xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 6dfcd296)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Locking primitives for read and write IO paths to ensure we consistently use
52  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53  */
54 static inline void
55 xfs_rw_ilock(
56 	struct xfs_inode	*ip,
57 	int			type)
58 {
59 	if (type & XFS_IOLOCK_EXCL)
60 		inode_lock(VFS_I(ip));
61 	xfs_ilock(ip, type);
62 }
63 
64 static inline void
65 xfs_rw_iunlock(
66 	struct xfs_inode	*ip,
67 	int			type)
68 {
69 	xfs_iunlock(ip, type);
70 	if (type & XFS_IOLOCK_EXCL)
71 		inode_unlock(VFS_I(ip));
72 }
73 
74 static inline void
75 xfs_rw_ilock_demote(
76 	struct xfs_inode	*ip,
77 	int			type)
78 {
79 	xfs_ilock_demote(ip, type);
80 	if (type & XFS_IOLOCK_EXCL)
81 		inode_unlock(VFS_I(ip));
82 }
83 
84 /*
85  * Clear the specified ranges to zero through either the pagecache or DAX.
86  * Holes and unwritten extents will be left as-is as they already are zeroed.
87  */
88 int
89 xfs_zero_range(
90 	struct xfs_inode	*ip,
91 	xfs_off_t		pos,
92 	xfs_off_t		count,
93 	bool			*did_zero)
94 {
95 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
96 }
97 
98 int
99 xfs_update_prealloc_flags(
100 	struct xfs_inode	*ip,
101 	enum xfs_prealloc_flags	flags)
102 {
103 	struct xfs_trans	*tp;
104 	int			error;
105 
106 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 			0, 0, 0, &tp);
108 	if (error)
109 		return error;
110 
111 	xfs_ilock(ip, XFS_ILOCK_EXCL);
112 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113 
114 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
115 		VFS_I(ip)->i_mode &= ~S_ISUID;
116 		if (VFS_I(ip)->i_mode & S_IXGRP)
117 			VFS_I(ip)->i_mode &= ~S_ISGID;
118 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 	}
120 
121 	if (flags & XFS_PREALLOC_SET)
122 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 	if (flags & XFS_PREALLOC_CLEAR)
124 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125 
126 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 	if (flags & XFS_PREALLOC_SYNC)
128 		xfs_trans_set_sync(tp);
129 	return xfs_trans_commit(tp);
130 }
131 
132 /*
133  * Fsync operations on directories are much simpler than on regular files,
134  * as there is no file data to flush, and thus also no need for explicit
135  * cache flush operations, and there are no non-transaction metadata updates
136  * on directories either.
137  */
138 STATIC int
139 xfs_dir_fsync(
140 	struct file		*file,
141 	loff_t			start,
142 	loff_t			end,
143 	int			datasync)
144 {
145 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
146 	struct xfs_mount	*mp = ip->i_mount;
147 	xfs_lsn_t		lsn = 0;
148 
149 	trace_xfs_dir_fsync(ip);
150 
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip))
153 		lsn = ip->i_itemp->ili_last_lsn;
154 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
155 
156 	if (!lsn)
157 		return 0;
158 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160 
161 STATIC int
162 xfs_file_fsync(
163 	struct file		*file,
164 	loff_t			start,
165 	loff_t			end,
166 	int			datasync)
167 {
168 	struct inode		*inode = file->f_mapping->host;
169 	struct xfs_inode	*ip = XFS_I(inode);
170 	struct xfs_mount	*mp = ip->i_mount;
171 	int			error = 0;
172 	int			log_flushed = 0;
173 	xfs_lsn_t		lsn = 0;
174 
175 	trace_xfs_file_fsync(ip);
176 
177 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 	if (error)
179 		return error;
180 
181 	if (XFS_FORCED_SHUTDOWN(mp))
182 		return -EIO;
183 
184 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 
186 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 		/*
188 		 * If we have an RT and/or log subvolume we need to make sure
189 		 * to flush the write cache the device used for file data
190 		 * first.  This is to ensure newly written file data make
191 		 * it to disk before logging the new inode size in case of
192 		 * an extending write.
