xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 74ce1896)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Clear the specified ranges to zero through either the pagecache or DAX.
52  * Holes and unwritten extents will be left as-is as they already are zeroed.
53  */
54 int
55 xfs_zero_range(
56 	struct xfs_inode	*ip,
57 	xfs_off_t		pos,
58 	xfs_off_t		count,
59 	bool			*did_zero)
60 {
61 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62 }
63 
64 int
65 xfs_update_prealloc_flags(
66 	struct xfs_inode	*ip,
67 	enum xfs_prealloc_flags	flags)
68 {
69 	struct xfs_trans	*tp;
70 	int			error;
71 
72 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 			0, 0, 0, &tp);
74 	if (error)
75 		return error;
76 
77 	xfs_ilock(ip, XFS_ILOCK_EXCL);
78 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79 
80 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 		VFS_I(ip)->i_mode &= ~S_ISUID;
82 		if (VFS_I(ip)->i_mode & S_IXGRP)
83 			VFS_I(ip)->i_mode &= ~S_ISGID;
84 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 	}
86 
87 	if (flags & XFS_PREALLOC_SET)
88 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 	if (flags & XFS_PREALLOC_CLEAR)
90 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91 
92 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 	if (flags & XFS_PREALLOC_SYNC)
94 		xfs_trans_set_sync(tp);
95 	return xfs_trans_commit(tp);
96 }
97 
98 /*
99  * Fsync operations on directories are much simpler than on regular files,
100  * as there is no file data to flush, and thus also no need for explicit
101  * cache flush operations, and there are no non-transaction metadata updates
102  * on directories either.
103  */
104 STATIC int
105 xfs_dir_fsync(
106 	struct file		*file,
107 	loff_t			start,
108 	loff_t			end,
109 	int			datasync)
110 {
111 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
112 	struct xfs_mount	*mp = ip->i_mount;
113 	xfs_lsn_t		lsn = 0;
114 
115 	trace_xfs_dir_fsync(ip);
116 
117 	xfs_ilock(ip, XFS_ILOCK_SHARED);
118 	if (xfs_ipincount(ip))
119 		lsn = ip->i_itemp->ili_last_lsn;
120 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
121 
122 	if (!lsn)
123 		return 0;
124 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126 
127 STATIC int
128 xfs_file_fsync(
129 	struct file		*file,
130 	loff_t			start,
131 	loff_t			end,
132 	int			datasync)
133 {
134 	struct inode		*inode = file->f_mapping->host;
135 	struct xfs_inode	*ip = XFS_I(inode);
136 	struct xfs_mount	*mp = ip->i_mount;
137 	int			error = 0;
138 	int			log_flushed = 0;
139 	xfs_lsn_t		lsn = 0;
140 
141 	trace_xfs_file_fsync(ip);
142 
143 	error = file_write_and_wait_range(file, start, end);
144 	if (error)
145 		return error;
146 
147 	if (XFS_FORCED_SHUTDOWN(mp))
148 		return -EIO;
149 
150 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
151 
152 	/*
153 	 * If we have an RT and/or log subvolume we need to make sure to flush
154 	 * the write cache the device used for file data first.  This is to
155 	 * ensure newly written file data make it to disk before logging the new
156 	 * inode size in case of an extending write.
157 	 */
158 	if (XFS_IS_REALTIME_INODE(ip))
159 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
162 
163 	/*
164 	 * All metadata updates are logged, which means that we just have to
165 	 * flush the log up to the latest LSN that touched the inode. If we have
166 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 	 * log force before we clear the ili_fsync_fields field. This ensures
168 	 * that we don't get a racing sync operation that does not wait for the
169 	 * metadata to hit the journal before returning. If we race with
170 	 * clearing the ili_fsync_fields, then all that will happen is the log
171 	 * force will do nothing as the lsn will already be on disk. We can't
172 	 * race with setting ili_fsync_fields because that is done under
173 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 	 * until after the ili_fsync_fields is cleared.
175 	 */
176 	xfs_ilock(ip, XFS_ILOCK_SHARED);
177 	if (xfs_ipincount(ip)) {
178 		if (!datasync ||
179 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 			lsn = ip->i_itemp->ili_last_lsn;
181 	}
182 
183 	if (lsn) {
184 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 		ip->i_itemp->ili_fsync_fields = 0;
186 	}
187 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
188 
189 	/*
190 	 * If we only have a single device, and the log force about was
191 	 * a no-op we might have to flush the data device cache here.
