1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Locking primitives for read and write IO paths to ensure we consistently use 52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 53 */ 54 static inline void 55 xfs_rw_ilock( 56 struct xfs_inode *ip, 57 int type) 58 { 59 if (type & XFS_IOLOCK_EXCL) 60 inode_lock(VFS_I(ip)); 61 xfs_ilock(ip, type); 62 } 63 64 static inline void 65 xfs_rw_iunlock( 66 struct xfs_inode *ip, 67 int type) 68 { 69 xfs_iunlock(ip, type); 70 if (type & XFS_IOLOCK_EXCL) 71 inode_unlock(VFS_I(ip)); 72 } 73 74 static inline void 75 xfs_rw_ilock_demote( 76 struct xfs_inode *ip, 77 int type) 78 { 79 xfs_ilock_demote(ip, type); 80 if (type & XFS_IOLOCK_EXCL) 81 inode_unlock(VFS_I(ip)); 82 } 83 84 /* 85 * Clear the specified ranges to zero through either the pagecache or DAX. 86 * Holes and unwritten extents will be left as-is as they already are zeroed. 87 */ 88 int 89 xfs_zero_range( 90 struct xfs_inode *ip, 91 xfs_off_t pos, 92 xfs_off_t count, 93 bool *did_zero) 94 { 95 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 96 } 97 98 int 99 xfs_update_prealloc_flags( 100 struct xfs_inode *ip, 101 enum xfs_prealloc_flags flags) 102 { 103 struct xfs_trans *tp; 104 int error; 105 106 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 107 0, 0, 0, &tp); 108 if (error) 109 return error; 110 111 xfs_ilock(ip, XFS_ILOCK_EXCL); 112 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 113 114 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 115 VFS_I(ip)->i_mode &= ~S_ISUID; 116 if (VFS_I(ip)->i_mode & S_IXGRP) 117 VFS_I(ip)->i_mode &= ~S_ISGID; 118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 119 } 120 121 if (flags & XFS_PREALLOC_SET) 122 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 123 if (flags & XFS_PREALLOC_CLEAR) 124 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 125 126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 127 if (flags & XFS_PREALLOC_SYNC) 128 xfs_trans_set_sync(tp); 129 return xfs_trans_commit(tp); 130 } 131 132 /* 133 * Fsync operations on directories are much simpler than on regular files, 134 * as there is no file data to flush, and thus also no need for explicit 135 * cache flush operations, and there are no non-transaction metadata updates 136 * on directories either. 137 */ 138 STATIC int 139 xfs_dir_fsync( 140 struct file *file, 141 loff_t start, 142 loff_t end, 143 int datasync) 144 { 145 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 146 struct xfs_mount *mp = ip->i_mount; 147 xfs_lsn_t lsn = 0; 148 149 trace_xfs_dir_fsync(ip); 150 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) 153 lsn = ip->i_itemp->ili_last_lsn; 154 xfs_iunlock(ip, XFS_ILOCK_SHARED); 155 156 if (!lsn) 157 return 0; 158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 159 } 160 161 STATIC int 162 xfs_file_fsync( 163 struct file *file, 164 loff_t start, 165 loff_t end, 166 int datasync) 167 { 168 struct inode *inode = file->f_mapping->host; 169 struct xfs_inode *ip = XFS_I(inode); 170 struct xfs_mount *mp = ip->i_mount; 171 int error = 0; 172 int log_flushed = 0; 173 xfs_lsn_t lsn = 0; 174 175 trace_xfs_file_fsync(ip); 176 177 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 178 if (error) 179 return error; 180 181 if (XFS_FORCED_SHUTDOWN(mp)) 182 return -EIO; 183 184 xfs_iflags_clear(ip, XFS_ITRUNCATED); 185 186 if (mp->m_flags & XFS_MOUNT_BARRIER) { 187 /* 188 * If we have an RT and/or log subvolume we need to make sure 189 * to flush the write cache the device used for file data 190 * first. This is to ensure newly written file data make 191 * it to disk before logging the new inode size in case of 192 * an extending write. 193 */ 194 if (XFS_IS_REALTIME_INODE(ip)) 195 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 196 else if (mp->m_logdev_targp != mp->m_ddev_targp) 197 xfs_blkdev_issue_flush(mp->m_ddev_targp); 198 } 199 200 /* 201 * All metadata updates are logged, which means that we just have to 202 * flush the log up to the latest LSN that touched the inode. If we have 203 * concurrent fsync/fdatasync() calls, we need them to all block on the 204 * log force before we clear the ili_fsync_fields field. This ensures 205 * that we don't get a racing sync operation that does not wait for the 206 * metadata to hit the journal before returning. If we race with 207 * clearing the ili_fsync_fields, then all that will happen is the log 208 * force will do nothing as the lsn will already be on disk. We can't 209 * race with setting ili_fsync_fields because that is done under 210 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 211 * until after the ili_fsync_fields is cleared. 212 */ 213 xfs_ilock(ip, XFS_ILOCK_SHARED); 214 if (xfs_ipincount(ip)) { 215 if (!datasync || 216 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 217 lsn = ip->i_itemp->ili_last_lsn; 218 } 219 220 if (lsn) { 221 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 222 ip->i_itemp->ili_fsync_fields = 0; 223 } 224 xfs_iunlock(ip, XFS_ILOCK_SHARED); 225 226 /* 227 * If we only have a single device, and the log force about was 228 * a no-op we might have to flush the data device cache here. 229 * This can only happen for fdatasync/O_DSYNC if we were overwriting 230 * an already allocated file and thus do not have any metadata to 231 * commit. 232 */ 233 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 234 mp->m_logdev_targp == mp->m_ddev_targp && 235 !XFS_IS_REALTIME_INODE(ip) && 236 !log_flushed) 237 xfs_blkdev_issue_flush(mp->m_ddev_targp); 238 239 return error; 240 } 241 242 STATIC ssize_t 243 xfs_file_dio_aio_read( 244 struct kiocb *iocb, 245 struct iov_iter *to) 246 { 247 struct address_space *mapping = iocb->ki_filp->f_mapping; 248 struct inode *inode = mapping->host; 249 struct xfs_inode *ip = XFS_I(inode); 250 loff_t isize = i_size_read(inode); 251 size_t count = iov_iter_count(to); 252 struct iov_iter data; 253 struct xfs_buftarg *target; 254 ssize_t ret = 0; 255 256 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 257 258 if (!count) 259 return 0; /* skip atime */ 260 261 if (XFS_IS_REALTIME_INODE(ip)) 262 target = ip->i_mount->m_rtdev_targp; 263 else 264 target = ip->i_mount->m_ddev_targp; 265 266 /* DIO must be aligned to device logical sector size */ 267 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) { 268 if (iocb->ki_pos == isize) 269 return 0; 270 return -EINVAL; 271 } 272 273 file_accessed(iocb->ki_filp); 274 275 /* 276 * Locking is a bit tricky here. If we take an exclusive lock for direct 277 * IO, we effectively serialise all new concurrent read IO to this file 278 * and block it behind IO that is currently in progress because IO in 279 * progress holds the IO lock shared. We only need to hold the lock 280 * exclusive to blow away the page cache, so only take lock exclusively 281 * if the page cache needs invalidation. This allows the normal direct 282 * IO case of no page cache pages to proceeed concurrently without 283 * serialisation. 