193 		 */
194 		if (XFS_IS_REALTIME_INODE(ip))
195 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 	}
199 
200 	/*
201 	 * All metadata updates are logged, which means that we just have to
202 	 * flush the log up to the latest LSN that touched the inode. If we have
203 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 	 * log force before we clear the ili_fsync_fields field. This ensures
205 	 * that we don't get a racing sync operation that does not wait for the
206 	 * metadata to hit the journal before returning. If we race with
207 	 * clearing the ili_fsync_fields, then all that will happen is the log
208 	 * force will do nothing as the lsn will already be on disk. We can't
209 	 * race with setting ili_fsync_fields because that is done under
210 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 	 * until after the ili_fsync_fields is cleared.
212 	 */
213 	xfs_ilock(ip, XFS_ILOCK_SHARED);
214 	if (xfs_ipincount(ip)) {
215 		if (!datasync ||
216 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 			lsn = ip->i_itemp->ili_last_lsn;
218 	}
219 
220 	if (lsn) {
221 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 		ip->i_itemp->ili_fsync_fields = 0;
223 	}
224 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
225 
226 	/*
227 	 * If we only have a single device, and the log force about was
228 	 * a no-op we might have to flush the data device cache here.
229 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 	 * an already allocated file and thus do not have any metadata to
231 	 * commit.
232 	 */
233 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 	    mp->m_logdev_targp == mp->m_ddev_targp &&
235 	    !XFS_IS_REALTIME_INODE(ip) &&
236 	    !log_flushed)
237 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
238 
239 	return error;
240 }
241 
242 STATIC ssize_t
243 xfs_file_dio_aio_read(
244 	struct kiocb		*iocb,
245 	struct iov_iter		*to)
246 {
247 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
248 	struct inode		*inode = mapping->host;
249 	struct xfs_inode	*ip = XFS_I(inode);
250 	loff_t			isize = i_size_read(inode);
251 	size_t			count = iov_iter_count(to);
252 	struct iov_iter		data;
253 	struct xfs_buftarg	*target;
254 	ssize_t			ret = 0;
255 
256 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
257 
258 	if (!count)
259 		return 0; /* skip atime */
260 
261 	if (XFS_IS_REALTIME_INODE(ip))
262 		target = ip->i_mount->m_rtdev_targp;
263 	else
264 		target = ip->i_mount->m_ddev_targp;
265 
266 	/* DIO must be aligned to device logical sector size */
267 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
268 		if (iocb->ki_pos == isize)
269 			return 0;
270 		return -EINVAL;
271 	}
272 
273 	file_accessed(iocb->ki_filp);
274 
275 	/*
276 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
277 	 * IO, we effectively serialise all new concurrent read IO to this file
278 	 * and block it behind IO that is currently in progress because IO in
279 	 * progress holds the IO lock shared. We only need to hold the lock
280 	 * exclusive to blow away the page cache, so only take lock exclusively
281 	 * if the page cache needs invalidation. This allows the normal direct
282 	 * IO case of no page cache pages to proceeed concurrently without
283 	 * serialisation.
284 	 */
285 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 	if (mapping->nrpages) {
287 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289 
290 		/*
291 		 * The generic dio code only flushes the range of the particular
292 		 * I/O. Because we take an exclusive lock here, this whole
293 		 * sequence is considerably more expensive for us. This has a
294 		 * noticeable performance impact for any file with cached pages,
295 		 * even when outside of the range of the particular I/O.
296 		 *
297 		 * Hence, amortize the cost of the lock against a full file
298 		 * flush and reduce the chances of repeated iolock cycles going
299 		 * forward.
300 		 */
301 		if (mapping->nrpages) {
302 			ret = filemap_write_and_wait(mapping);
303 			if (ret) {
304 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
305 				return ret;
306 			}
307 
308 			/*
309 			 * Invalidate whole pages. This can return an error if
310 			 * we fail to invalidate a page, but this should never
311 			 * happen on XFS. Warn if it does fail.