192 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 	 * an already allocated file and thus do not have any metadata to
194 	 * commit.
195 	 */
196 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 	    mp->m_logdev_targp == mp->m_ddev_targp)
198 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 
200 	return error;
201 }
202 
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 	struct kiocb		*iocb,
206 	struct iov_iter		*to)
207 {
208 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
209 	size_t			count = iov_iter_count(to);
210 	ssize_t			ret;
211 
212 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213 
214 	if (!count)
215 		return 0; /* skip atime */
216 
217 	file_accessed(iocb->ki_filp);
218 
219 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222 
223 	return ret;
224 }
225 
226 static noinline ssize_t
227 xfs_file_dax_read(
228 	struct kiocb		*iocb,
229 	struct iov_iter		*to)
230 {
231 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 	size_t			count = iov_iter_count(to);
233 	ssize_t			ret = 0;
234 
235 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236 
237 	if (!count)
238 		return 0; /* skip atime */
239 
240 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
241 		if (iocb->ki_flags & IOCB_NOWAIT)
242 			return -EAGAIN;
243 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 	}
245 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
246 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247 
248 	file_accessed(iocb->ki_filp);
249 	return ret;
250 }
251 
252 STATIC ssize_t
253 xfs_file_buffered_aio_read(
254 	struct kiocb		*iocb,
255 	struct iov_iter		*to)
256 {
257 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
258 	ssize_t			ret;
259 
260 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
261 
262 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
263 		if (iocb->ki_flags & IOCB_NOWAIT)
264 			return -EAGAIN;
265 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
266 	}
267 	ret = generic_file_read_iter(iocb, to);
268 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
269 
270 	return ret;
271 }
272 
273 STATIC ssize_t
274 xfs_file_read_iter(
275 	struct kiocb		*iocb,
276 	struct iov_iter		*to)
277 {
278 	struct inode		*inode = file_inode(iocb->ki_filp);
279 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
280 	ssize_t			ret = 0;
281 
282 	XFS_STATS_INC(mp, xs_read_calls);
283 
284 	if (XFS_FORCED_SHUTDOWN(mp))
285 		return -EIO;
286 
287 	if (IS_DAX(inode))
288 		ret = xfs_file_dax_read(iocb, to);
289 	else if (iocb->ki_flags & IOCB_DIRECT)
290 		ret = xfs_file_dio_aio_read(iocb, to);
291 	else
292 		ret = xfs_file_buffered_aio_read(iocb, to);
293 
294 	if (ret > 0)
295 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
296 	return ret;
297 }
298 
299 /*
300  * Zero any on disk space between the current EOF and the new, larger EOF.
301  *
302  * This handles the normal case of zeroing the remainder of the last block in
303  * the file and the unusual case of zeroing blocks out beyond the size of the
304  * file.  This second case only happens with fixed size extents and when the
305  * system crashes before the inode size was updated but after blocks were
306  * allocated.
307  *
308  * Expects the iolock to be held exclusive, and will take the ilock internally.
309  */
310 int					/* error (positive) */
311 xfs_zero_eof(
312 	struct xfs_inode	*ip,
313 	xfs_off_t		offset,		/* starting I/O offset */
314 	xfs_fsize_t		isize,		/* current inode size */
315 	bool			*did_zeroing)
316 {
317 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
318 	ASSERT(offset > isize);
319 
320 	trace_xfs_zero_eof(ip, isize, offset - isize);
321 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
322 }
323 
324 /*
325  * Common pre-write limit and setup checks.
326  *
327  * Called with the iolocked held either shared and exclusive according to
328  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
329  * if called for a direct write beyond i_size.
330  */
331 STATIC ssize_t
332 xfs_file_aio_write_checks(
333 	struct kiocb		*iocb,
334 	struct iov_iter		*from,
335 	int			*iolock)
336 {
337 	struct file		*file = iocb->ki_filp;
338 	struct inode		*inode = file->f_mapping->host;
339 	struct xfs_inode	*ip = XFS_I(inode);
340 	ssize_t			error = 0;
341 	size_t			count = iov_iter_count(from);
342 	bool			drained_dio = false;
343 
344 restart:
345 	error = generic_write_checks(iocb, from);
346 	if (error <= 0)
347 		return error;
348 
349 	error = xfs_break_layouts(inode, iolock);
350 	if (error)
351 		return error;
352 
353 	/*
354 	 * For changing security info in file_remove_privs() we need i_rwsem
355 	 * exclusively.