284 */ 285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 286 if (mapping->nrpages) { 287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 289 290 /* 291 * The generic dio code only flushes the range of the particular 292 * I/O. Because we take an exclusive lock here, this whole 293 * sequence is considerably more expensive for us. This has a 294 * noticeable performance impact for any file with cached pages, 295 * even when outside of the range of the particular I/O. 296 * 297 * Hence, amortize the cost of the lock against a full file 298 * flush and reduce the chances of repeated iolock cycles going 299 * forward. 300 */ 301 if (mapping->nrpages) { 302 ret = filemap_write_and_wait(mapping); 303 if (ret) { 304 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 305 return ret; 306 } 307 308 /* 309 * Invalidate whole pages. This can return an error if 310 * we fail to invalidate a page, but this should never 311 * happen on XFS. Warn if it does fail. 312 */ 313 ret = invalidate_inode_pages2(mapping); 314 WARN_ON_ONCE(ret); 315 ret = 0; 316 } 317 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 318 } 319 320 data = *to; 321 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data, 322 xfs_get_blocks_direct, NULL, NULL, 0); 323 if (ret >= 0) { 324 iocb->ki_pos += ret; 325 iov_iter_advance(to, ret); 326 } 327 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 328 329 return ret; 330 } 331 332 static noinline ssize_t 333 xfs_file_dax_read( 334 struct kiocb *iocb, 335 struct iov_iter *to) 336 { 337 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 338 size_t count = iov_iter_count(to); 339 ssize_t ret = 0; 340 341 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 342 343 if (!count) 344 return 0; /* skip atime */ 345 346 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 347 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops); 348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 349 350 file_accessed(iocb->ki_filp); 351 return ret; 352 } 353 354 STATIC ssize_t 355 xfs_file_buffered_aio_read( 356 struct kiocb *iocb, 357 struct iov_iter *to) 358 { 359 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 360 ssize_t ret; 361 362 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 363 364 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 365 ret = generic_file_read_iter(iocb, to); 366 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 367 368 return ret; 369 } 370 371 STATIC ssize_t 372 xfs_file_read_iter( 373 struct kiocb *iocb, 374 struct iov_iter *to) 375 { 376 struct inode *inode = file_inode(iocb->ki_filp); 377 struct xfs_mount *mp = XFS_I(inode)->i_mount; 378 ssize_t ret = 0; 379 380 XFS_STATS_INC(mp, xs_read_calls); 381 382 if (XFS_FORCED_SHUTDOWN(mp)) 383 return -EIO; 384 385 if (IS_DAX(inode)) 386 ret = xfs_file_dax_read(iocb, to); 387 else if (iocb->ki_flags & IOCB_DIRECT) 388 ret = xfs_file_dio_aio_read(iocb, to); 389 else 390 ret = xfs_file_buffered_aio_read(iocb, to); 391 392 if (ret > 0) 393 XFS_STATS_ADD(mp, xs_read_bytes, ret); 394 return ret; 395 } 396 397 /* 398 * Zero any on disk space between the current EOF and the new, larger EOF. 399 * 400 * This handles the normal case of zeroing the remainder of the last block in 401 * the file and the unusual case of zeroing blocks out beyond the size of the 402 * file. This second case only happens with fixed size extents and when the 403 * system crashes before the inode size was updated but after blocks were 404 * allocated. 405 * 406 * Expects the iolock to be held exclusive, and will take the ilock internally. 407 */ 408 int /* error (positive) */ 409 xfs_zero_eof( 410 struct xfs_inode *ip, 411 xfs_off_t offset, /* starting I/O offset */ 412 xfs_fsize_t isize, /* current inode size */ 413 bool *did_zeroing) 414 { 415 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 416 ASSERT(offset > isize); 417 418 trace_xfs_zero_eof(ip, isize, offset - isize); 419 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 420 } 421 422 /* 423 * Common pre-write limit and setup checks. 424 * 425 * Called with the iolocked held either shared and exclusive according to 426 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 427 * if called for a direct write beyond i_size. 428 */ 429 STATIC ssize_t 430 xfs_file_aio_write_checks( 431 struct kiocb *iocb, 432 struct iov_iter *from, 433 int *iolock) 434 { 435 struct file *file = iocb->ki_filp; 436 struct inode *inode = file->f_mapping->host; 437 struct xfs_inode *ip = XFS_I(inode); 438 ssize_t error = 0; 439 size_t count = iov_iter_count(from); 440 bool drained_dio = false; 441 442 restart: 443 error = generic_write_checks(iocb, from); 444 if (error <= 0) 445 return error; 446 447 error = xfs_break_layouts(inode, iolock, true); 448 if (error) 449 return error; 450 451 /* For changing security info in file_remove_privs() we need i_mutex */ 452 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 453 xfs_rw_iunlock(ip, *iolock); 454 *iolock = XFS_IOLOCK_EXCL; 455 xfs_rw_ilock(ip, *iolock); 456 goto restart; 457 } 458 /* 459 * If the offset is beyond the size of the file, we need to zero any 460 * blocks that fall between the existing EOF and the start of this 461 * write. If zeroing is needed and we are currently holding the 462 * iolock shared, we need to update it to exclusive which implies 463 * having to redo all checks before. 464 * 465 * We need to serialise against EOF updates that occur in IO 466 * completions here. We want to make sure that nobody is changing the 467 * size while we do this check until we have placed an IO barrier (i.e. 468 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 469 * The spinlock effectively forms a memory barrier once we have the 470 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 471 * and hence be able to correctly determine if we need to run zeroing. 