312 			 */
313 			ret = invalidate_inode_pages2(mapping);
314 			WARN_ON_ONCE(ret);
315 			ret = 0;
316 		}
317 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
318 	}
319 
320 	data = *to;
321 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
322 			xfs_get_blocks_direct, NULL, NULL, 0);
323 	if (ret >= 0) {
324 		iocb->ki_pos += ret;
325 		iov_iter_advance(to, ret);
326 	}
327 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
328 
329 	return ret;
330 }
331 
332 static noinline ssize_t
333 xfs_file_dax_read(
334 	struct kiocb		*iocb,
335 	struct iov_iter		*to)
336 {
337 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
338 	size_t			count = iov_iter_count(to);
339 	ssize_t			ret = 0;
340 
341 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
342 
343 	if (!count)
344 		return 0; /* skip atime */
345 
346 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
347 	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
348 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349 
350 	file_accessed(iocb->ki_filp);
351 	return ret;
352 }
353 
354 STATIC ssize_t
355 xfs_file_buffered_aio_read(
356 	struct kiocb		*iocb,
357 	struct iov_iter		*to)
358 {
359 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
360 	ssize_t			ret;
361 
362 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
363 
364 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
365 	ret = generic_file_read_iter(iocb, to);
366 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
367 
368 	return ret;
369 }
370 
371 STATIC ssize_t
372 xfs_file_read_iter(
373 	struct kiocb		*iocb,
374 	struct iov_iter		*to)
375 {
376 	struct inode		*inode = file_inode(iocb->ki_filp);
377 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
378 	ssize_t			ret = 0;
379 
380 	XFS_STATS_INC(mp, xs_read_calls);
381 
382 	if (XFS_FORCED_SHUTDOWN(mp))
383 		return -EIO;
384 
385 	if (IS_DAX(inode))
386 		ret = xfs_file_dax_read(iocb, to);
387 	else if (iocb->ki_flags & IOCB_DIRECT)
388 		ret = xfs_file_dio_aio_read(iocb, to);
389 	else
390 		ret = xfs_file_buffered_aio_read(iocb, to);
391 
392 	if (ret > 0)
393 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
394 	return ret;
395 }
396 
397 /*
398  * Zero any on disk space between the current EOF and the new, larger EOF.
399  *
400  * This handles the normal case of zeroing the remainder of the last block in
401  * the file and the unusual case of zeroing blocks out beyond the size of the
402  * file.  This second case only happens with fixed size extents and when the
403  * system crashes before the inode size was updated but after blocks were
404  * allocated.
405  *
406  * Expects the iolock to be held exclusive, and will take the ilock internally.
407  */
408 int					/* error (positive) */
409 xfs_zero_eof(
410 	struct xfs_inode	*ip,
411 	xfs_off_t		offset,		/* starting I/O offset */
412 	xfs_fsize_t		isize,		/* current inode size */
413 	bool			*did_zeroing)
414 {
415 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
416 	ASSERT(offset > isize);
417 
418 	trace_xfs_zero_eof(ip, isize, offset - isize);
419 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
420 }
421 
422 /*
423  * Common pre-write limit and setup checks.
424  *
425  * Called with the iolocked held either shared and exclusive according to
426  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
427  * if called for a direct write beyond i_size.