356 	 */
357 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
358 		xfs_iunlock(ip, *iolock);
359 		*iolock = XFS_IOLOCK_EXCL;
360 		xfs_ilock(ip, *iolock);
361 		goto restart;
362 	}
363 	/*
364 	 * If the offset is beyond the size of the file, we need to zero any
365 	 * blocks that fall between the existing EOF and the start of this
366 	 * write.  If zeroing is needed and we are currently holding the
367 	 * iolock shared, we need to update it to exclusive which implies
368 	 * having to redo all checks before.
369 	 *
370 	 * We need to serialise against EOF updates that occur in IO
371 	 * completions here. We want to make sure that nobody is changing the
372 	 * size while we do this check until we have placed an IO barrier (i.e.
373 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
374 	 * The spinlock effectively forms a memory barrier once we have the
375 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
376 	 * and hence be able to correctly determine if we need to run zeroing.
377 	 */
378 	spin_lock(&ip->i_flags_lock);
379 	if (iocb->ki_pos > i_size_read(inode)) {
380 		bool	zero = false;
381 
382 		spin_unlock(&ip->i_flags_lock);
383 		if (!drained_dio) {
384 			if (*iolock == XFS_IOLOCK_SHARED) {
385 				xfs_iunlock(ip, *iolock);
386 				*iolock = XFS_IOLOCK_EXCL;
387 				xfs_ilock(ip, *iolock);
388 				iov_iter_reexpand(from, count);
389 			}
390 			/*
391 			 * We now have an IO submission barrier in place, but
392 			 * AIO can do EOF updates during IO completion and hence
393 			 * we now need to wait for all of them to drain. Non-AIO
394 			 * DIO will have drained before we are given the
395 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
396 			 * no-op.
397 			 */
398 			inode_dio_wait(inode);
399 			drained_dio = true;
400 			goto restart;
401 		}
402 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
403 		if (error)
404 			return error;
405 	} else
406 		spin_unlock(&ip->i_flags_lock);
407 
408 	/*
409 	 * Updating the timestamps will grab the ilock again from
410 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
411 	 * lock above.  Eventually we should look into a way to avoid
412 	 * the pointless lock roundtrip.
413 	 */
414 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
415 		error = file_update_time(file);
416 		if (error)
417 			return error;
418 	}
419 
420 	/*
421 	 * If we're writing the file then make sure to clear the setuid and
422 	 * setgid bits if the process is not being run by root.  This keeps
423 	 * people from modifying setuid and setgid binaries.
424 	 */
425 	if (!IS_NOSEC(inode))
426 		return file_remove_privs(file);
427 	return 0;
428 }
429 
430 static int
431 xfs_dio_write_end_io(
432 	struct kiocb		*iocb,
433 	ssize_t			size,
434 	unsigned		flags)
435 {
436 	struct inode		*inode = file_inode(iocb->ki_filp);
437 	struct xfs_inode	*ip = XFS_I(inode);
438 	loff_t			offset = iocb->ki_pos;
439 	bool			update_size = false;
440 	int			error = 0;
441 
442 	trace_xfs_end_io_direct_write(ip, offset, size);
443 
444 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
445 		return -EIO;
446 
447 	if (size <= 0)
448 		return size;
449 
450 	/*
451 	 * We need to update the in-core inode size here so that we don't end up
452 	 * with the on-disk inode size being outside the in-core inode size. We
453 	 * have no other method of updating EOF for AIO, so always do it here
454 	 * if necessary.
455 	 *
456 	 * We need to lock the test/set EOF update as we can be racing with
457 	 * other IO completions here to update the EOF. Failing to serialise
458 	 * here can result in EOF moving backwards and Bad Things Happen when
459 	 * that occurs.
460 	 */
461 	spin_lock(&ip->i_flags_lock);
462 	if (offset + size > i_size_read(inode)) {
463 		i_size_write(inode, offset + size);
464 		update_size = true;
465 	}
466 	spin_unlock(&ip->i_flags_lock);
467 
468 	if (flags & IOMAP_DIO_COW) {
469 		error = xfs_reflink_end_cow(ip, offset, size);
470 		if (error)
471 			return error;
472 	}
473 
474 	if (flags & IOMAP_DIO_UNWRITTEN)
475 		error = xfs_iomap_write_unwritten(ip, offset, size);
476 	else if (update_size)
477 		error = xfs_setfilesize(ip, offset, size);
478 
479 	return error;
480 }
481 
482 /*
483  * xfs_file_dio_aio_write - handle direct IO writes
484  *
485  * Lock the inode appropriately to prepare for and issue a direct IO write.