472 */ 473 spin_lock(&ip->i_flags_lock); 474 if (iocb->ki_pos > i_size_read(inode)) { 475 bool zero = false; 476 477 spin_unlock(&ip->i_flags_lock); 478 if (!drained_dio) { 479 if (*iolock == XFS_IOLOCK_SHARED) { 480 xfs_rw_iunlock(ip, *iolock); 481 *iolock = XFS_IOLOCK_EXCL; 482 xfs_rw_ilock(ip, *iolock); 483 iov_iter_reexpand(from, count); 484 } 485 /* 486 * We now have an IO submission barrier in place, but 487 * AIO can do EOF updates during IO completion and hence 488 * we now need to wait for all of them to drain. Non-AIO 489 * DIO will have drained before we are given the 490 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 491 * no-op. 492 */ 493 inode_dio_wait(inode); 494 drained_dio = true; 495 goto restart; 496 } 497 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 498 if (error) 499 return error; 500 } else 501 spin_unlock(&ip->i_flags_lock); 502 503 /* 504 * Updating the timestamps will grab the ilock again from 505 * xfs_fs_dirty_inode, so we have to call it after dropping the 506 * lock above. Eventually we should look into a way to avoid 507 * the pointless lock roundtrip. 508 */ 509 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 510 error = file_update_time(file); 511 if (error) 512 return error; 513 } 514 515 /* 516 * If we're writing the file then make sure to clear the setuid and 517 * setgid bits if the process is not being run by root. This keeps 518 * people from modifying setuid and setgid binaries. 519 */ 520 if (!IS_NOSEC(inode)) 521 return file_remove_privs(file); 522 return 0; 523 } 524 525 /* 526 * xfs_file_dio_aio_write - handle direct IO writes 527 * 528 * Lock the inode appropriately to prepare for and issue a direct IO write. 529 * By separating it from the buffered write path we remove all the tricky to 530 * follow locking changes and looping. 531 * 532 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 533 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 534 * pages are flushed out. 535 * 536 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 537 * allowing them to be done in parallel with reads and other direct IO writes. 538 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 539 * needs to do sub-block zeroing and that requires serialisation against other 540 * direct IOs to the same block. In this case we need to serialise the 541 * submission of the unaligned IOs so that we don't get racing block zeroing in 542 * the dio layer. To avoid the problem with aio, we also need to wait for 543 * outstanding IOs to complete so that unwritten extent conversion is completed 544 * before we try to map the overlapping block. This is currently implemented by 545 * hitting it with a big hammer (i.e. inode_dio_wait()). 546 * 547 * Returns with locks held indicated by @iolock and errors indicated by 548 * negative return values. 549 */ 550 STATIC ssize_t 551 xfs_file_dio_aio_write( 552 struct kiocb *iocb, 553 struct iov_iter *from) 554 { 555 struct file *file = iocb->ki_filp; 556 struct address_space *mapping = file->f_mapping; 557 struct inode *inode = mapping->host; 558 struct xfs_inode *ip = XFS_I(inode); 559 struct xfs_mount *mp = ip->i_mount; 560 ssize_t ret = 0; 561 int unaligned_io = 0; 562 int iolock; 563 size_t count = iov_iter_count(from); 564 loff_t end; 565 struct iov_iter data; 566 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 567 mp->m_rtdev_targp : mp->m_ddev_targp; 568 569 /* DIO must be aligned to device logical sector size */ 570 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 571 return -EINVAL; 572 573 /* "unaligned" here means not aligned to a filesystem block */ 574 if ((iocb->ki_pos & mp->m_blockmask) || 575 ((iocb->ki_pos + count) & mp->m_blockmask)) 576 unaligned_io = 1; 577 578 /* 579 * We don't need to take an exclusive lock unless there page cache needs 580 * to be invalidated or unaligned IO is being executed. We don't need to 581 * consider the EOF extension case here because 582 * xfs_file_aio_write_checks() will relock the inode as necessary for 583 * EOF zeroing cases and fill out the new inode size as appropriate. 584 */ 585 if (unaligned_io || mapping->nrpages) 586 iolock = XFS_IOLOCK_EXCL; 587 else 588 iolock = XFS_IOLOCK_SHARED; 589 xfs_rw_ilock(ip, iolock); 590 591 /* 592 * Recheck if there are cached pages that need invalidate after we got 593 * the iolock to protect against other threads adding new pages while 594 * we were waiting for the iolock. 595 */ 596 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 597 xfs_rw_iunlock(ip, iolock); 598 iolock = XFS_IOLOCK_EXCL; 599 xfs_rw_ilock(ip, iolock); 600 } 601 602 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 603 if (ret) 604 goto out; 605 count = iov_iter_count(from); 606 end = iocb->ki_pos + count - 1; 607 608 /* 609 * See xfs_file_dio_aio_read() for why we do a full-file flush here. 610 */ 611 if (mapping->nrpages) { 612 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 613 if (ret) 614 goto out; 615 /* 616 * Invalidate whole pages. This can return an error if we fail 617 * to invalidate a page, but this should never happen on XFS. 618 * Warn if it does fail. 619 */ 620 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 621 WARN_ON_ONCE(ret); 622 ret = 0; 623 } 624 625 /* 626 * If we are doing unaligned IO, wait for all other IO to drain, 627 * otherwise demote the lock if we had to flush cached pages 628 */ 629 if (unaligned_io) 630 inode_dio_wait(inode); 631 else if (iolock == XFS_IOLOCK_EXCL) { 632 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 633 iolock = XFS_IOLOCK_SHARED; 634 } 635 636 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 637 638 /* If this is a block-aligned directio CoW, remap immediately. */ 639 if (xfs_is_reflink_inode(ip) && !unaligned_io) { 640 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count); 641 if (ret) 642 goto out; 643 } 644 645 data = *from; 646 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data, 647 xfs_get_blocks_direct, xfs_end_io_direct_write, 648 NULL, DIO_ASYNC_EXTEND); 649 650 /* see generic_file_direct_write() for why this is necessary */ 651 if (mapping->nrpages) { 652 invalidate_inode_pages2_range(mapping, 653 iocb->ki_pos >> PAGE_SHIFT, 