xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 77d84ff8)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
41 
42 #include <linux/aio.h>
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 
47 static const struct vm_operations_struct xfs_file_vm_ops;
48 
49 /*
50  * Locking primitives for read and write IO paths to ensure we consistently use
51  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52  */
53 static inline void
54 xfs_rw_ilock(
55 	struct xfs_inode	*ip,
56 	int			type)
57 {
58 	if (type & XFS_IOLOCK_EXCL)
59 		mutex_lock(&VFS_I(ip)->i_mutex);
60 	xfs_ilock(ip, type);
61 }
62 
63 static inline void
64 xfs_rw_iunlock(
65 	struct xfs_inode	*ip,
66 	int			type)
67 {
68 	xfs_iunlock(ip, type);
69 	if (type & XFS_IOLOCK_EXCL)
70 		mutex_unlock(&VFS_I(ip)->i_mutex);
71 }
72 
73 static inline void
74 xfs_rw_ilock_demote(
75 	struct xfs_inode	*ip,
76 	int			type)
77 {
78 	xfs_ilock_demote(ip, type);
79 	if (type & XFS_IOLOCK_EXCL)
80 		mutex_unlock(&VFS_I(ip)->i_mutex);
81 }
82 
83 /*
84  *	xfs_iozero
85  *
86  *	xfs_iozero clears the specified range of buffer supplied,
87  *	and marks all the affected blocks as valid and modified.  If
88  *	an affected block is not allocated, it will be allocated.  If
89  *	an affected block is not completely overwritten, and is not
90  *	valid before the operation, it will be read from disk before
91  *	being partially zeroed.
92  */
93 int
94 xfs_iozero(
95 	struct xfs_inode	*ip,	/* inode			*/
96 	loff_t			pos,	/* offset in file		*/
97 	size_t			count)	/* size of data to zero		*/
98 {
99 	struct page		*page;
100 	struct address_space	*mapping;
101 	int			status;
102 
103 	mapping = VFS_I(ip)->i_mapping;
104 	do {
105 		unsigned offset, bytes;
106 		void *fsdata;
107 
108 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 		bytes = PAGE_CACHE_SIZE - offset;
110 		if (bytes > count)
111 			bytes = count;
112 
113 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 					AOP_FLAG_UNINTERRUPTIBLE,
115 					&page, &fsdata);
116 		if (status)
117 			break;
118 
119 		zero_user(page, offset, bytes);
120 
121 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 					page, fsdata);
123 		WARN_ON(status <= 0); /* can't return less than zero! */
124 		pos += bytes;
125 		count -= bytes;
126 		status = 0;
127 	} while (count);
128 
129 	return (-status);
130 }
131 
132 /*
133  * Fsync operations on directories are much simpler than on regular files,
134  * as there is no file data to flush, and thus also no need for explicit
135  * cache flush operations, and there are no non-transaction metadata updates
136  * on directories either.
137  */
138 STATIC int
139 xfs_dir_fsync(
140 	struct file		*file,
141 	loff_t			start,
142 	loff_t			end,
143 	int			datasync)
144 {
145 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
146 	struct xfs_mount	*mp = ip->i_mount;
147 	xfs_lsn_t		lsn = 0;
148 
149 	trace_xfs_dir_fsync(ip);
150 
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip))
153 		lsn = ip->i_itemp->ili_last_lsn;
154 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
155 
156 	if (!lsn)
157 		return 0;
158 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160 
161 STATIC int
162 xfs_file_fsync(
163 	struct file		*file,
164 	loff_t			start,
165 	loff_t			end,
166 	int			datasync)
167 {
168 	struct inode		*inode = file->f_mapping->host;
169 	struct xfs_inode	*ip = XFS_I(inode);
170 	struct xfs_mount	*mp = ip->i_mount;
171 	int			error = 0;
172 	int			log_flushed = 0;
173 	xfs_lsn_t		lsn = 0;
174 
175 	trace_xfs_file_fsync(ip);
176 
177 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 	if (error)
179 		return error;
180 
181 	if (XFS_FORCED_SHUTDOWN(mp))
182 		return -XFS_ERROR(EIO);
183 
184 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 
186 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 		/*
188 		 * If we have an RT and/or log subvolume we need to make sure
189 		 * to flush the write cache the device used for file data
190 		 * first.  This is to ensure newly written file data make
191 		 * it to disk before logging the new inode size in case of
192 		 * an extending write.
193 		 */
194 		if (XFS_IS_REALTIME_INODE(ip))
195 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 	}
199 
200 	/*
201 	 * All metadata updates are logged, which means that we just have
202 	 * to flush the log up to the latest LSN that touched the inode.
203 	 */
204 	xfs_ilock(ip, XFS_ILOCK_SHARED);
205 	if (xfs_ipincount(ip)) {
206 		if (!datasync ||
207 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 			lsn = ip->i_itemp->ili_last_lsn;
209 	}
210 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
211 
212 	if (lsn)
213 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214 
215 	/*
216 	 * If we only have a single device, and the log force about was
217 	 * a no-op we might have to flush the data device cache here.
218 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 	 * an already allocated file and thus do not have any metadata to
220 	 * commit.