486  * By separating it from the buffered write path we remove all the tricky to
487  * follow locking changes and looping.
488  *
489  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
490  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
491  * pages are flushed out.
492  *
493  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
494  * allowing them to be done in parallel with reads and other direct IO writes.
495  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
496  * needs to do sub-block zeroing and that requires serialisation against other
497  * direct IOs to the same block. In this case we need to serialise the
498  * submission of the unaligned IOs so that we don't get racing block zeroing in
499  * the dio layer.  To avoid the problem with aio, we also need to wait for
500  * outstanding IOs to complete so that unwritten extent conversion is completed
501  * before we try to map the overlapping block. This is currently implemented by
502  * hitting it with a big hammer (i.e. inode_dio_wait()).
503  *
504  * Returns with locks held indicated by @iolock and errors indicated by
505  * negative return values.
506  */
507 STATIC ssize_t
508 xfs_file_dio_aio_write(
509 	struct kiocb		*iocb,
510 	struct iov_iter		*from)
511 {
512 	struct file		*file = iocb->ki_filp;
513 	struct address_space	*mapping = file->f_mapping;
514 	struct inode		*inode = mapping->host;
515 	struct xfs_inode	*ip = XFS_I(inode);
516 	struct xfs_mount	*mp = ip->i_mount;
517 	ssize_t			ret = 0;
518 	int			unaligned_io = 0;
519 	int			iolock;
520 	size_t			count = iov_iter_count(from);
521 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
522 					mp->m_rtdev_targp : mp->m_ddev_targp;
523 
524 	/* DIO must be aligned to device logical sector size */
525 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
526 		return -EINVAL;
527 
528 	/*
529 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
530 	 * the file system block size.  We don't need to consider the EOF
531 	 * extension case here because xfs_file_aio_write_checks() will relock
532 	 * the inode as necessary for EOF zeroing cases and fill out the new
533 	 * inode size as appropriate.
534 	 */
535 	if ((iocb->ki_pos & mp->m_blockmask) ||
536 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
537 		unaligned_io = 1;
538 
539 		/*
540 		 * We can't properly handle unaligned direct I/O to reflink
541 		 * files yet, as we can't unshare a partial block.
542 		 */
543 		if (xfs_is_reflink_inode(ip)) {
544 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
545 			return -EREMCHG;
546 		}
547 		iolock = XFS_IOLOCK_EXCL;
548 	} else {
549 		iolock = XFS_IOLOCK_SHARED;
550 	}
551 
552 	if (!xfs_ilock_nowait(ip, iolock)) {
553 		if (iocb->ki_flags & IOCB_NOWAIT)
554 			return -EAGAIN;
555 		xfs_ilock(ip, iolock);
556 	}
557 
558 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
559 	if (ret)
560 		goto out;
561 	count = iov_iter_count(from);
562 
563 	/*
564 	 * If we are doing unaligned IO, wait for all other IO to drain,
565 	 * otherwise demote the lock if we had to take the exclusive lock
566 	 * for other reasons in xfs_file_aio_write_checks.
567 	 */
568 	if (unaligned_io) {
569 		/* If we are going to wait for other DIO to finish, bail */
570 		if (iocb->ki_flags & IOCB_NOWAIT) {
571 			if (atomic_read(&inode->i_dio_count))
572 				return -EAGAIN;
573 		} else {
574 			inode_dio_wait(inode);
575 		}
576 	} else if (iolock == XFS_IOLOCK_EXCL) {
577 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
578 		iolock = XFS_IOLOCK_SHARED;
579 	}
580 
581 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
582 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
583 out:
584 	xfs_iunlock(ip, iolock);
585 
586 	/*
587 	 * No fallback to buffered IO on errors for XFS, direct IO will either
588 	 * complete fully or fail.