654 end >> PAGE_SHIFT); 655 } 656 657 if (ret > 0) { 658 iocb->ki_pos += ret; 659 iov_iter_advance(from, ret); 660 } 661 out: 662 xfs_rw_iunlock(ip, iolock); 663 664 /* 665 * No fallback to buffered IO on errors for XFS, direct IO will either 666 * complete fully or fail. 667 */ 668 ASSERT(ret < 0 || ret == count); 669 return ret; 670 } 671 672 static noinline ssize_t 673 xfs_file_dax_write( 674 struct kiocb *iocb, 675 struct iov_iter *from) 676 { 677 struct inode *inode = iocb->ki_filp->f_mapping->host; 678 struct xfs_inode *ip = XFS_I(inode); 679 int iolock = XFS_IOLOCK_EXCL; 680 ssize_t ret, error = 0; 681 size_t count; 682 loff_t pos; 683 684 xfs_rw_ilock(ip, iolock); 685 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 686 if (ret) 687 goto out; 688 689 pos = iocb->ki_pos; 690 count = iov_iter_count(from); 691 692 trace_xfs_file_dax_write(ip, count, pos); 693 694 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops); 695 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 696 i_size_write(inode, iocb->ki_pos); 697 error = xfs_setfilesize(ip, pos, ret); 698 } 699 700 out: 701 xfs_rw_iunlock(ip, iolock); 702 return error ? error : ret; 703 } 704 705 STATIC ssize_t 706 xfs_file_buffered_aio_write( 707 struct kiocb *iocb, 708 struct iov_iter *from) 709 { 710 struct file *file = iocb->ki_filp; 711 struct address_space *mapping = file->f_mapping; 712 struct inode *inode = mapping->host; 713 struct xfs_inode *ip = XFS_I(inode); 714 ssize_t ret; 715 int enospc = 0; 716 int iolock = XFS_IOLOCK_EXCL; 717 718 xfs_rw_ilock(ip, iolock); 719 720 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 721 if (ret) 722 goto out; 723 724 /* We can write back this queue in page reclaim */ 725 current->backing_dev_info = inode_to_bdi(inode); 726 727 write_retry: 728 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 729 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 730 if (likely(ret >= 0)) 731 iocb->ki_pos += ret; 732 733 /* 734 * If we hit a space limit, try to free up some lingering preallocated 735 * space before returning an error. In the case of ENOSPC, first try to 736 * write back all dirty inodes to free up some of the excess reserved 737 * metadata space. This reduces the chances that the eofblocks scan 738 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 739 * also behaves as a filter to prevent too many eofblocks scans from 740 * running at the same time. 741 */ 742 if (ret == -EDQUOT && !enospc) { 743 enospc = xfs_inode_free_quota_eofblocks(ip); 744 if (enospc) 745 goto write_retry; 746 enospc = xfs_inode_free_quota_cowblocks(ip); 747 if (enospc) 748 goto write_retry; 749 } else if (ret == -ENOSPC && !enospc) { 750 struct xfs_eofblocks eofb = {0}; 751 752 enospc = 1; 753 xfs_flush_inodes(ip->i_mount); 754 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 755 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 756 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 757 goto write_retry; 758 } 759 760 current->backing_dev_info = NULL; 761 out: 762 xfs_rw_iunlock(ip, iolock); 763 return ret; 764 } 765 766 STATIC ssize_t 767 xfs_file_write_iter( 768 struct kiocb *iocb, 769 struct iov_iter *from) 770 { 771 struct file *file = iocb->ki_filp; 772 struct address_space *mapping = file->f_mapping; 773 struct inode *inode = mapping->host; 774 struct xfs_inode *ip = XFS_I(inode); 775 ssize_t ret; 776 size_t ocount = iov_iter_count(from); 777 778 XFS_STATS_INC(ip->i_mount, xs_write_calls); 779 780 if (ocount == 0) 781 return 0; 782 783 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 784 return -EIO; 785 786 if (IS_DAX(inode)) 787 ret = xfs_file_dax_write(iocb, from); 788 else if (iocb->ki_flags & IOCB_DIRECT) { 789 /* 790 * Allow a directio write to fall back to a buffered 791 * write *only* in the case that we're doing a reflink 792 * CoW. In all other directio scenarios we do not 793 * allow an operation to fall back to buffered mode. 794 */ 795 ret = xfs_file_dio_aio_write(iocb, from); 796 if (ret == -EREMCHG) 797 goto buffered; 798 } else { 799 buffered: 800 ret = xfs_file_buffered_aio_write(iocb, from); 801 } 802 803 if (ret > 0) { 804 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 805 806 /* Handle various SYNC-type writes */ 807 ret = generic_write_sync(iocb, ret); 808 } 809 return ret; 810 } 811 812 #define XFS_FALLOC_FL_SUPPORTED \ 813 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 814 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 815 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 816 817 STATIC long 818 xfs_file_fallocate( 819 struct file *file, 820 int mode, 821 loff_t offset, 822 loff_t len) 823 { 824 struct inode *inode = file_inode(file); 825 struct xfs_inode *ip = XFS_I(inode); 826 long error; 827 enum xfs_prealloc_flags flags = 0; 828 uint iolock = XFS_IOLOCK_EXCL; 829 loff_t new_size = 0; 830 bool do_file_insert = 0; 831 832 if (!S_ISREG(inode->i_mode)) 833 return -EINVAL; 834 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 835 return -EOPNOTSUPP; 836 837 xfs_ilock(ip, iolock); 838 error = xfs_break_layouts(inode, &iolock, false); 839 if (error) 840 goto out_unlock; 841 842 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 843 iolock |= XFS_MMAPLOCK_EXCL; 844 845 if (mode & FALLOC_FL_PUNCH_HOLE) { 846 error = xfs_free_file_space(ip, offset, len); 847 if (error) 848 goto out_unlock; 849 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 850 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 851 852 if (offset & blksize_mask || len & blksize_mask) { 853 error = -EINVAL; 854 goto out_unlock; 855 } 856 857 /* 858 * There is no need to overlap collapse range with EOF, 859 * in which case it is effectively a truncate operation 860 */ 861 if (offset + len >= i_size_read(inode)) { 862 error = -EINVAL; 863 goto out_unlock; 864 } 865 866 new_size = i_size_read(inode) - len; 867 868 error = xfs_collapse_file_space(ip, offset, len); 869 if (error) 870 goto out_unlock; 871 } else if (mode & FALLOC_FL_INSERT_RANGE) { 872 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 873 874 new_size = i_size_read(inode) + len; 875 if (offset & blksize_mask || len & blksize_mask) { 876 error = -EINVAL; 877 goto out_unlock; 878 } 879 880 /* check the new inode size does not wrap through zero */ 881 if (new_size > inode->i_sb->s_maxbytes) { 882 error = -EFBIG; 883 goto out_unlock; 884 } 885 886 /* Offset should be less than i_size */ 887 if (offset >= i_size_read(inode)) { 888 error = -EINVAL; 889 goto out_unlock; 890 } 891 do_file_insert = 1; 892 } else { 893 flags |= XFS_PREALLOC_SET; 894 895 if (!