221 	 */
222 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 	    mp->m_logdev_targp == mp->m_ddev_targp &&
224 	    !XFS_IS_REALTIME_INODE(ip) &&
225 	    !log_flushed)
226 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
227 
228 	return -error;
229 }
230 
231 STATIC ssize_t
232 xfs_file_aio_read(
233 	struct kiocb		*iocb,
234 	const struct iovec	*iovp,
235 	unsigned long		nr_segs,
236 	loff_t			pos)
237 {
238 	struct file		*file = iocb->ki_filp;
239 	struct inode		*inode = file->f_mapping->host;
240 	struct xfs_inode	*ip = XFS_I(inode);
241 	struct xfs_mount	*mp = ip->i_mount;
242 	size_t			size = 0;
243 	ssize_t			ret = 0;
244 	int			ioflags = 0;
245 	xfs_fsize_t		n;
246 
247 	XFS_STATS_INC(xs_read_calls);
248 
249 	BUG_ON(iocb->ki_pos != pos);
250 
251 	if (unlikely(file->f_flags & O_DIRECT))
252 		ioflags |= IO_ISDIRECT;
253 	if (file->f_mode & FMODE_NOCMTIME)
254 		ioflags |= IO_INVIS;
255 
256 	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
257 	if (ret < 0)
258 		return ret;
259 
260 	if (unlikely(ioflags & IO_ISDIRECT)) {
261 		xfs_buftarg_t	*target =
262 			XFS_IS_REALTIME_INODE(ip) ?
263 				mp->m_rtdev_targp : mp->m_ddev_targp;
264 		if ((pos & target->bt_smask) || (size & target->bt_smask)) {
265 			if (pos == i_size_read(inode))
266 				return 0;
267 			return -XFS_ERROR(EINVAL);
268 		}
269 	}
270 
271 	n = mp->m_super->s_maxbytes - pos;
272 	if (n <= 0 || size == 0)
273 		return 0;
274 
275 	if (n < size)
276 		size = n;
277 
278 	if (XFS_FORCED_SHUTDOWN(mp))
279 		return -EIO;
280 
281 	/*
282 	 * Locking is a bit tricky here. If we take an exclusive lock
283 	 * for direct IO, we effectively serialise all new concurrent
284 	 * read IO to this file and block it behind IO that is currently in
285 	 * progress because IO in progress holds the IO lock shared. We only
286 	 * need to hold the lock exclusive to blow away the page cache, so
287 	 * only take lock exclusively if the page cache needs invalidation.
288 	 * This allows the normal direct IO case of no page cache pages to
289 	 * proceeed concurrently without serialisation.
290 	 */
291 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
292 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
293 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
294 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
295 
296 		if (inode->i_mapping->nrpages) {
297 			ret = -filemap_write_and_wait_range(
298 							VFS_I(ip)->i_mapping,
299 							pos, -1);
300 			if (ret) {
301 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
302 				return ret;
303 			}
304 			truncate_pagecache_range(VFS_I(ip), pos, -1);
305 		}
306 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
307 	}
308 
309 	trace_xfs_file_read(ip, size, pos, ioflags);
310 
311 	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
312 	if (ret > 0)
313 		XFS_STATS_ADD(xs_read_bytes, ret);
314 
315 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
316 	return ret;
317 }
318 
319 STATIC ssize_t
320 xfs_file_splice_read(
321 	struct file		*infilp,
322 	loff_t			*ppos,
323 	struct pipe_inode_info	*pipe,
324 	size_t			count,
325 	unsigned int		flags)
326 {
327 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
328 	int			ioflags = 0;
329 	ssize_t			ret;
330 
331 	XFS_STATS_INC(xs_read_calls);
332 
333 	if (infilp->f_mode & FMODE_NOCMTIME)
334 		ioflags |= IO_INVIS;
335 
336 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
337 		return -EIO;
338 
339 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
340 
341 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
342 
343 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
344 	if (ret > 0)
345 		XFS_STATS_ADD(xs_read_bytes, ret);
346 
347 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
348 	return ret;
349 }
350 
351 /*
352  * xfs_file_splice_write() does not use xfs_rw_ilock() because
353  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
354  * couuld cause lock inversions between the aio_write path and the splice path
355  * if someone is doing concurrent splice(2) based writes and write(2) based
356  * writes to the same inode. The only real way to fix this is to re-implement
357  * the generic code here with correct locking orders.
358  */
359 STATIC ssize_t
360 xfs_file_splice_write(
361 	struct pipe_inode_info	*pipe,
362 	struct file		*outfilp,
363 	loff_t			*ppos,
364 	size_t			count,
365 	unsigned int		flags)
366 {
367 	struct inode		*inode = outfilp->f_mapping->host;
368 	struct xfs_inode	*ip = XFS_I(inode);
369 	int			ioflags = 0;
370 	ssize_t			ret;
371 
372 	XFS_STATS_INC(xs_write_calls);
373 
374 	if (outfilp->f_mode & FMODE_NOCMTIME)
375 		ioflags |= IO_INVIS;
376 
377 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
378 		return -EIO;
379 
380 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
381 
382 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
383 
384 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
385 	if (ret > 0)
386 		XFS_STATS_ADD(xs_write_bytes, ret);
387 
388 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
389 	return ret;
390 }
391 
392 /*
393  * This routine is called to handle zeroing any space in the last block of the
394  * file that is beyond the EOF.  We do this since the size is being increased
395  * without writing anything to that block and we don't want to read the
396  * garbage on the disk.
397  */
398 STATIC int				/* error (positive) */
399 xfs_zero_last_block(
400 	struct xfs_inode	*ip,
401 	xfs_fsize_t		offset,
402 	xfs_fsize_t		isize)
403 {
404 	struct xfs_mount	*mp = ip->i_mount;
405 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
406 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
407 	int			zero_len;
408 	int			nimaps = 1;
409 	int			error = 0;
410 	struct xfs_bmbt_irec	imap;
411 
412 	xfs_ilock(ip, XFS_ILOCK_EXCL);
413 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
414 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
415 	if (error)
416 		return error;
417 
418 	ASSERT(nimaps > 0);
419 
420 	/*
421 	 * If the block underlying isize is just a hole, then there
422 	 * is nothing to zero.