589 	 */
590 	ASSERT(ret < 0 || ret == count);
591 	return ret;
592 }
593 
594 static noinline ssize_t
595 xfs_file_dax_write(
596 	struct kiocb		*iocb,
597 	struct iov_iter		*from)
598 {
599 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
600 	struct xfs_inode	*ip = XFS_I(inode);
601 	int			iolock = XFS_IOLOCK_EXCL;
602 	ssize_t			ret, error = 0;
603 	size_t			count;
604 	loff_t			pos;
605 
606 	if (!xfs_ilock_nowait(ip, iolock)) {
607 		if (iocb->ki_flags & IOCB_NOWAIT)
608 			return -EAGAIN;
609 		xfs_ilock(ip, iolock);
610 	}
611 
612 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
613 	if (ret)
614 		goto out;
615 
616 	pos = iocb->ki_pos;
617 	count = iov_iter_count(from);
618 
619 	trace_xfs_file_dax_write(ip, count, pos);
620 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
621 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
622 		i_size_write(inode, iocb->ki_pos);
623 		error = xfs_setfilesize(ip, pos, ret);
624 	}
625 out:
626 	xfs_iunlock(ip, iolock);
627 	return error ? error : ret;
628 }
629 
630 STATIC ssize_t
631 xfs_file_buffered_aio_write(
632 	struct kiocb		*iocb,
633 	struct iov_iter		*from)
634 {
635 	struct file		*file = iocb->ki_filp;
636 	struct address_space	*mapping = file->f_mapping;
637 	struct inode		*inode = mapping->host;
638 	struct xfs_inode	*ip = XFS_I(inode);
639 	ssize_t			ret;
640 	int			enospc = 0;
641 	int			iolock;
642 
643 	if (iocb->ki_flags & IOCB_NOWAIT)
644 		return -EOPNOTSUPP;
645 
646 write_retry:
647 	iolock = XFS_IOLOCK_EXCL;
648 	xfs_ilock(ip, iolock);
649 
650 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
651 	if (ret)
652 		goto out;
653 
654 	/* We can write back this queue in page reclaim */
655 	current->backing_dev_info = inode_to_bdi(inode);
656 
657 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
658 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
659 	if (likely(ret >= 0))
660 		iocb->ki_pos += ret;
661 
662 	/*
663 	 * If we hit a space limit, try to free up some lingering preallocated
664 	 * space before returning an error. In the case of ENOSPC, first try to
665 	 * write back all dirty inodes to free up some of the excess reserved
666 	 * metadata space. This reduces the chances that the eofblocks scan
667 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
668 	 * also behaves as a filter to prevent too many eofblocks scans from
669 	 * running at the same time.
670 	 */
671 	if (ret == -EDQUOT && !enospc) {
672 		xfs_iunlock(ip, iolock);
673 		enospc = xfs_inode_free_quota_eofblocks(ip);
674 		if (enospc)
675 			goto write_retry;
676 		enospc = xfs_inode_free_quota_cowblocks(ip);
677 		if (enospc)
678 			goto write_retry;
679 		iolock = 0;
680 	} else if (ret == -ENOSPC && !enospc) {
681 		struct xfs_eofblocks eofb = {0};
682 
683 		enospc = 1;
684 		xfs_flush_inodes(ip->i_mount);
685 
686 		xfs_iunlock(ip, iolock);
687 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
688 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
689 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
690 		goto write_retry;
691 	}
692 
693 	current->backing_dev_info = NULL;
694 out:
695 	if (iolock)
696 		xfs_iunlock(ip, iolock);
697 	return ret;
698 }
699 
700 STATIC ssize_t
701 xfs_file_write_iter(
702 	struct kiocb		*iocb,
703 	struct iov_iter		*from)
704 {
705 	struct file		*file = iocb->ki_filp;
706 	struct address_space	*mapping = file->f_mapping;
707 	struct inode		*inode = mapping->host;
708 	struct xfs_inode	*ip = XFS_I(inode);
709 	ssize_t			ret;
710 	size_t			ocount = iov_iter_count(from);
711 
712 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
713 
714 	if (ocount == 0)
715 		return 0;
716 
717 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
718 		return -EIO;
719 
720 	if (IS_DAX(inode))
721 		ret = xfs_file_dax_write(iocb, from);
722 	else if (iocb->ki_flags & IOCB_DIRECT) {
723 		/*
724 		 * Allow a directio write to fall back to a buffered
725 		 * write *only* in the case that we're doing a reflink
726 		 * CoW.  In all other directio scenarios we do not
727 		 * allow an operation to fall back to buffered mode.