(mode & FALLOC_FL_KEEP_SIZE) && 896 offset + len > i_size_read(inode)) { 897 new_size = offset + len; 898 error = inode_newsize_ok(inode, new_size); 899 if (error) 900 goto out_unlock; 901 } 902 903 if (mode & FALLOC_FL_ZERO_RANGE) 904 error = xfs_zero_file_space(ip, offset, len); 905 else { 906 if (mode & FALLOC_FL_UNSHARE_RANGE) { 907 error = xfs_reflink_unshare(ip, offset, len); 908 if (error) 909 goto out_unlock; 910 } 911 error = xfs_alloc_file_space(ip, offset, len, 912 XFS_BMAPI_PREALLOC); 913 } 914 if (error) 915 goto out_unlock; 916 } 917 918 if (file->f_flags & O_DSYNC) 919 flags |= XFS_PREALLOC_SYNC; 920 921 error = xfs_update_prealloc_flags(ip, flags); 922 if (error) 923 goto out_unlock; 924 925 /* Change file size if needed */ 926 if (new_size) { 927 struct iattr iattr; 928 929 iattr.ia_valid = ATTR_SIZE; 930 iattr.ia_size = new_size; 931 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 932 if (error) 933 goto out_unlock; 934 } 935 936 /* 937 * Perform hole insertion now that the file size has been 938 * updated so that if we crash during the operation we don't 939 * leave shifted extents past EOF and hence losing access to 940 * the data that is contained within them. 941 */ 942 if (do_file_insert) 943 error = xfs_insert_file_space(ip, offset, len); 944 945 out_unlock: 946 xfs_iunlock(ip, iolock); 947 return error; 948 } 949 950 /* 951 * Flush all file writes out to disk. 952 */ 953 static int 954 xfs_file_wait_for_io( 955 struct inode *inode, 956 loff_t offset, 957 size_t len) 958 { 959 loff_t rounding; 960 loff_t ioffset; 961 loff_t iendoffset; 962 loff_t bs; 963 int ret; 964 965 bs = inode->i_sb->s_blocksize; 966 inode_dio_wait(inode); 967 968 rounding = max_t(xfs_off_t, bs, PAGE_SIZE); 969 ioffset = round_down(offset, rounding); 970 iendoffset = round_up(offset + len, rounding) - 1; 971 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, 972 iendoffset); 973 return ret; 974 } 975 976 /* Hook up to the VFS reflink function */ 977 STATIC int 978 xfs_file_share_range( 979 struct file *file_in, 980 loff_t pos_in, 981 struct file *file_out, 982 loff_t pos_out, 983 u64 len, 984 bool is_dedupe) 985 { 986 struct inode *inode_in; 987 struct inode *inode_out; 988 ssize_t ret; 989 loff_t bs; 990 loff_t isize; 991 int same_inode; 992 loff_t blen; 993 unsigned int flags = 0; 994 995 inode_in = file_inode(file_in); 996 inode_out = file_inode(file_out); 997 bs = inode_out->i_sb->s_blocksize; 998 999 /* Don't touch certain kinds of inodes */ 1000 if (IS_IMMUTABLE(inode_out)) 1001 return -EPERM; 1002 if (IS_SWAPFILE(inode_in) || 1003 IS_SWAPFILE(inode_out)) 1004 return -ETXTBSY; 1005 1006 /* Reflink only works within this filesystem. */ 1007 if (inode_in->i_sb != inode_out->i_sb) 1008 return -EXDEV; 1009 same_inode = (inode_in->i_ino == inode_out->i_ino); 1010 1011 /* Don't reflink dirs, pipes, sockets... */ 1012 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 1013 return -EISDIR; 1014 if (S_ISFIFO(inode_in->i_mode) || S_ISFIFO(inode_out->i_mode)) 1015 return -EINVAL; 1016 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 1017 return -EINVAL; 1018 1019 /* Don't share DAX file data for now. */ 1020 if (IS_DAX(inode_in) || IS_DAX(inode_out)) 1021 return -EINVAL; 1022 1023 /* Are we going all the way to the end? */ 1024 isize = i_size_read(inode_in); 1025 if (isize == 0) 1026 return 0; 1027 if (len == 0) 1028 len = isize - pos_in; 1029 1030 /* Ensure offsets don't wrap and the input is inside i_size */ 1031 if (pos_in + len < pos_in || pos_out + len < pos_out || 1032 pos_in + len > isize) 1033 return -EINVAL; 1034 1035 /* Don't allow dedupe past EOF in the dest file */ 1036 if (is_dedupe) { 1037 loff_t disize; 1038 1039 disize = i_size_read(inode_out); 1040 if (pos_out >= disize || pos_out + len > disize) 1041 return -EINVAL; 1042 } 1043 1044 /* If we're linking to EOF, continue to the block boundary. */ 1045 if (pos_in + len == isize) 1046 blen = ALIGN(isize, bs) - pos_in; 1047 else 1048 blen = len; 1049 1050 /* Only reflink if we're aligned to block boundaries */ 1051 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) || 1052 !IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs)) 1053 return -EINVAL; 1054 1055 /* Don't allow overlapped reflink within the same file */ 1056 if (same_inode && pos_out + blen > pos_in && pos_out < pos_in + blen) 1057 return -EINVAL; 1058 1059 /* Wait for the completion of any pending IOs on srcfile */ 1060 ret = xfs_file_wait_for_io(inode_in, pos_in, len); 1061 if (ret) 1062 goto out; 1063 ret = xfs_file_wait_for_io(inode_out, pos_out, len); 1064 if (ret) 1065 goto out; 1066 1067 if (is_dedupe) 1068 flags |= XFS_REFLINK_DEDUPE; 1069 ret = xfs_reflink_remap_range(XFS_I(inode_in), pos_in, XFS_I(inode_out), 1070 pos_out, len, flags); 1071 if (ret < 0) 1072 goto out; 1073 1074 out: 1075 return ret; 1076 } 1077 1078 STATIC ssize_t 1079 xfs_file_copy_range( 1080 struct file *file_in, 1081 loff_t pos_in, 1082 struct file *file_out, 1083 loff_t pos_out, 1084 size_t len, 1085 unsigned int flags) 1086 { 1087 int error; 1088 1089 error = xfs_file_share_range(file_in, pos_in, file_out, pos_out, 1090 len, false); 1091 if (error) 1092 return error; 1093 return len; 1094 } 1095 1096 STATIC int 1097 xfs_file_clone_range( 1098 struct file *file_in, 1099 loff_t pos_in, 1100 struct file *file_out, 1101 loff_t pos_out, 1102 u64 len) 1103 { 1104 return xfs_file_share_range(file_in, pos_in, file_out, pos_out, 1105 len, false); 1106 } 1107 1108 #define XFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 1109 STATIC ssize_t 1110 xfs_file_dedupe_range( 1111 struct file *src_file, 1112 u64 loff, 1113 u64 len, 1114 struct file *dst_file, 1115 u64 dst_loff) 1116 { 1117 int error; 1118 1119 /* 1120 * Limit the total length we will dedupe for each operation. 