIO; 1245 goto out_unlock; 1246 } 1247 1248 for (i = 0; i < nmap; i++) { 1249 offset = max_t(loff_t, start, 1250 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1251 1252 /* Landed in a data extent */ 1253 if (map[i].br_startblock == DELAYSTARTBLOCK || 1254 (map[i].br_state == XFS_EXT_NORM && 1255 !isnullstartblock(map[i].br_startblock))) 1256 goto out; 1257 1258 /* 1259 * Landed in an unwritten extent, try to search data 1260 * from page cache. 1261 */ 1262 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1263 if (xfs_find_get_desired_pgoff(inode, &map[i], 1264 DATA_OFF, &offset)) 1265 goto out; 1266 } 1267 } 1268 1269 /* 1270 * map[0] is hole or its an unwritten extent but 1271 * without data in page cache. Probably means that 1272 * we are reading after EOF if nothing in map[1]. 1273 */ 1274 if (nmap == 1) { 1275 error = ENXIO; 1276 goto out_unlock; 1277 } 1278 1279 ASSERT(i > 1); 1280 1281 /* 1282 * Nothing was found, proceed to the next round of search 1283 * if reading offset not beyond or hit EOF. 1284 */ 1285 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1286 start = XFS_FSB_TO_B(mp, fsbno); 1287 if (start >= isize) { 1288 error = ENXIO; 1289 goto out_unlock; 1290 } 1291 } 1292 1293 out: 1294 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1295 1296 out_unlock: 1297 xfs_iunlock_map_shared(ip, lock); 1298 1299 if (error) 1300 return -error; 1301 return offset; 1302 } 1303 1304 STATIC loff_t 1305 xfs_seek_hole( 1306 struct file *file, 1307 loff_t start) 1308 { 1309 struct inode *inode = file->f_mapping->host; 1310 struct xfs_inode *ip = XFS_I(inode); 1311 struct xfs_mount *mp = ip->i_mount; 1312 loff_t uninitialized_var(offset); 1313 xfs_fsize_t isize; 1314 xfs_fileoff_t fsbno; 1315 xfs_filblks_t end; 1316 uint lock; 1317 int error; 1318 1319 if (XFS_FORCED_SHUTDOWN(mp)) 1320 return -XFS_ERROR(EIO); 1321 1322 lock = xfs_ilock_map_shared(ip); 1323 1324 isize = i_size_read(inode); 1325 if (start >= isize) { 1326 error = ENXIO; 1327 goto out_unlock; 1328 } 1329 1330 fsbno = XFS_B_TO_FSBT(mp, start); 1331 end = XFS_B_TO_FSB(mp, isize); 1332 1333 for (;;) { 1334 struct xfs_bmbt_irec map[2]; 1335 int nmap = 2; 1336 unsigned int i; 1337 1338 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1339 XFS_BMAPI_ENTIRE); 1340 if (error) 1341 goto out_unlock; 1342 1343 /* No extents at given offset, must be beyond EOF */ 1344 if (nmap == 0) { 1345 error = ENXIO; 1346 goto out_unlock; 1347 } 1348 1349 for (i = 0; i < nmap; i++) { 1350 offset = max_t(loff_t, start, 1351 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1352 1353 /* Landed in a hole */ 1354 if (map[i].br_startblock == HOLESTARTBLOCK) 1355 goto out; 1356 1357 /* 1358 * Landed in an unwritten extent, try to search hole 1359 * from page cache. 1360 */ 1361 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1362 if (xfs_find_get_desired_pgoff(inode, &map[i], 1363 HOLE_OFF, &offset)) 1364 goto out; 1365 } 1366 } 1367 1368 /* 1369 * map[0] contains data or its unwritten but contains 1370 * data in page cache, probably means that we are 1371 * reading after EOF. We should fix offset to point 1372 * to the end of the file(i.e., there is an implicit 1373 * hole at the end of any file). 1374 */ 1375 if (nmap == 1) { 1376 offset = isize; 1377 break; 1378 } 1379 1380 ASSERT(i > 1); 1381 1382 /* 1383 * Both mappings contains data, proceed to the next round of 1384 * search if the current reading offset not beyond or hit EOF. 1385 */ 1386 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1387 start = XFS_FSB_TO_B(mp, fsbno); 1388 if (start >= isize) { 1389 offset = isize; 1390 break; 1391 } 1392 } 1393 1394 out: 1395 /* 1396 * At this point, we must have found a hole. However, the returned 1397 * offset may be bigger than the file size as it may be aligned to 1398 * page boundary for unwritten extents, we need to deal with this 1399 * situation in particular. 1400 */ 1401 offset = min_t(loff_t, offset, isize); 1402 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1403 1404 out_unlock: 1405 xfs_iunlock_map_shared(ip, lock); 1406 1407 if (error) 1408 return -error; 1409 return offset; 1410 } 1411 1412 STATIC loff_t 1413 xfs_file_llseek( 1414 struct file *file, 1415 loff_t offset, 1416 int origin) 1417 { 1418 switch (origin) { 1419 case SEEK_END: 1420 case SEEK_CUR: 1421 case SEEK_SET: 1422 return generic_file_llseek(file, offset, origin); 1423 case SEEK_DATA: 1424 return xfs_seek_data(file, offset); 1425 case SEEK_HOLE: 1426 return xfs_seek_hole(file, offset); 1427 default: 1428 return -EINVAL; 1429 } 1430 } 1431 1432 const struct file_operations xfs_file_operations = { 1433 .llseek = xfs_file_llseek, 1434 .read = do_sync_read, 1435 .write = do_sync_write, 1436 .aio_read = xfs_file_aio_read, 1437 .aio_write = xfs_file_aio_write, 1438 .splice_read = xfs_file_splice_read, 1439 .splice_write = xfs_file_splice_write, 1440 .unlocked_ioctl = xfs_file_ioctl, 1441 #ifdef CONFIG_COMPAT 1442 .compat_ioctl = xfs_file_compat_ioctl, 1443 #endif 1444 .mmap = xfs_file_mmap, 1445 .open = xfs_file_open, 1446 .release = xfs_file_release, 1447 .fsync = xfs_file_fsync, 1448 .fallocate = xfs_file_fallocate, 1449 }; 1450 1451 const struct file_operations xfs_dir_file_operations = { 1452 .open = xfs_dir_open, 1453 .read = generic_read_dir, 1454 .iterate = xfs_file_readdir, 1455 .llseek = generic_file_llseek, 1456 .unlocked_ioctl = xfs_file_ioctl, 1457 #ifdef CONFIG_COMPAT 1458 .compat_ioctl = xfs_file_compat_ioctl, 1459 #endif 1460 .fsync = xfs_dir_fsync, 1461 }; 1462 1463 static const struct vm_operations_struct xfs_file_vm_ops = { 1464 .fault = filemap_fault, 1465 .page_mkwrite = xfs_vm_page_mkwrite, 1466 .remap_pages = generic_file_remap_pages, 1467 }; 1468