728 		 */
729 		ret = xfs_file_dio_aio_write(iocb, from);
730 		if (ret == -EREMCHG)
731 			goto buffered;
732 	} else {
733 buffered:
734 		ret = xfs_file_buffered_aio_write(iocb, from);
735 	}
736 
737 	if (ret > 0) {
738 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
739 
740 		/* Handle various SYNC-type writes */
741 		ret = generic_write_sync(iocb, ret);
742 	}
743 	return ret;
744 }
745 
746 #define	XFS_FALLOC_FL_SUPPORTED						\
747 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
748 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
749 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
750 
751 STATIC long
752 xfs_file_fallocate(
753 	struct file		*file,
754 	int			mode,
755 	loff_t			offset,
756 	loff_t			len)
757 {
758 	struct inode		*inode = file_inode(file);
759 	struct xfs_inode	*ip = XFS_I(inode);
760 	long			error;
761 	enum xfs_prealloc_flags	flags = 0;
762 	uint			iolock = XFS_IOLOCK_EXCL;
763 	loff_t			new_size = 0;
764 	bool			do_file_insert = 0;
765 
766 	if (!S_ISREG(inode->i_mode))
767 		return -EINVAL;
768 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
769 		return -EOPNOTSUPP;
770 
771 	xfs_ilock(ip, iolock);
772 	error = xfs_break_layouts(inode, &iolock);
773 	if (error)
774 		goto out_unlock;
775 
776 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
777 	iolock |= XFS_MMAPLOCK_EXCL;
778 
779 	if (mode & FALLOC_FL_PUNCH_HOLE) {
780 		error = xfs_free_file_space(ip, offset, len);
781 		if (error)
782 			goto out_unlock;
783 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
784 		unsigned int blksize_mask = i_blocksize(inode) - 1;
785 
786 		if (offset & blksize_mask || len & blksize_mask) {
787 			error = -EINVAL;
788 			goto out_unlock;
789 		}
790 
791 		/*
792 		 * There is no need to overlap collapse range with EOF,
793 		 * in which case it is effectively a truncate operation
794 		 */
795 		if (offset + len >= i_size_read(inode)) {
796 			error = -EINVAL;
797 			goto out_unlock;
798 		}
799 
800 		new_size = i_size_read(inode) - len;
801 
802 		error = xfs_collapse_file_space(ip, offset, len);
803 		if (error)
804 			goto out_unlock;
805 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
806 		unsigned int blksize_mask = i_blocksize(inode) - 1;
807 
808 		new_size = i_size_read(inode) + len;
809 		if (offset & blksize_mask || len & blksize_mask) {
810 			error = -EINVAL;
811 			goto out_unlock;
812 		}
813 
814 		/* check the new inode size does not wrap through zero */
815 		if (new_size > inode->i_sb->s_maxbytes) {
816 			error = -EFBIG;
817 			goto out_unlock;
818 		}
819 
820 		/* Offset should be less than i_size */
821 		if (offset >= i_size_read(inode)) {
822 			error = -EINVAL;
823 			goto out_unlock;
824 		}
825 		do_file_insert = 1;
826 	} else {
827 		flags |= XFS_PREALLOC_SET;
828 
829 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
830 		    offset + len > i_size_read(inode)) {
831 			new_size = offset + len;
832 			error = inode_newsize_ok(inode, new_size);
833 			if (error)
834 				goto out_unlock;
835 		}
836 
837 		if (mode & FALLOC_FL_ZERO_RANGE)
838 			error = xfs_zero_file_space(ip, offset, len);
839 		else {
840 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
841 				error = xfs_reflink_unshare(ip, offset, len);
842 				if (error)
843 					goto out_unlock;
844 			}
845 			error = xfs_alloc_file_space(ip, offset, len,
846 						     XFS_BMAPI_PREALLOC);
847 		}
848 		if (error)
849 			goto out_unlock;
850 	}
851 
852 	if (file->f_flags & O_DSYNC)
853 		flags |= XFS_PREALLOC_SYNC;
854 
855 	error = xfs_update_prealloc_flags(ip, flags);
856 	if (error)
857 		goto out_unlock;
858 
859 	/* Change file size if needed */
860 	if (new_size) {
861 		struct iattr iattr;
862 
863 		iattr.ia_valid = ATTR_SIZE;
864 		iattr.ia_size = new_size;
865 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
866 		if (error)
867 			goto out_unlock;
868 	}
869 
870 	/*
871 	 * Perform hole insertion now that the file size has been
872 	 * updated so that if we crash during the operation we don't
873 	 * leave shifted extents past EOF and hence losing access to
874 	 * the data that is contained within them.