428  */
429 STATIC ssize_t
430 xfs_file_aio_write_checks(
431 	struct kiocb		*iocb,
432 	struct iov_iter		*from,
433 	int			*iolock)
434 {
435 	struct file		*file = iocb->ki_filp;
436 	struct inode		*inode = file->f_mapping->host;
437 	struct xfs_inode	*ip = XFS_I(inode);
438 	ssize_t			error = 0;
439 	size_t			count = iov_iter_count(from);
440 	bool			drained_dio = false;
441 
442 restart:
443 	error = generic_write_checks(iocb, from);
444 	if (error <= 0)
445 		return error;
446 
447 	error = xfs_break_layouts(inode, iolock, true);
448 	if (error)
449 		return error;
450 
451 	/* For changing security info in file_remove_privs() we need i_mutex */
452 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
453 		xfs_rw_iunlock(ip, *iolock);
454 		*iolock = XFS_IOLOCK_EXCL;
455 		xfs_rw_ilock(ip, *iolock);
456 		goto restart;
457 	}
458 	/*
459 	 * If the offset is beyond the size of the file, we need to zero any
460 	 * blocks that fall between the existing EOF and the start of this
461 	 * write.  If zeroing is needed and we are currently holding the
462 	 * iolock shared, we need to update it to exclusive which implies
463 	 * having to redo all checks before.
464 	 *
465 	 * We need to serialise against EOF updates that occur in IO
466 	 * completions here. We want to make sure that nobody is changing the
467 	 * size while we do this check until we have placed an IO barrier (i.e.
468 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
469 	 * The spinlock effectively forms a memory barrier once we have the
470 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
471 	 * and hence be able to correctly determine if we need to run zeroing.
472 	 */
473 	spin_lock(&ip->i_flags_lock);
474 	if (iocb->ki_pos > i_size_read(inode)) {
475 		bool	zero = false;
476 
477 		spin_unlock(&ip->i_flags_lock);
478 		if (!drained_dio) {
479 			if (*iolock == XFS_IOLOCK_SHARED) {
480 				xfs_rw_iunlock(ip, *iolock);
481 				*iolock = XFS_IOLOCK_EXCL;
482 				xfs_rw_ilock(ip, *iolock);
483 				iov_iter_reexpand(from, count);
484 			}
485 			/*
486 			 * We now have an IO submission barrier in place, but
487 			 * AIO can do EOF updates during IO completion and hence
488 			 * we now need to wait for all of them to drain. Non-AIO
489 			 * DIO will have drained before we are given the
490 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
491 			 * no-op.
492 			 */
493 			inode_dio_wait(inode);
494 			drained_dio = true;
495 			goto restart;
496 		}
497 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
498 		if (error)
499 			return error;
500 	} else
501 		spin_unlock(&ip->i_flags_lock);
502 
503 	/*
504 	 * Updating the timestamps will grab the ilock again from
505 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
506 	 * lock above.  Eventually we should look into a way to avoid
507 	 * the pointless lock roundtrip.
508 	 */
509 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
510 		error = file_update_time(file);
511 		if (error)
512 			return error;
513 	}
514 
515 	/*
516 	 * If we're writing the file then make sure to clear the setuid and
517 	 * setgid bits if the process is not being run by root.  This keeps
518 	 * people from modifying setuid and setgid binaries.
519 	 */
520 	if (!IS_NOSEC(inode))
521 		return file_remove_privs(file);
522 	return 0;
523 }
524 
525 /*
526  * xfs_file_dio_aio_write - handle direct IO writes
527  *
528  * Lock the inode appropriately to prepare for and issue a direct IO write.
529  * By separating it from the buffered write path we remove all the tricky to
530  * follow locking changes and looping.
531  *
532  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
533  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
534  * pages are flushed out.
535  *
536  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
537  * allowing them to be done in parallel with reads and other direct IO writes.
538  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
539  * needs to do sub-block zeroing and that requires serialisation against other
540  * direct IOs to the same block. In this case we need to serialise the
541  * submission of the unaligned IOs so that we don't get racing block zeroing in
542  * the dio layer.  To avoid the problem with aio, we also need to wait for
543  * outstanding IOs to complete so that unwritten extent conversion is completed
544  * before we try to map the overlapping block. This is currently implemented by
545  * hitting it with a big hammer (i.e. inode_dio_wait()).
546  *
547  * Returns with locks held indicated by @iolock and errors indicated by
548  * negative return values.