423 	 */
424 	if (imap.br_startblock == HOLESTARTBLOCK)
425 		return 0;
426 
427 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
428 	if (isize + zero_len > offset)
429 		zero_len = offset - isize;
430 	return xfs_iozero(ip, isize, zero_len);
431 }
432 
433 /*
434  * Zero any on disk space between the current EOF and the new, larger EOF.
435  *
436  * This handles the normal case of zeroing the remainder of the last block in
437  * the file and the unusual case of zeroing blocks out beyond the size of the
438  * file.  This second case only happens with fixed size extents and when the
439  * system crashes before the inode size was updated but after blocks were
440  * allocated.
441  *
442  * Expects the iolock to be held exclusive, and will take the ilock internally.
443  */
444 int					/* error (positive) */
445 xfs_zero_eof(
446 	struct xfs_inode	*ip,
447 	xfs_off_t		offset,		/* starting I/O offset */
448 	xfs_fsize_t		isize)		/* current inode size */
449 {
450 	struct xfs_mount	*mp = ip->i_mount;
451 	xfs_fileoff_t		start_zero_fsb;
452 	xfs_fileoff_t		end_zero_fsb;
453 	xfs_fileoff_t		zero_count_fsb;
454 	xfs_fileoff_t		last_fsb;
455 	xfs_fileoff_t		zero_off;
456 	xfs_fsize_t		zero_len;
457 	int			nimaps;
458 	int			error = 0;
459 	struct xfs_bmbt_irec	imap;
460 
461 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
462 	ASSERT(offset > isize);
463 
464 	/*
465 	 * First handle zeroing the block on which isize resides.
466 	 *
467 	 * We only zero a part of that block so it is handled specially.
468 	 */
469 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470 		error = xfs_zero_last_block(ip, offset, isize);
471 		if (error)
472 			return error;
473 	}
474 
475 	/*
476 	 * Calculate the range between the new size and the old where blocks
477 	 * needing to be zeroed may exist.
478 	 *
479 	 * To get the block where the last byte in the file currently resides,
480 	 * we need to subtract one from the size and truncate back to a block
481 	 * boundary.  We subtract 1 in case the size is exactly on a block
482 	 * boundary.
483 	 */
484 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488 	if (last_fsb == end_zero_fsb) {
489 		/*
490 		 * The size was only incremented on its last block.
491 		 * We took care of that above, so just return.
492 		 */
493 		return 0;
494 	}
495 
496 	ASSERT(start_zero_fsb <= end_zero_fsb);
497 	while (start_zero_fsb <= end_zero_fsb) {
498 		nimaps = 1;
499 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
500 
501 		xfs_ilock(ip, XFS_ILOCK_EXCL);
502 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503 					  &imap, &nimaps, 0);
504 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
505 		if (error)
506 			return error;
507 
508 		ASSERT(nimaps > 0);
509 
510 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
511 		    imap.br_startblock == HOLESTARTBLOCK) {
512 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514 			continue;
515 		}
516 
517 		/*
518 		 * There are blocks we need to zero.
519 		 */
520 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522 
523 		if ((zero_off + zero_len) > offset)
524 			zero_len = offset - zero_off;
525 
526 		error = xfs_iozero(ip, zero_off, zero_len);
527 		if (error)
528 			return error;
529 
530 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
531 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
532 	}
533 
534 	return 0;
535 }
536 
537 /*
538  * Common pre-write limit and setup checks.
539  *
540  * Called with the iolocked held either shared and exclusive according to
541  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
542  * if called for a direct write beyond i_size.
543  */
544 STATIC ssize_t
545 xfs_file_aio_write_checks(
546 	struct file		*file,
547 	loff_t			*pos,
548 	size_t			*count,
549 	int			*iolock)
550 {
551 	struct inode		*inode = file->f_mapping->host;
552 	struct xfs_inode	*ip = XFS_I(inode);
553 	int			error = 0;
554 
555 restart:
556 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
557 	if (error)
558 		return error;
559 
560 	/*
561 	 * If the offset is beyond the size of the file, we need to zero any
562 	 * blocks that fall between the existing EOF and the start of this
563 	 * write.  If zeroing is needed and we are currently holding the
564 	 * iolock shared, we need to update it to exclusive which implies
565 	 * having to redo all checks before.
566 	 */
567 	if (*pos > i_size_read(inode)) {
568 		if (*iolock == XFS_IOLOCK_SHARED) {
569 			xfs_rw_iunlock(ip, *iolock);
570 			*iolock = XFS_IOLOCK_EXCL;
571 			xfs_rw_ilock(ip, *iolock);
572 			goto restart;
573 		}
574 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
575 		if (error)
576 			return error;
577 	}
578 
579 	/*
580 	 * Updating the timestamps will grab the ilock again from
581 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
582 	 * lock above.  Eventually we should look into a way to avoid
583 	 * the pointless lock roundtrip.
584 	 */
585 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
586 		error = file_update_time(file);
587 		if (error)
588 			return error;
589 	}
590 
591 	/*
592 	 * If we're writing the file then make sure to clear the setuid and
593 	 * setgid bits if the process is not being run by root.  This keeps
594 	 * people from modifying setuid and setgid binaries.
595 	 */
596 	return file_remove_suid(file);
597 }
598 
599 /*
600  * xfs_file_dio_aio_write - handle direct IO writes
601  *
602  * Lock the inode appropriately to prepare for and issue a direct IO write.