875 	 */
876 	if (do_file_insert)
877 		error = xfs_insert_file_space(ip, offset, len);
878 
879 out_unlock:
880 	xfs_iunlock(ip, iolock);
881 	return error;
882 }
883 
884 STATIC int
885 xfs_file_clone_range(
886 	struct file	*file_in,
887 	loff_t		pos_in,
888 	struct file	*file_out,
889 	loff_t		pos_out,
890 	u64		len)
891 {
892 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
893 				     len, false);
894 }
895 
896 STATIC ssize_t
897 xfs_file_dedupe_range(
898 	struct file	*src_file,
899 	u64		loff,
900 	u64		len,
901 	struct file	*dst_file,
902 	u64		dst_loff)
903 {
904 	int		error;
905 
906 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
907 				     len, true);
908 	if (error)
909 		return error;
910 	return len;
911 }
912 
913 STATIC int
914 xfs_file_open(
915 	struct inode	*inode,
916 	struct file	*file)
917 {
918 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
919 		return -EFBIG;
920 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
921 		return -EIO;
922 	file->f_mode |= FMODE_NOWAIT;
923 	return 0;
924 }
925 
926 STATIC int
927 xfs_dir_open(
928 	struct inode	*inode,
929 	struct file	*file)
930 {
931 	struct xfs_inode *ip = XFS_I(inode);
932 	int		mode;
933 	int		error;
934 
935 	error = xfs_file_open(inode, file);
936 	if (error)
937 		return error;
938 
939 	/*
940 	 * If there are any blocks, read-ahead block 0 as we're almost
941 	 * certain to have the next operation be a read there.
942 	 */
943 	mode = xfs_ilock_data_map_shared(ip);
944 	if (ip->i_d.di_nextents > 0)
945 		error = xfs_dir3_data_readahead(ip, 0, -1);
946 	xfs_iunlock(ip, mode);
947 	return error;
948 }
949 
950 STATIC int
951 xfs_file_release(
952 	struct inode	*inode,
953 	struct file	*filp)
954 {
955 	return xfs_release(XFS_I(inode));
956 }
957 
958 STATIC int
959 xfs_file_readdir(
960 	struct file	*file,
961 	struct dir_context *ctx)
962 {
963 	struct inode	*inode = file_inode(file);
964 	xfs_inode_t	*ip = XFS_I(inode);
965 	size_t		bufsize;
966 
967 	/*
968 	 * The Linux API doesn't pass down the total size of the buffer
969 	 * we read into down to the filesystem.  With the filldir concept
970 	 * it's not needed for correct information, but the XFS dir2 leaf
971 	 * code wants an estimate of the buffer size to calculate it's
972 	 * readahead window and size the buffers used for mapping to
973 	 * physical blocks.
974 	 *
975 	 * Try to give it an estimate that's good enough, maybe at some
976 	 * point we can change the ->readdir prototype to include the
977 	 * buffer size.  For now we use the current glibc buffer size.
978 	 */
979 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
980 
981 	return xfs_readdir(NULL, ip, ctx, bufsize);
982 }
983 
984 STATIC loff_t
985 xfs_file_llseek(
986 	struct file	*file,
987 	loff_t		offset,
988 	int		whence)
989 {
990 	struct inode		*inode = file->f_mapping->host;
991 
992 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
993 		return -EIO;
994 
995 	switch (whence) {
996 	default:
997 		return generic_file_llseek(file, offset, whence);
998 	case SEEK_HOLE:
999 		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1000 		break;
1001 	case SEEK_DATA:
1002 		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1003 		break;
1004 	}
1005 
1006 	if (offset < 0)
1007 		return offset;
1008 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1009 }
1010 
1011 /*
1012  * Locking for serialisation of IO during page faults. This results in a lock
1013  * ordering of:
1014  *
1015  * mmap_sem (MM)
1016  *   sb_start_pagefault(vfs, freeze)
1017  *     i_mmaplock (XFS - truncate serialisation)
1018  *       page_lock (MM)
1019  *         i_lock (XFS - extent map serialisation)
1020  */
1021 static int
1022 __xfs_filemap_fault(
1023 	struct vm_fault		*vmf,
1024 	enum page_entry_size	pe_size,
1025 	bool			write_fault)
1026 {
1027 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1028 	struct xfs_inode	*ip = XFS_I(inode);
1029 	int			ret;
1030 
1031 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1032 
1033 	if (write_fault) {
1034 		sb_start_pagefault(inode->i_sb);
1035 		file_update_time(vmf->vma->vm_file);
1036 	}
1037 
1038 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1039 	if (IS_DAX(inode)) {
1040 		ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1041 	} else {
1042 		if (write_fault)
1043 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1044 		else
1045 			ret = filemap_fault(vmf);
1046 	}
1047 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1048 
1049 	if (write_fault)
1050 		sb_end_pagefault(inode->i_sb);
1051 	return ret;
1052 }
1053 
1054 static int
1055 xfs_filemap_fault(
1056 	struct vm_fault		*vmf)
1057 {
1058 	/* DAX can shortcut the normal fault path on write faults! */
1059 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1060 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1061 			(vmf->flags & FAULT_FLAG_WRITE));
1062 }
1063 
1064 static int
1065 xfs_filemap_huge_fault(
1066 	struct vm_fault		*vmf,
1067 	enum page_entry_size	pe_size)
1068 {
1069 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1070 		return VM_FAULT_FALLBACK;
1071 
1072 	/* DAX can shortcut the normal fault path on write faults! */
1073 	return __xfs_filemap_fault(vmf, pe_size,
1074 			(vmf->flags & FAULT_FLAG_WRITE));
1075 }
1076 
1077 static int
1078 xfs_filemap_page_mkwrite(
1079 	struct vm_fault		*vmf)
1080 {
1081 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1082 }
1083 
1084 /*
1085  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1086  * updates on write faults. In reality, it's need to serialise against
1087  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1088  * to ensure we serialise the fault barrier in place.