549  */
550 STATIC ssize_t
551 xfs_file_dio_aio_write(
552 	struct kiocb		*iocb,
553 	struct iov_iter		*from)
554 {
555 	struct file		*file = iocb->ki_filp;
556 	struct address_space	*mapping = file->f_mapping;
557 	struct inode		*inode = mapping->host;
558 	struct xfs_inode	*ip = XFS_I(inode);
559 	struct xfs_mount	*mp = ip->i_mount;
560 	ssize_t			ret = 0;
561 	int			unaligned_io = 0;
562 	int			iolock;
563 	size_t			count = iov_iter_count(from);
564 	loff_t			end;
565 	struct iov_iter		data;
566 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
567 					mp->m_rtdev_targp : mp->m_ddev_targp;
568 
569 	/* DIO must be aligned to device logical sector size */
570 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
571 		return -EINVAL;
572 
573 	/* "unaligned" here means not aligned to a filesystem block */
574 	if ((iocb->ki_pos & mp->m_blockmask) ||
575 	    ((iocb->ki_pos + count) & mp->m_blockmask))
576 		unaligned_io = 1;
577 
578 	/*
579 	 * We don't need to take an exclusive lock unless there page cache needs
580 	 * to be invalidated or unaligned IO is being executed. We don't need to
581 	 * consider the EOF extension case here because
582 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
583 	 * EOF zeroing cases and fill out the new inode size as appropriate.
584 	 */
585 	if (unaligned_io || mapping->nrpages)
586 		iolock = XFS_IOLOCK_EXCL;
587 	else
588 		iolock = XFS_IOLOCK_SHARED;
589 	xfs_rw_ilock(ip, iolock);
590 
591 	/*
592 	 * Recheck if there are cached pages that need invalidate after we got
593 	 * the iolock to protect against other threads adding new pages while
594 	 * we were waiting for the iolock.
595 	 */
596 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
597 		xfs_rw_iunlock(ip, iolock);
598 		iolock = XFS_IOLOCK_EXCL;
599 		xfs_rw_ilock(ip, iolock);
600 	}
601 
602 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
603 	if (ret)
604 		goto out;
605 	count = iov_iter_count(from);
606 	end = iocb->ki_pos + count - 1;
607 
608 	/*
609 	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
610 	 */
611 	if (mapping->nrpages) {
612 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
613 		if (ret)
614 			goto out;
615 		/*
616 		 * Invalidate whole pages. This can return an error if we fail
617 		 * to invalidate a page, but this should never happen on XFS.
618 		 * Warn if it does fail.
619 		 */
620 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
621 		WARN_ON_ONCE(ret);
622 		ret = 0;
623 	}
624 
625 	/*
626 	 * If we are doing unaligned IO, wait for all other IO to drain,
627 	 * otherwise demote the lock if we had to flush cached pages
628 	 */
629 	if (unaligned_io)
630 		inode_dio_wait(inode);
631 	else if (iolock == XFS_IOLOCK_EXCL) {
632 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
633 		iolock = XFS_IOLOCK_SHARED;
634 	}
635 
636 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
637 
638 	/* If this is a block-aligned directio CoW, remap immediately. */
639 	if (xfs_is_reflink_inode(ip) && !unaligned_io) {
640 		ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
641 		if (ret)
642 			goto out;
643 	}
644 
645 	data = *from;
646 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
647 			xfs_get_blocks_direct, xfs_end_io_direct_write,
648 			NULL, DIO_ASYNC_EXTEND);
649 
650 	/* see generic_file_direct_write() for why this is necessary */
651 	if (mapping->nrpages) {
652 		invalidate_inode_pages2_range(mapping,
653 					      iocb->ki_pos >> PAGE_SHIFT,
654 					      end >> PAGE_SHIFT);
655 	}
656 
657 	if (ret > 0) {
658 		iocb->ki_pos += ret;
659 		iov_iter_advance(from, ret);
660 	}
661 out:
662 	xfs_rw_iunlock(ip, iolock);
663 
664 	/*
665 	 * No fallback to buffered IO on errors for XFS, direct IO will either
666 	 * complete fully or fail.