603  * By separating it from the buffered write path we remove all the tricky to
604  * follow locking changes and looping.
605  *
606  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
607  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
608  * pages are flushed out.
609  *
610  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
611  * allowing them to be done in parallel with reads and other direct IO writes.
612  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
613  * needs to do sub-block zeroing and that requires serialisation against other
614  * direct IOs to the same block. In this case we need to serialise the
615  * submission of the unaligned IOs so that we don't get racing block zeroing in
616  * the dio layer.  To avoid the problem with aio, we also need to wait for
617  * outstanding IOs to complete so that unwritten extent conversion is completed
618  * before we try to map the overlapping block. This is currently implemented by
619  * hitting it with a big hammer (i.e. inode_dio_wait()).
620  *
621  * Returns with locks held indicated by @iolock and errors indicated by
622  * negative return values.
623  */
624 STATIC ssize_t
625 xfs_file_dio_aio_write(
626 	struct kiocb		*iocb,
627 	const struct iovec	*iovp,
628 	unsigned long		nr_segs,
629 	loff_t			pos,
630 	size_t			ocount)
631 {
632 	struct file		*file = iocb->ki_filp;
633 	struct address_space	*mapping = file->f_mapping;
634 	struct inode		*inode = mapping->host;
635 	struct xfs_inode	*ip = XFS_I(inode);
636 	struct xfs_mount	*mp = ip->i_mount;
637 	ssize_t			ret = 0;
638 	size_t			count = ocount;
639 	int			unaligned_io = 0;
640 	int			iolock;
641 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
642 					mp->m_rtdev_targp : mp->m_ddev_targp;
643 
644 	if ((pos & target->bt_smask) || (count & target->bt_smask))
645 		return -XFS_ERROR(EINVAL);
646 
647 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
648 		unaligned_io = 1;
649 
650 	/*
651 	 * We don't need to take an exclusive lock unless there page cache needs
652 	 * to be invalidated or unaligned IO is being executed. We don't need to
653 	 * consider the EOF extension case here because
654 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
655 	 * EOF zeroing cases and fill out the new inode size as appropriate.
656 	 */
657 	if (unaligned_io || mapping->nrpages)
658 		iolock = XFS_IOLOCK_EXCL;
659 	else
660 		iolock = XFS_IOLOCK_SHARED;
661 	xfs_rw_ilock(ip, iolock);
662 
663 	/*
664 	 * Recheck if there are cached pages that need invalidate after we got
665 	 * the iolock to protect against other threads adding new pages while
666 	 * we were waiting for the iolock.
667 	 */
668 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
669 		xfs_rw_iunlock(ip, iolock);
670 		iolock = XFS_IOLOCK_EXCL;
671 		xfs_rw_ilock(ip, iolock);
672 	}
673 
674 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
675 	if (ret)
676 		goto out;
677 
678 	if (mapping->nrpages) {
679 		ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
680 						    pos, -1);
681 		if (ret)
682 			goto out;
683 		truncate_pagecache_range(VFS_I(ip), pos, -1);
684 	}
685 
686 	/*
687 	 * If we are doing unaligned IO, wait for all other IO to drain,
688 	 * otherwise demote the lock if we had to flush cached pages
689 	 */
690 	if (unaligned_io)
691 		inode_dio_wait(inode);
692 	else if (iolock == XFS_IOLOCK_EXCL) {
693 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
694 		iolock = XFS_IOLOCK_SHARED;
695 	}
696 
697 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
698 	ret = generic_file_direct_write(iocb, iovp,
699 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
700 
701 out:
702 	xfs_rw_iunlock(ip, iolock);
703 
704 	/* No fallback to buffered IO on errors for XFS. */
705 	ASSERT(ret < 0 || ret == count);
706 	return ret;
707 }
708 
709 STATIC ssize_t
710 xfs_file_buffered_aio_write(
711 	struct kiocb		*iocb,
712 	const struct iovec	*iovp,
713 	unsigned long		nr_segs,
714 	loff_t			pos,
715 	size_t			ocount)
716 {
717 	struct file		*file = iocb->ki_filp;
718 	struct address_space	*mapping = file->f_mapping;
719 	struct inode		*inode = mapping->host;
720 	struct xfs_inode	*ip = XFS_I(inode);
721 	ssize_t			ret;
722 	int			enospc = 0;
723 	int			iolock = XFS_IOLOCK_EXCL;
724 	size_t			count = ocount;
725 
726 	xfs_rw_ilock(ip, iolock);
727 
728 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
729 	if (ret)
730 		goto out;
731 
732 	/* We can write back this queue in page reclaim */
733 	current->backing_dev_info = mapping->backing_dev_info;
734 
735 write_retry:
736 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
737 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
738 			pos, &iocb->ki_pos, count, 0);
739 
740 	/*
741 	 * If we just got an ENOSPC, try to write back all dirty inodes to
742 	 * convert delalloc space to free up some of the excess reserved
743 	 * metadata space.