1089  */
1090 static int
1091 xfs_filemap_pfn_mkwrite(
1092 	struct vm_fault		*vmf)
1093 {
1094 
1095 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1096 	struct xfs_inode	*ip = XFS_I(inode);
1097 	int			ret = VM_FAULT_NOPAGE;
1098 	loff_t			size;
1099 
1100 	trace_xfs_filemap_pfn_mkwrite(ip);
1101 
1102 	sb_start_pagefault(inode->i_sb);
1103 	file_update_time(vmf->vma->vm_file);
1104 
1105 	/* check if the faulting page hasn't raced with truncate */
1106 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1107 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1108 	if (vmf->pgoff >= size)
1109 		ret = VM_FAULT_SIGBUS;
1110 	else if (IS_DAX(inode))
1111 		ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1112 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1113 	sb_end_pagefault(inode->i_sb);
1114 	return ret;
1115 
1116 }
1117 
1118 static const struct vm_operations_struct xfs_file_vm_ops = {
1119 	.fault		= xfs_filemap_fault,
1120 	.huge_fault	= xfs_filemap_huge_fault,
1121 	.map_pages	= filemap_map_pages,
1122 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1123 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1124 };
1125 
1126 STATIC int
1127 xfs_file_mmap(
1128 	struct file	*filp,
1129 	struct vm_area_struct *vma)
1130 {
1131 	file_accessed(filp);
1132 	vma->vm_ops = &xfs_file_vm_ops;
1133 	if (IS_DAX(file_inode(filp)))
1134 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1135 	return 0;
1136 }
1137 
1138 const struct file_operations xfs_file_operations = {
1139 	.llseek		= xfs_file_llseek,
1140 	.read_iter	= xfs_file_read_iter,
1141 	.write_iter	= xfs_file_write_iter,
1142 	.splice_read	= generic_file_splice_read,
1143 	.splice_write	= iter_file_splice_write,
1144 	.unlocked_ioctl	= xfs_file_ioctl,
1145 #ifdef CONFIG_COMPAT
1146 	.compat_ioctl	= xfs_file_compat_ioctl,
1147 #endif
1148 	.mmap		= xfs_file_mmap,
1149 	.open		= xfs_file_open,
1150 	.release	= xfs_file_release,
1151 	.fsync		= xfs_file_fsync,
1152 	.get_unmapped_area = thp_get_unmapped_area,
1153 	.fallocate	= xfs_file_fallocate,
1154 	.clone_file_range = xfs_file_clone_range,
1155 	.dedupe_file_range = xfs_file_dedupe_range,
1156 };
1157 
1158 const struct file_operations xfs_dir_file_operations = {
1159 	.open		= xfs_dir_open,
1160 	.read		= generic_read_dir,
1161 	.iterate_shared	= xfs_file_readdir,
1162 	.llseek		= generic_file_llseek,
1163 	.unlocked_ioctl	= xfs_file_ioctl,
1164 #ifdef CONFIG_COMPAT
1165 	.compat_ioctl	= xfs_file_compat_ioctl,
1166 #endif
1167 	.fsync		= xfs_dir_fsync,
1168 };
1169