667 	 */
668 	ASSERT(ret < 0 || ret == count);
669 	return ret;
670 }
671 
672 static noinline ssize_t
673 xfs_file_dax_write(
674 	struct kiocb		*iocb,
675 	struct iov_iter		*from)
676 {
677 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
678 	struct xfs_inode	*ip = XFS_I(inode);
679 	int			iolock = XFS_IOLOCK_EXCL;
680 	ssize_t			ret, error = 0;
681 	size_t			count;
682 	loff_t			pos;
683 
684 	xfs_rw_ilock(ip, iolock);
685 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
686 	if (ret)
687 		goto out;
688 
689 	pos = iocb->ki_pos;
690 	count = iov_iter_count(from);
691 
692 	trace_xfs_file_dax_write(ip, count, pos);
693 
694 	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
695 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
696 		i_size_write(inode, iocb->ki_pos);
697 		error = xfs_setfilesize(ip, pos, ret);
698 	}
699 
700 out:
701 	xfs_rw_iunlock(ip, iolock);
702 	return error ? error : ret;
703 }
704 
705 STATIC ssize_t
706 xfs_file_buffered_aio_write(
707 	struct kiocb		*iocb,
708 	struct iov_iter		*from)
709 {
710 	struct file		*file = iocb->ki_filp;
711 	struct address_space	*mapping = file->f_mapping;
712 	struct inode		*inode = mapping->host;
713 	struct xfs_inode	*ip = XFS_I(inode);
714 	ssize_t			ret;
715 	int			enospc = 0;
716 	int			iolock = XFS_IOLOCK_EXCL;
717 
718 	xfs_rw_ilock(ip, iolock);
719 
720 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
721 	if (ret)
722 		goto out;
723 
724 	/* We can write back this queue in page reclaim */
725 	current->backing_dev_info = inode_to_bdi(inode);
726 
727 write_retry:
728 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
729 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
730 	if (likely(ret >= 0))
731 		iocb->ki_pos += ret;
732 
733 	/*
734 	 * If we hit a space limit, try to free up some lingering preallocated
735 	 * space before returning an error. In the case of ENOSPC, first try to
736 	 * write back all dirty inodes to free up some of the excess reserved
737 	 * metadata space. This reduces the chances that the eofblocks scan
738 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
739 	 * also behaves as a filter to prevent too many eofblocks scans from
740 	 * running at the same time.
741 	 */
742 	if (ret == -EDQUOT && !enospc) {
743 		enospc = xfs_inode_free_quota_eofblocks(ip);
744 		if (enospc)
745 			goto write_retry;
746 		enospc = xfs_inode_free_quota_cowblocks(ip);
747 		if (enospc)
748 			goto write_retry;
749 	} else if (ret == -ENOSPC && !enospc) {
750 		struct xfs_eofblocks eofb = {0};
751 
752 		enospc = 1;
753 		xfs_flush_inodes(ip->i_mount);
754 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
755 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
756 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
757 		goto write_retry;
758 	}
759 
760 	current->backing_dev_info = NULL;
761 out:
762 	xfs_rw_iunlock(ip, iolock);
763 	return ret;
764 }
765 
766 STATIC ssize_t
767 xfs_file_write_iter(
768 	struct kiocb		*iocb,
769 	struct iov_iter		*from)
770 {
771 	struct file		*file = iocb->ki_filp;
772 	struct address_space	*mapping = file->f_mapping;
773 	struct inode		*inode = mapping->host;
774 	struct xfs_inode	*ip = XFS_I(inode);
775 	ssize_t			ret;
776 	size_t			ocount = iov_iter_count(from);
777 
778 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
779 
780 	if (ocount == 0)
781 		return 0;
782 
783 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
784 		return -EIO;
785 
786 	if (IS_DAX(inode))
787 		ret = xfs_file_dax_write(iocb, from);
788 	else if (iocb->ki_flags & IOCB_DIRECT) {
789 		/*
790 		 * Allow a directio write to fall back to a buffered
791 		 * write *only* in the case that we're doing a reflink
792 		 * CoW.  In all other directio scenarios we do not
793 		 * allow an operation to fall back to buffered mode.