744 	 */
745 	if (ret == -ENOSPC && !enospc) {
746 		enospc = 1;
747 		xfs_flush_inodes(ip->i_mount);
748 		goto write_retry;
749 	}
750 
751 	current->backing_dev_info = NULL;
752 out:
753 	xfs_rw_iunlock(ip, iolock);
754 	return ret;
755 }
756 
757 STATIC ssize_t
758 xfs_file_aio_write(
759 	struct kiocb		*iocb,
760 	const struct iovec	*iovp,
761 	unsigned long		nr_segs,
762 	loff_t			pos)
763 {
764 	struct file		*file = iocb->ki_filp;
765 	struct address_space	*mapping = file->f_mapping;
766 	struct inode		*inode = mapping->host;
767 	struct xfs_inode	*ip = XFS_I(inode);
768 	ssize_t			ret;
769 	size_t			ocount = 0;
770 
771 	XFS_STATS_INC(xs_write_calls);
772 
773 	BUG_ON(iocb->ki_pos != pos);
774 
775 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
776 	if (ret)
777 		return ret;
778 
779 	if (ocount == 0)
780 		return 0;
781 
782 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
783 		ret = -EIO;
784 		goto out;
785 	}
786 
787 	if (unlikely(file->f_flags & O_DIRECT))
788 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
789 	else
790 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
791 						  ocount);
792 
793 	if (ret > 0) {
794 		ssize_t err;
795 
796 		XFS_STATS_ADD(xs_write_bytes, ret);
797 
798 		/* Handle various SYNC-type writes */
799 		err = generic_write_sync(file, pos, ret);
800 		if (err < 0)
801 			ret = err;
802 	}
803 
804 out:
805 	return ret;
806 }
807 
808 STATIC long
809 xfs_file_fallocate(
810 	struct file		*file,
811 	int			mode,
812 	loff_t			offset,
813 	loff_t			len)
814 {
815 	struct inode		*inode = file_inode(file);
816 	struct xfs_inode	*ip = XFS_I(inode);
817 	struct xfs_trans	*tp;
818 	long			error;
819 	loff_t			new_size = 0;
820 
821 	if (!S_ISREG(inode->i_mode))
822 		return -EINVAL;
823 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
824 		return -EOPNOTSUPP;
825 
826 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
827 	if (mode & FALLOC_FL_PUNCH_HOLE) {
828 		error = xfs_free_file_space(ip, offset, len);
829 		if (error)
830 			goto out_unlock;
831 	} else {
832 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
833 		    offset + len > i_size_read(inode)) {
834 			new_size = offset + len;
835 			error = -inode_newsize_ok(inode, new_size);
836 			if (error)
837 				goto out_unlock;
838 		}
839 
840 		error = xfs_alloc_file_space(ip, offset, len,
841 					     XFS_BMAPI_PREALLOC);
842 		if (error)
843 			goto out_unlock;
844 	}
845 
846 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
847 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
848 	if (error) {
849 		xfs_trans_cancel(tp, 0);
850 		goto out_unlock;
851 	}
852 
853 	xfs_ilock(ip, XFS_ILOCK_EXCL);
854 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
855 	ip->i_d.di_mode &= ~S_ISUID;
856 	if (ip->i_d.di_mode & S_IXGRP)
857 		ip->i_d.di_mode &= ~S_ISGID;
858 
859 	if (!(mode & FALLOC_FL_PUNCH_HOLE))
860 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
861 
862 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
863 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
864 
865 	if (file->f_flags & O_DSYNC)
866 		xfs_trans_set_sync(tp);
867 	error = xfs_trans_commit(tp, 0);
868 	if (error)
869 		goto out_unlock;
870 
871 	/* Change file size if needed */
872 	if (new_size) {
873 		struct iattr iattr;
874 
875 		iattr.ia_valid = ATTR_SIZE;
876 		iattr.ia_size = new_size;
877 		error = xfs_setattr_size(ip, &iattr);
878 	}
879 
880 out_unlock:
881 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
882 	return -error;
883 }
884 
885 
886 STATIC int
887 xfs_file_open(
888 	struct inode	*inode,
889 	struct file	*file)
890 {
891 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
892 		return -EFBIG;
893 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
894 		return -EIO;
895 	return 0;
896 }
897 
898 STATIC int
899 xfs_dir_open(
900 	struct inode	*inode,
901 	struct file	*file)
902 {
903 	struct xfs_inode *ip = XFS_I(inode);
904 	int		mode;
905 	int		error;
906 
907 	error = xfs_file_open(inode, file);
908 	if (error)
909 		return error;
910 
911 	/*
912 	 * If there are any blocks, read-ahead block 0 as we're almost
913 	 * certain to have the next operation be a read there.
914 	 */
915 	mode = xfs_ilock_map_shared(ip);
916 	if (ip->i_d.di_nextents > 0)
917 		xfs_dir3_data_readahead(NULL, ip, 0, -1);
918 	xfs_iunlock(ip, mode);
919 	return 0;
920 }
921 
922 STATIC int
923 xfs_file_release(
924 	struct inode	*inode,
925 	struct file	*filp)
926 {
927 	return -xfs_release(XFS_I(inode));
928 }
929 
930 STATIC int
931 xfs_file_readdir(
932 	struct file	*file,
933 	struct dir_context *ctx)
934 {
935 	struct inode	*inode = file_inode(file);
936 	xfs_inode_t	*ip = XFS_I(inode);
937 	int		error;
938 	size_t		bufsize;
939 
940 	/*
941 	 * The Linux API doesn't pass down the total size of the buffer
942 	 * we read into down to the filesystem.  With the filldir concept
943 	 * it's not needed for correct information, but the XFS dir2 leaf
944 	 * code wants an estimate of the buffer size to calculate it's
945 	 * readahead window and size the buffers used for mapping to
946 	 * physical blocks.
947 	 *
948 	 * Try to give it an estimate that's good enough, maybe at some
949 	 * point we can change the ->readdir prototype to include the
950 	 * buffer size.  For now we use the current glibc buffer size.