1121 * This is intended to bound the total time spent in this 1122 * ioctl to something sane. 1123 */ 1124 if (len > XFS_MAX_DEDUPE_LEN) 1125 len = XFS_MAX_DEDUPE_LEN; 1126 1127 error = xfs_file_share_range(src_file, loff, dst_file, dst_loff, 1128 len, true); 1129 if (error) 1130 return error; 1131 return len; 1132 } 1133 1134 STATIC int 1135 xfs_file_open( 1136 struct inode *inode, 1137 struct file *file) 1138 { 1139 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1140 return -EFBIG; 1141 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1142 return -EIO; 1143 return 0; 1144 } 1145 1146 STATIC int 1147 xfs_dir_open( 1148 struct inode *inode, 1149 struct file *file) 1150 { 1151 struct xfs_inode *ip = XFS_I(inode); 1152 int mode; 1153 int error; 1154 1155 error = xfs_file_open(inode, file); 1156 if (error) 1157 return error; 1158 1159 /* 1160 * If there are any blocks, read-ahead block 0 as we're almost 1161 * certain to have the next operation be a read there. 1162 */ 1163 mode = xfs_ilock_data_map_shared(ip); 1164 if (ip->i_d.di_nextents > 0) 1165 xfs_dir3_data_readahead(ip, 0, -1); 1166 xfs_iunlock(ip, mode); 1167 return 0; 1168 } 1169 1170 STATIC int 1171 xfs_file_release( 1172 struct inode *inode, 1173 struct file *filp) 1174 { 1175 return xfs_release(XFS_I(inode)); 1176 } 1177 1178 STATIC int 1179 xfs_file_readdir( 1180 struct file *file, 1181 struct dir_context *ctx) 1182 { 1183 struct inode *inode = file_inode(file); 1184 xfs_inode_t *ip = XFS_I(inode); 1185 size_t bufsize; 1186 1187 /* 1188 * The Linux API doesn't pass down the total size of the buffer 1189 * we read into down to the filesystem. With the filldir concept 1190 * it's not needed for correct information, but the XFS dir2 leaf 1191 * code wants an estimate of the buffer size to calculate it's 1192 * readahead window and size the buffers used for mapping to 1193 * physical blocks. 1194 * 1195 * Try to give it an estimate that's good enough, maybe at some 1196 * point we can change the ->readdir prototype to include the 1197 * buffer size. For now we use the current glibc buffer size. 1198 */ 1199 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1200 1201 return xfs_readdir(ip, ctx, bufsize); 1202 } 1203 1204 /* 1205 * This type is designed to indicate the type of offset we would like 1206 * to search from page cache for xfs_seek_hole_data(). 1207 */ 1208 enum { 1209 HOLE_OFF = 0, 1210 DATA_OFF, 1211 }; 1212 1213 /* 1214 * Lookup the desired type of offset from the given page. 1215 * 1216 * On success, return true and the offset argument will point to the 1217 * start of the region that was found. Otherwise this function will 1218 * return false and keep the offset argument unchanged. 1219 */ 1220 STATIC bool 1221 xfs_lookup_buffer_offset( 1222 struct page *page, 1223 loff_t *offset, 1224 unsigned int type) 1225 { 1226 loff_t lastoff = page_offset(page); 1227 bool found = false; 1228 struct buffer_head *bh, *head; 1229 1230 bh = head = page_buffers(page); 1231 do { 1232 /* 1233 * Unwritten extents that have data in the page 1234 * cache covering them can be identified by the 1235 * BH_Unwritten state flag. Pages with multiple 1236 * buffers might have a mix of holes, data and 1237 * unwritten extents - any buffer with valid 1238 * data in it should have BH_Uptodate flag set 1239 * on it. 1240 */ 1241 if (buffer_unwritten(bh) || 1242 buffer_uptodate(bh)) { 1243 if (type == DATA_OFF) 1244 found = true; 1245 } else { 1246 if (type == HOLE_OFF) 1247 found = true; 1248 } 1249 1250 if (found) { 1251 *offset = lastoff; 1252 break; 1253 } 1254 lastoff += bh->b_size; 1255 } while ((bh = bh->b_this_page) != head); 1256 1257 return found; 1258 } 1259 1260 /* 1261 * This routine is called to find out and return a data or hole offset 1262 * from the page cache for unwritten extents according to the desired 1263 * type for xfs_seek_hole_data(). 1264 * 1265 * The argument offset is used to tell where we start to search from the 1266 * page cache. Map is used to figure out the end points of the range to 1267 * lookup pages. 1268 * 1269 * Return true if the desired type of offset was found, and the argument 1270 * offset is filled with that address. Otherwise, return false and keep 1271 * offset unchanged. 1272 */ 1273 STATIC bool 1274 xfs_find_get_desired_pgoff( 1275 struct inode *inode, 1276 struct xfs_bmbt_irec *map, 1277 unsigned int type, 1278 loff_t *offset) 1279 { 1280 struct xfs_inode *ip = XFS_I(inode); 1281 struct xfs_mount *mp = ip->i_mount; 1282 struct pagevec pvec; 1283 pgoff_t index; 1284 pgoff_t end; 1285 loff_t endoff; 1286 loff_t startoff = *offset; 1287 loff_t lastoff = startoff; 1288 bool found = false; 1289 1290 pagevec_init(&pvec, 0); 1291 1292 index = startoff >> PAGE_SHIFT; 1293 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1294 end = endoff >> PAGE_SHIFT; 1295 do { 1296 int want; 1297 unsigned nr_pages; 1298 unsigned int i; 1299 1300 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1301 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1302 want); 1303 /* 1304 * No page mapped into given range. If we are searching holes 1305 * and if this is the first time we got into the loop, it means 1306 * that the given offset is landed in a hole, return it. 1307 * 1308 * If we have already stepped through some block buffers to find 1309 * holes but they all contains data. In this case, the last 1310 * offset is already updated and pointed to the end of the last 1311 * mapped page, if it does not reach the endpoint to search, 1312 * that means there should be a hole between them. 1313 */ 1314 if (nr_pages == 0) { 1315 /* Data search found nothing */ 1316 if (type == DATA_OFF) 1317 break; 1318 1319 ASSERT(type == HOLE_OFF); 1320 if (lastoff == startoff || lastoff < endoff) { 1321 found = true; 1322 *offset = lastoff; 1323 } 1324 break; 1325 } 1326 1327 /* 1328 * At lease we found one page. If this is the first time we 1329 * step into the loop, and if the first page index offset is 1330 * greater than the given search offset, a hole was found. 1331 */ 1332 if (type == HOLE_OFF && lastoff == startoff && 1333 lastoff < page_offset(pvec.pages[0])) { 1334 found = true; 1335 break; 1336 } 1337 1338 for (i = 0; i < nr_pages; i++) { 1339 struct page *page = pvec.pages[i]; 1340 loff_t b_offset; 1341 1342 /* 1343 * At this point, the page may be truncated or 1344 * invalidated (changing page->mapping to NULL), 1345 * or even swizzled back from swapper_space to tmpfs 1346 * file mapping. However, page->index will not change 1347 * because we have a reference on the page. 1348 * 1349 * Searching done if the page index is out of range. 