794 		 */
795 		ret = xfs_file_dio_aio_write(iocb, from);
796 		if (ret == -EREMCHG)
797 			goto buffered;
798 	} else {
799 buffered:
800 		ret = xfs_file_buffered_aio_write(iocb, from);
801 	}
802 
803 	if (ret > 0) {
804 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
805 
806 		/* Handle various SYNC-type writes */
807 		ret = generic_write_sync(iocb, ret);
808 	}
809 	return ret;
810 }
811 
812 #define	XFS_FALLOC_FL_SUPPORTED						\
813 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
814 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
815 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
816 
817 STATIC long
818 xfs_file_fallocate(
819 	struct file		*file,
820 	int			mode,
821 	loff_t			offset,
822 	loff_t			len)
823 {
824 	struct inode		*inode = file_inode(file);
825 	struct xfs_inode	*ip = XFS_I(inode);
826 	long			error;
827 	enum xfs_prealloc_flags	flags = 0;
828 	uint			iolock = XFS_IOLOCK_EXCL;
829 	loff_t			new_size = 0;
830 	bool			do_file_insert = 0;
831 
832 	if (!S_ISREG(inode->i_mode))
833 		return -EINVAL;
834 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
835 		return -EOPNOTSUPP;
836 
837 	xfs_ilock(ip, iolock);
838 	error = xfs_break_layouts(inode, &iolock, false);
839 	if (error)
840 		goto out_unlock;
841 
842 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
843 	iolock |= XFS_MMAPLOCK_EXCL;
844 
845 	if (mode & FALLOC_FL_PUNCH_HOLE) {
846 		error = xfs_free_file_space(ip, offset, len);
847 		if (error)
848 			goto out_unlock;
849 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
850 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
851 
852 		if (offset & blksize_mask || len & blksize_mask) {
853 			error = -EINVAL;
854 			goto out_unlock;
855 		}
856 
857 		/*
858 		 * There is no need to overlap collapse range with EOF,
859 		 * in which case it is effectively a truncate operation
860 		 */
861 		if (offset + len >= i_size_read(inode)) {
862 			error = -EINVAL;
863 			goto out_unlock;
864 		}
865 
866 		new_size = i_size_read(inode) - len;
867 
868 		error = xfs_collapse_file_space(ip, offset, len);
869 		if (error)
870 			goto out_unlock;
871 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
872 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
873 
874 		new_size = i_size_read(inode) + len;
875 		if (offset & blksize_mask || len & blksize_mask) {
876 			error = -EINVAL;
877 			goto out_unlock;
878 		}
879 
880 		/* check the new inode size does not wrap through zero */
881 		if (new_size > inode->i_sb->s_maxbytes) {
882 			error = -EFBIG;
883 			goto out_unlock;
884 		}
885 
886 		/* Offset should be less than i_size */
887 		if (offset >= i_size_read(inode)) {
888 			error = -EINVAL;
889 			goto out_unlock;
890 		}
891 		do_file_insert = 1;
892 	} else {
893 		flags |= XFS_PREALLOC_SET;
894 
895 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
896 		    offset + len > i_size_read(inode)) {
897 			new_size = offset + len;
898 			error = inode_newsize_ok(inode, new_size);
899 			if (error)
900 				goto out_unlock;
901 		}
902 
903 		if (mode & FALLOC_FL_ZERO_RANGE)
904 			error = xfs_zero_file_space(ip, offset, len);
905 		else {
906 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
907 				error = xfs_reflink_unshare(ip, offset, len);
908 				if (error)
909 					goto out_unlock;
910 			}
911 			error = xfs_alloc_file_space(ip, offset, len,
912 						     XFS_BMAPI_PREALLOC);
913 		}
914 		if (error)
915 			goto out_unlock;
916 	}
917 
918 	if (file->f_flags & O_DSYNC)
919 		flags |= XFS_PREALLOC_SYNC;
920 
921 	error = xfs_update_prealloc_flags(ip, flags);
922 	if (error)
923 		goto out_unlock;
924 
925 	/* Change file size if needed */
926 	if (new_size) {
927 		struct iattr iattr;
928 
929 		iattr.ia_valid = ATTR_SIZE;
930 		iattr.ia_size = new_size;
931 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
932 		if (error)
933 			goto out_unlock;
934 	}
935 
936 	/*
937 	 * Perform hole insertion now that the file size has been
938 	 * updated so that if we crash during the operation we don't
939 	 * leave shifted extents past EOF and hence losing access to
940 	 * the data that is contained within them.