951 	 */
952 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
953 
954 	error = xfs_readdir(ip, ctx, bufsize);
955 	if (error)
956 		return -error;
957 	return 0;
958 }
959 
960 STATIC int
961 xfs_file_mmap(
962 	struct file	*filp,
963 	struct vm_area_struct *vma)
964 {
965 	vma->vm_ops = &xfs_file_vm_ops;
966 
967 	file_accessed(filp);
968 	return 0;
969 }
970 
971 /*
972  * mmap()d file has taken write protection fault and is being made
973  * writable. We can set the page state up correctly for a writable
974  * page, which means we can do correct delalloc accounting (ENOSPC
975  * checking!) and unwritten extent mapping.
976  */
977 STATIC int
978 xfs_vm_page_mkwrite(
979 	struct vm_area_struct	*vma,
980 	struct vm_fault		*vmf)
981 {
982 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
983 }
984 
985 /*
986  * This type is designed to indicate the type of offset we would like
987  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
988  */
989 enum {
990 	HOLE_OFF = 0,
991 	DATA_OFF,
992 };
993 
994 /*
995  * Lookup the desired type of offset from the given page.
996  *
997  * On success, return true and the offset argument will point to the
998  * start of the region that was found.  Otherwise this function will
999  * return false and keep the offset argument unchanged.
1000  */
1001 STATIC bool
1002 xfs_lookup_buffer_offset(
1003 	struct page		*page,
1004 	loff_t			*offset,
1005 	unsigned int		type)
1006 {
1007 	loff_t			lastoff = page_offset(page);
1008 	bool			found = false;
1009 	struct buffer_head	*bh, *head;
1010 
1011 	bh = head = page_buffers(page);
1012 	do {
1013 		/*
1014 		 * Unwritten extents that have data in the page
1015 		 * cache covering them can be identified by the
1016 		 * BH_Unwritten state flag.  Pages with multiple
1017 		 * buffers might have a mix of holes, data and
1018 		 * unwritten extents - any buffer with valid
1019 		 * data in it should have BH_Uptodate flag set
1020 		 * on it.
1021 		 */
1022 		if (buffer_unwritten(bh) ||
1023 		    buffer_uptodate(bh)) {
1024 			if (type == DATA_OFF)
1025 				found = true;
1026 		} else {
1027 			if (type == HOLE_OFF)
1028 				found = true;
1029 		}
1030 
1031 		if (found) {
1032 			*offset = lastoff;
1033 			break;
1034 		}
1035 		lastoff += bh->b_size;
1036 	} while ((bh = bh->b_this_page) != head);
1037 
1038 	return found;
1039 }
1040 
1041 /*
1042  * This routine is called to find out and return a data or hole offset
1043  * from the page cache for unwritten extents according to the desired
1044  * type for xfs_seek_data() or xfs_seek_hole().
1045  *
1046  * The argument offset is used to tell where we start to search from the
1047  * page cache.  Map is used to figure out the end points of the range to
1048  * lookup pages.
1049  *
1050  * Return true if the desired type of offset was found, and the argument
1051  * offset is filled with that address.  Otherwise, return false and keep
1052  * offset unchanged.
1053  */
1054 STATIC bool
1055 xfs_find_get_desired_pgoff(
1056 	struct inode		*inode,
1057 	struct xfs_bmbt_irec	*map,
1058 	unsigned int		type,
1059 	loff_t			*offset)
1060 {
1061 	struct xfs_inode	*ip = XFS_I(inode);
1062 	struct xfs_mount	*mp = ip->i_mount;
1063 	struct pagevec		pvec;
1064 	pgoff_t			index;
1065 	pgoff_t			end;
1066 	loff_t			endoff;
1067 	loff_t			startoff = *offset;
1068 	loff_t			lastoff = startoff;
1069 	bool			found = false;
1070 
1071 	pagevec_init(&pvec, 0);
1072 
1073 	index = startoff >> PAGE_CACHE_SHIFT;
1074 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1075 	end = endoff >> PAGE_CACHE_SHIFT;
1076 	do {
1077 		int		want;
1078 		unsigned	nr_pages;
1079 		unsigned int	i;
1080 
1081 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1082 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1083 					  want);
1084 		/*
1085 		 * No page mapped into given range.  If we are searching holes
1086 		 * and if this is the first time we got into the loop, it means
1087 		 * that the given offset is landed in a hole, return it.
1088 		 *
1089 		 * If we have already stepped through some block buffers to find
1090 		 * holes but they all contains data.  In this case, the last
1091 		 * offset is already updated and pointed to the end of the last
1092 		 * mapped page, if it does not reach the endpoint to search,
1093 		 * that means there should be a hole between them.
1094 		 */
1095 		if (nr_pages == 0) {
1096 			/* Data search found nothing */
1097 			if (type == DATA_OFF)
1098 				break;
1099 
1100 			ASSERT(type == HOLE_OFF);
1101 			if (lastoff == startoff || lastoff < endoff) {
1102 				found = true;
1103 				*offset = lastoff;
1104 			}
1105 			break;
1106 		}
1107 
1108 		/*
1109 		 * At lease we found one page.  If this is the first time we
1110 		 * step into the loop, and if the first page index offset is
1111 		 * greater than the given search offset, a hole was found.
1112 		 */
1113 		if (type == HOLE_OFF && lastoff == startoff &&
1114 		    lastoff < page_offset(pvec.pages[0])) {
1115 			found = true;
1116 			break;
1117 		}
1118 
1119 		for (i = 0; i < nr_pages; i++) {
1120 			struct page	*page = pvec.pages[i];
1121 			loff_t		b_offset;
1122 
1123 			/*
1124 			 * At this point, the page may be truncated or
1125 			 * invalidated (changing page->mapping to NULL),
1126 			 * or even swizzled back from swapper_space to tmpfs
1127 			 * file mapping. However, page->index will not change
1128 			 * because we have a reference on the page.