1350 * If the current offset is not reaches the end of 1351 * the specified search range, there should be a hole 1352 * between them. 1353 */ 1354 if (page->index > end) { 1355 if (type == HOLE_OFF && lastoff < endoff) { 1356 *offset = lastoff; 1357 found = true; 1358 } 1359 goto out; 1360 } 1361 1362 lock_page(page); 1363 /* 1364 * Page truncated or invalidated(page->mapping == NULL). 1365 * We can freely skip it and proceed to check the next 1366 * page. 1367 */ 1368 if (unlikely(page->mapping != inode->i_mapping)) { 1369 unlock_page(page); 1370 continue; 1371 } 1372 1373 if (!page_has_buffers(page)) { 1374 unlock_page(page); 1375 continue; 1376 } 1377 1378 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1379 if (found) { 1380 /* 1381 * The found offset may be less than the start 1382 * point to search if this is the first time to 1383 * come here. 1384 */ 1385 *offset = max_t(loff_t, startoff, b_offset); 1386 unlock_page(page); 1387 goto out; 1388 } 1389 1390 /* 1391 * We either searching data but nothing was found, or 1392 * searching hole but found a data buffer. In either 1393 * case, probably the next page contains the desired 1394 * things, update the last offset to it so. 1395 */ 1396 lastoff = page_offset(page) + PAGE_SIZE; 1397 unlock_page(page); 1398 } 1399 1400 /* 1401 * The number of returned pages less than our desired, search 1402 * done. In this case, nothing was found for searching data, 1403 * but we found a hole behind the last offset. 1404 */ 1405 if (nr_pages < want) { 1406 if (type == HOLE_OFF) { 1407 *offset = lastoff; 1408 found = true; 1409 } 1410 break; 1411 } 1412 1413 index = pvec.pages[i - 1]->index + 1; 1414 pagevec_release(&pvec); 1415 } while (index <= end); 1416 1417 out: 1418 pagevec_release(&pvec); 1419 return found; 1420 } 1421 1422 /* 1423 * caller must lock inode with xfs_ilock_data_map_shared, 1424 * can we craft an appropriate ASSERT? 1425 * 1426 * end is because the VFS-level lseek interface is defined such that any 1427 * offset past i_size shall return -ENXIO, but we use this for quota code 1428 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1429 */ 1430 loff_t 1431 __xfs_seek_hole_data( 1432 struct inode *inode, 1433 loff_t start, 1434 loff_t end, 1435 int whence) 1436 { 1437 struct xfs_inode *ip = XFS_I(inode); 1438 struct xfs_mount *mp = ip->i_mount; 1439 loff_t uninitialized_var(offset); 1440 xfs_fileoff_t fsbno; 1441 xfs_filblks_t lastbno; 1442 int error; 1443 1444 if (start >= end) { 1445 error = -ENXIO; 1446 goto out_error; 1447 } 1448 1449 /* 1450 * Try to read extents from the first block indicated 1451 * by fsbno to the end block of the file. 1452 */ 1453 fsbno = XFS_B_TO_FSBT(mp, start); 1454 lastbno = XFS_B_TO_FSB(mp, end); 1455 1456 for (;;) { 1457 struct xfs_bmbt_irec map[2]; 1458 int nmap = 2; 1459 unsigned int i; 1460 1461 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1462 XFS_BMAPI_ENTIRE); 1463 if (error) 1464 goto out_error; 1465 1466 /* No extents at given offset, must be beyond EOF */ 1467 if (nmap == 0) { 1468 error = -ENXIO; 1469 goto out_error; 1470 } 1471 1472 for (i = 0; i < nmap; i++) { 1473 offset = max_t(loff_t, start, 1474 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1475 1476 /* Landed in the hole we wanted? */ 1477 if (whence == SEEK_HOLE && 1478 map[i].br_startblock == HOLESTARTBLOCK) 1479 goto out; 1480 1481 /* Landed in the data extent we wanted? */ 1482 if (whence == SEEK_DATA && 1483 (map[i].br_startblock == DELAYSTARTBLOCK || 1484 (map[i].br_state == XFS_EXT_NORM && 1485 !isnullstartblock(map[i].br_startblock)))) 1486 goto out; 1487 1488 /* 1489 * Landed in an unwritten extent, try to search 1490 * for hole or data from page cache. 1491 */ 1492 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1493 if (xfs_find_get_desired_pgoff(inode, &map[i], 1494 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1495 &offset)) 1496 goto out; 1497 } 1498 } 1499 1500 /* 1501 * We only received one extent out of the two requested. This 1502 * means we've hit EOF and didn't find what we are looking for. 1503 */ 1504 if (nmap == 1) { 1505 /* 1506 * If we were looking for a hole, set offset to 1507 * the end of the file (i.e., there is an implicit 1508 * hole at the end of any file). 1509 */ 1510 if (whence == SEEK_HOLE) { 1511 offset = end; 1512 break; 1513 } 1514 /* 1515 * If we were looking for data, it's nowhere to be found 1516 */ 1517 ASSERT(whence == SEEK_DATA); 1518 error = -ENXIO; 1519 goto out_error; 1520 } 1521 1522 ASSERT(i > 1); 1523 1524 /* 1525 * Nothing was found, proceed to the next round of search 1526 * if the next reading offset is not at or beyond EOF. 1527 */ 1528 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1529 start = XFS_FSB_TO_B(mp, fsbno); 1530 if (start >= end) { 1531 if (whence == SEEK_HOLE) { 1532 offset = end; 1533 break; 1534 } 1535 ASSERT(whence == SEEK_DATA); 1536 error = -ENXIO; 1537 goto out_error; 1538 } 1539 } 1540 1541 out: 1542 /* 1543 * If at this point we have found the hole we wanted, the returned 1544 * offset may be bigger than the file size as it may be aligned to 1545 * page boundary for unwritten extents. We need to deal with this 1546 * situation in particular. 1547 */ 1548 if (whence == SEEK_HOLE) 1549 offset = min_t(loff_t, offset, end); 1550 1551 return offset; 1552 1553 out_error: 1554 return error; 1555 } 1556 1557 STATIC loff_t 1558 xfs_seek_hole_data( 1559 struct file *file, 1560 loff_t start, 1561 int whence) 1562 { 1563 struct inode *inode = file->f_mapping->host; 1564 struct xfs_inode *ip = XFS_I(inode); 1565 struct xfs_mount *mp = ip->i_mount; 1566 uint lock; 1567 loff_t offset, end; 1568 int error = 0; 1569 1570 if (XFS_FORCED_SHUTDOWN(mp)) 1571 return -EIO; 1572 1573 lock = xfs_ilock_data_map_shared(ip); 1574 1575 end = i_size_read(inode); 1576 offset = __xfs_seek_hole_data(inode, start, end, whence); 1577 if (offset < 0) { 1578 error = offset; 1579 goto out_unlock; 1580 } 1581 1582 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1583 1584 out_unlock: 1585 xfs_iunlock(ip, lock); 1586 1587 if (error) 1588 return error; 1589 return offset; 1590 } 1591 1592 STATIC loff_t 1593 xfs_file_llseek( 1594 struct file *file, 1595 loff_t offset, 1596 int whence) 1597 { 1598 switch (whence) { 1599 case SEEK_END: 1600 case SEEK_CUR: 1601 case SEEK_SET: 1602 return generic_file_llseek(file, offset, whence); 1603 case SEEK_HOLE: 1604 case SEEK_DATA: 1605 return xfs_seek_hole_data(file, offset, whence); 1606 default: 1607 return -EINVAL; 1608 } 1609 } 1610 1611 /* 1612 * Locking for serialisation of IO during page faults. This results in a lock 1613 * ordering of: 1614 * 1615 * mmap_sem (MM) 1616 * sb_start_pagefault(vfs, freeze) 1617 * i_mmaplock (XFS - truncate serialisation) 1618 * page_lock (MM) 1619 * i_lock (XFS - extent map serialisation) 1620 */ 1621 1622 /* 1623 * mmap()d file has taken write protection fault and is being made writable. We 1624 * can set the page state up correctly for a writable page, which means we can 1625 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1626 * mapping. 