1129 			 *
1130 			 * Searching done if the page index is out of range.
1131 			 * If the current offset is not reaches the end of
1132 			 * the specified search range, there should be a hole
1133 			 * between them.
1134 			 */
1135 			if (page->index > end) {
1136 				if (type == HOLE_OFF && lastoff < endoff) {
1137 					*offset = lastoff;
1138 					found = true;
1139 				}
1140 				goto out;
1141 			}
1142 
1143 			lock_page(page);
1144 			/*
1145 			 * Page truncated or invalidated(page->mapping == NULL).
1146 			 * We can freely skip it and proceed to check the next
1147 			 * page.
1148 			 */
1149 			if (unlikely(page->mapping != inode->i_mapping)) {
1150 				unlock_page(page);
1151 				continue;
1152 			}
1153 
1154 			if (!page_has_buffers(page)) {
1155 				unlock_page(page);
1156 				continue;
1157 			}
1158 
1159 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1160 			if (found) {
1161 				/*
1162 				 * The found offset may be less than the start
1163 				 * point to search if this is the first time to
1164 				 * come here.
1165 				 */
1166 				*offset = max_t(loff_t, startoff, b_offset);
1167 				unlock_page(page);
1168 				goto out;
1169 			}
1170 
1171 			/*
1172 			 * We either searching data but nothing was found, or
1173 			 * searching hole but found a data buffer.  In either
1174 			 * case, probably the next page contains the desired
1175 			 * things, update the last offset to it so.
1176 			 */
1177 			lastoff = page_offset(page) + PAGE_SIZE;
1178 			unlock_page(page);
1179 		}
1180 
1181 		/*
1182 		 * The number of returned pages less than our desired, search
1183 		 * done.  In this case, nothing was found for searching data,
1184 		 * but we found a hole behind the last offset.
1185 		 */
1186 		if (nr_pages < want) {
1187 			if (type == HOLE_OFF) {
1188 				*offset = lastoff;
1189 				found = true;
1190 			}
1191 			break;
1192 		}
1193 
1194 		index = pvec.pages[i - 1]->index + 1;
1195 		pagevec_release(&pvec);
1196 	} while (index <= end);
1197 
1198 out:
1199 	pagevec_release(&pvec);
1200 	return found;
1201 }
1202 
1203 STATIC loff_t
1204 xfs_seek_data(
1205 	struct file		*file,
1206 	loff_t			start)
1207 {
1208 	struct inode		*inode = file->f_mapping->host;
1209 	struct xfs_inode	*ip = XFS_I(inode);
1210 	struct xfs_mount	*mp = ip->i_mount;
1211 	loff_t			uninitialized_var(offset);
1212 	xfs_fsize_t		isize;
1213 	xfs_fileoff_t		fsbno;
1214 	xfs_filblks_t		end;
1215 	uint			lock;
1216 	int			error;
1217 
1218 	lock = xfs_ilock_map_shared(ip);
1219 
1220 	isize = i_size_read(inode);
1221 	if (start >= isize) {
1222 		error = ENXIO;
1223 		goto out_unlock;
1224 	}
1225 
1226 	/*
1227 	 * Try to read extents from the first block indicated
1228 	 * by fsbno to the end block of the file.
1229 	 */
1230 	fsbno = XFS_B_TO_FSBT(mp, start);
1231 	end = XFS_B_TO_FSB(mp, isize);
1232 	for (;;) {
1233 		struct xfs_bmbt_irec	map[2];
1234 		int			nmap = 2;
1235 		unsigned int		i;
1236 
1237 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1238 				       XFS_BMAPI_ENTIRE);
1239 		if (error)
1240 			goto out_unlock;
1241 
1242 		/* No extents at given offset, must be beyond EOF */
1243 		if (nmap == 0) {
1244 			error = ENXIO;
1245 			goto out_unlock;
1246 		}
1247 
1248 		for (i = 0; i < nmap; i++) {
1249 			offset = max_t(loff_t, start,
1250 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1251 
1252 			/* Landed in a data extent */
1253 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1254 			    (map[i].br_state == XFS_EXT_NORM &&
1255 			     !isnullstartblock(map[i].br_startblock)))
1256 				goto out;
1257 
1258 			/*
1259 			 * Landed in an unwritten extent, try to search data
1260 			 * from page cache.
1261 			 */
1262 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1263 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1264 							DATA_OFF, &offset))
1265 					goto out;
1266 			}
1267 		}
1268 
1269 		/*
1270 		 * map[0] is hole or its an unwritten extent but
1271 		 * without data in page cache.  Probably means that
1272 		 * we are reading after EOF if nothing in map[1].
1273 		 */
1274 		if (nmap == 1) {
1275 			error = ENXIO;
1276 			goto out_unlock;
1277 		}
1278 
1279 		ASSERT(i > 1);
1280 
1281 		/*
1282 		 * Nothing was found, proceed to the next round of search
1283 		 * if reading offset not beyond or hit EOF.