1627 */ 1628 STATIC int 1629 xfs_filemap_page_mkwrite( 1630 struct vm_area_struct *vma, 1631 struct vm_fault *vmf) 1632 { 1633 struct inode *inode = file_inode(vma->vm_file); 1634 int ret; 1635 1636 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1637 1638 sb_start_pagefault(inode->i_sb); 1639 file_update_time(vma->vm_file); 1640 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1641 1642 if (IS_DAX(inode)) { 1643 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops); 1644 } else { 1645 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops); 1646 ret = block_page_mkwrite_return(ret); 1647 } 1648 1649 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1650 sb_end_pagefault(inode->i_sb); 1651 1652 return ret; 1653 } 1654 1655 STATIC int 1656 xfs_filemap_fault( 1657 struct vm_area_struct *vma, 1658 struct vm_fault *vmf) 1659 { 1660 struct inode *inode = file_inode(vma->vm_file); 1661 int ret; 1662 1663 trace_xfs_filemap_fault(XFS_I(inode)); 1664 1665 /* DAX can shortcut the normal fault path on write faults! */ 1666 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1667 return xfs_filemap_page_mkwrite(vma, vmf); 1668 1669 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1670 if (IS_DAX(inode)) { 1671 /* 1672 * we do not want to trigger unwritten extent conversion on read 1673 * faults - that is unnecessary overhead and would also require 1674 * changes to xfs_get_blocks_direct() to map unwritten extent 1675 * ioend for conversion on read-only mappings. 1676 */ 1677 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops); 1678 } else 1679 ret = filemap_fault(vma, vmf); 1680 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1681 1682 return ret; 1683 } 1684 1685 /* 1686 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1687 * both read and write faults. Hence we need to handle both cases. There is no 1688 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1689 * handle both cases here. @flags carries the information on the type of fault 1690 * occuring. 1691 */ 1692 STATIC int 1693 xfs_filemap_pmd_fault( 1694 struct vm_area_struct *vma, 1695 unsigned long addr, 1696 pmd_t *pmd, 1697 unsigned int flags) 1698 { 1699 struct inode *inode = file_inode(vma->vm_file); 1700 struct xfs_inode *ip = XFS_I(inode); 1701 int ret; 1702 1703 if (!IS_DAX(inode)) 1704 return VM_FAULT_FALLBACK; 1705 1706 trace_xfs_filemap_pmd_fault(ip); 1707 1708 if (flags & FAULT_FLAG_WRITE) { 1709 sb_start_pagefault(inode->i_sb); 1710 file_update_time(vma->vm_file); 1711 } 1712 1713 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1714 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault); 1715 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1716 1717 if (flags & FAULT_FLAG_WRITE) 1718 sb_end_pagefault(inode->i_sb); 1719 1720 return ret; 1721 } 1722 1723 /* 1724 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1725 * updates on write faults. In reality, it's need to serialise against 1726 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1727 * to ensure we serialise the fault barrier in place. 1728 */ 1729 static int 1730 xfs_filemap_pfn_mkwrite( 1731 struct vm_area_struct *vma, 1732 struct vm_fault *vmf) 1733 { 1734 1735 struct inode *inode = file_inode(vma->vm_file); 1736 struct xfs_inode *ip = XFS_I(inode); 1737 int ret = VM_FAULT_NOPAGE; 1738 loff_t size; 1739 1740 trace_xfs_filemap_pfn_mkwrite(ip); 1741 1742 sb_start_pagefault(inode->i_sb); 1743 file_update_time(vma->vm_file); 1744 1745 /* check if the faulting page hasn't raced with truncate */ 1746 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1747 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1748 if (vmf->pgoff >= size) 1749 ret = VM_FAULT_SIGBUS; 1750 else if (IS_DAX(inode)) 1751 ret = dax_pfn_mkwrite(vma, vmf); 1752 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1753 sb_end_pagefault(inode->i_sb); 1754 return ret; 1755 1756 } 1757 1758 static const struct vm_operations_struct xfs_file_vm_ops = { 1759 .fault = xfs_filemap_fault, 1760 .pmd_fault = xfs_filemap_pmd_fault, 1761 .map_pages = filemap_map_pages, 1762 .page_mkwrite = xfs_filemap_page_mkwrite, 1763 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1764 }; 1765 1766 STATIC int 1767 xfs_file_mmap( 1768 struct file *filp, 1769 struct vm_area_struct *vma) 1770 { 1771 file_accessed(filp); 1772 vma->vm_ops = &xfs_file_vm_ops; 1773 if (IS_DAX(file_inode(filp))) 1774 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1775 return 0; 1776 } 1777 1778 const struct file_operations xfs_file_operations = { 1779 .llseek = xfs_file_llseek, 1780 .read_iter = xfs_file_read_iter, 1781 .write_iter = xfs_file_write_iter, 1782 .splice_read = generic_file_splice_read, 1783 .splice_write = iter_file_splice_write, 1784 .unlocked_ioctl = xfs_file_ioctl, 1785 #ifdef CONFIG_COMPAT 1786 .compat_ioctl = xfs_file_compat_ioctl, 1787 #endif 1788 .mmap = xfs_file_mmap, 1789 .open = xfs_file_open, 1790 .release = xfs_file_release, 1791 .fsync = xfs_file_fsync, 1792 .get_unmapped_area = thp_get_unmapped_area, 1793 .fallocate = xfs_file_fallocate, 1794 .copy_file_range = xfs_file_copy_range, 1795 .clone_file_range = xfs_file_clone_range, 1796 .dedupe_file_range = xfs_file_dedupe_range, 1797 }; 1798 1799 const struct file_operations xfs_dir_file_operations = { 1800 .open = xfs_dir_open, 1801 .read = generic_read_dir, 1802 .iterate_shared = xfs_file_readdir, 1803 .llseek = generic_file_llseek, 1804 .unlocked_ioctl = xfs_file_ioctl, 1805 #ifdef CONFIG_COMPAT 1806 .compat_ioctl = xfs_file_compat_ioctl, 1807 #endif 1808 .fsync = xfs_dir_fsync, 1809 }; 1810