1284 		 */
1285 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1286 		start = XFS_FSB_TO_B(mp, fsbno);
1287 		if (start >= isize) {
1288 			error = ENXIO;
1289 			goto out_unlock;
1290 		}
1291 	}
1292 
1293 out:
1294 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1295 
1296 out_unlock:
1297 	xfs_iunlock_map_shared(ip, lock);
1298 
1299 	if (error)
1300 		return -error;
1301 	return offset;
1302 }
1303 
1304 STATIC loff_t
1305 xfs_seek_hole(
1306 	struct file		*file,
1307 	loff_t			start)
1308 {
1309 	struct inode		*inode = file->f_mapping->host;
1310 	struct xfs_inode	*ip = XFS_I(inode);
1311 	struct xfs_mount	*mp = ip->i_mount;
1312 	loff_t			uninitialized_var(offset);
1313 	xfs_fsize_t		isize;
1314 	xfs_fileoff_t		fsbno;
1315 	xfs_filblks_t		end;
1316 	uint			lock;
1317 	int			error;
1318 
1319 	if (XFS_FORCED_SHUTDOWN(mp))
1320 		return -XFS_ERROR(EIO);
1321 
1322 	lock = xfs_ilock_map_shared(ip);
1323 
1324 	isize = i_size_read(inode);
1325 	if (start >= isize) {
1326 		error = ENXIO;
1327 		goto out_unlock;
1328 	}
1329 
1330 	fsbno = XFS_B_TO_FSBT(mp, start);
1331 	end = XFS_B_TO_FSB(mp, isize);
1332 
1333 	for (;;) {
1334 		struct xfs_bmbt_irec	map[2];
1335 		int			nmap = 2;
1336 		unsigned int		i;
1337 
1338 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1339 				       XFS_BMAPI_ENTIRE);
1340 		if (error)
1341 			goto out_unlock;
1342 
1343 		/* No extents at given offset, must be beyond EOF */
1344 		if (nmap == 0) {
1345 			error = ENXIO;
1346 			goto out_unlock;
1347 		}
1348 
1349 		for (i = 0; i < nmap; i++) {
1350 			offset = max_t(loff_t, start,
1351 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1352 
1353 			/* Landed in a hole */
1354 			if (map[i].br_startblock == HOLESTARTBLOCK)
1355 				goto out;
1356 
1357 			/*
1358 			 * Landed in an unwritten extent, try to search hole
1359 			 * from page cache.
1360 			 */
1361 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1362 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1363 							HOLE_OFF, &offset))
1364 					goto out;
1365 			}
1366 		}
1367 
1368 		/*
1369 		 * map[0] contains data or its unwritten but contains
1370 		 * data in page cache, probably means that we are
1371 		 * reading after EOF.  We should fix offset to point
1372 		 * to the end of the file(i.e., there is an implicit
1373 		 * hole at the end of any file).
1374 		 */
1375 		if (nmap == 1) {
1376 			offset = isize;
1377 			break;
1378 		}
1379 
1380 		ASSERT(i > 1);
1381 
1382 		/*
1383 		 * Both mappings contains data, proceed to the next round of
1384 		 * search if the current reading offset not beyond or hit EOF.
1385 		 */
1386 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1387 		start = XFS_FSB_TO_B(mp, fsbno);
1388 		if (start >= isize) {
1389 			offset = isize;
1390 			break;
1391 		}
1392 	}
1393 
1394 out:
1395 	/*
1396 	 * At this point, we must have found a hole.  However, the returned
1397 	 * offset may be bigger than the file size as it may be aligned to
1398 	 * page boundary for unwritten extents, we need to deal with this
1399 	 * situation in particular.
1400 	 */
1401 	offset = min_t(loff_t, offset, isize);
1402 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1403 
1404 out_unlock:
1405 	xfs_iunlock_map_shared(ip, lock);
1406 
1407 	if (error)
1408 		return -error;
1409 	return offset;
1410 }
1411 
1412 STATIC loff_t
1413 xfs_file_llseek(
1414 	struct file	*file,
1415 	loff_t		offset,
1416 	int		origin)
1417 {
1418 	switch (origin) {
1419 	case SEEK_END:
1420 	case SEEK_CUR:
1421 	case SEEK_SET:
1422 		return generic_file_llseek(file, offset, origin);
1423 	case SEEK_DATA:
1424 		return xfs_seek_data(file, offset);
1425 	case SEEK_HOLE:
1426 		return xfs_seek_hole(file, offset);
1427 	default:
1428 		return -EINVAL;
1429 	}
1430 }
1431 
1432 const struct file_operations xfs_file_operations = {
1433 	.llseek		= xfs_file_llseek,
1434 	.read		= do_sync_read,
1435 	.write		= do_sync_write,
1436 	.aio_read	= xfs_file_aio_read,
1437 	.aio_write	= xfs_file_aio_write,
1438 	.splice_read	= xfs_file_splice_read,
1439 	.splice_write	= xfs_file_splice_write,
1440 	.unlocked_ioctl	= xfs_file_ioctl,
1441 #ifdef CONFIG_COMPAT
1442 	.compat_ioctl	= xfs_file_compat_ioctl,
1443 #endif
1444 	.mmap		= xfs_file_mmap,
1445 	.open		= xfs_file_open,
1446 	.release	= xfs_file_release,
1447 	.fsync		= xfs_file_fsync,
1448 	.fallocate	= xfs_file_fallocate,
1449 };
1450 
1451 const struct file_operations xfs_dir_file_operations = {
1452 	.open		= xfs_dir_open,
1453 	.read		= generic_read_dir,
1454 	.iterate	= xfs_file_readdir,
1455 	.llseek		= generic_file_llseek,
1456 	.unlocked_ioctl	= xfs_file_ioctl,
1457 #ifdef CONFIG_COMPAT
1458 	.compat_ioctl	= xfs_file_compat_ioctl,
1459 #endif
1460 	.fsync		= xfs_dir_fsync,
1461 };
1462 
1463 static const struct vm_operations_struct xfs_file_vm_ops = {
1464 	.fault		= filemap_fault,
1465 	.page_mkwrite	= xfs_vm_page_mkwrite,
1466 	.remap_pages	= generic_file_remap_pages,
1467 };
1468