941 	 */
942 	if (do_file_insert)
943 		error = xfs_insert_file_space(ip, offset, len);
944 
945 out_unlock:
946 	xfs_iunlock(ip, iolock);
947 	return error;
948 }
949 
950 /*
951  * Flush all file writes out to disk.
952  */
953 static int
954 xfs_file_wait_for_io(
955 	struct inode	*inode,
956 	loff_t		offset,
957 	size_t		len)
958 {
959 	loff_t		rounding;
960 	loff_t		ioffset;
961 	loff_t		iendoffset;
962 	loff_t		bs;
963 	int		ret;
964 
965 	bs = inode->i_sb->s_blocksize;
966 	inode_dio_wait(inode);
967 
968 	rounding = max_t(xfs_off_t, bs, PAGE_SIZE);
969 	ioffset = round_down(offset, rounding);
970 	iendoffset = round_up(offset + len, rounding) - 1;
971 	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
972 					   iendoffset);
973 	return ret;
974 }
975 
976 /* Hook up to the VFS reflink function */
977 STATIC int
978 xfs_file_share_range(
979 	struct file	*file_in,
980 	loff_t		pos_in,
981 	struct file	*file_out,
982 	loff_t		pos_out,
983 	u64		len,
984 	bool		is_dedupe)
985 {
986 	struct inode	*inode_in;
987 	struct inode	*inode_out;
988 	ssize_t		ret;
989 	loff_t		bs;
990 	loff_t		isize;
991 	int		same_inode;
992 	loff_t		blen;
993 	unsigned int	flags = 0;
994 
995 	inode_in = file_inode(file_in);
996 	inode_out = file_inode(file_out);
997 	bs = inode_out->i_sb->s_blocksize;
998 
999 	/* Don't touch certain kinds of inodes */
1000 	if (IS_IMMUTABLE(inode_out))
1001 		return -EPERM;
1002 	if (IS_SWAPFILE(inode_in) ||
1003 	    IS_SWAPFILE(inode_out))
1004 		return -ETXTBSY;
1005 
1006 	/* Reflink only works within this filesystem. */
1007 	if (inode_in->i_sb != inode_out->i_sb)
1008 		return -EXDEV;
1009 	same_inode = (inode_in->i_ino == inode_out->i_ino);
1010 
1011 	/* Don't reflink dirs, pipes, sockets... */
1012 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
1013 		return -EISDIR;
1014 	if (S_ISFIFO(inode_in->i_mode) || S_ISFIFO(inode_out->i_mode))
1015 		return -EINVAL;
1016 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
1017 		return -EINVAL;
1018 
1019 	/* Don't share DAX file data for now. */
1020 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1021 		return -EINVAL;
1022 
1023 	/* Are we going all the way to the end? */
1024 	isize = i_size_read(inode_in);
1025 	if (isize == 0)
1026 		return 0;
1027 	if (len == 0)
1028 		len = isize - pos_in;
1029 
1030 	/* Ensure offsets don't wrap and the input is inside i_size */
1031 	if (pos_in + len < pos_in || pos_out + len < pos_out ||
1032 	    pos_in + len > isize)
1033 		return -EINVAL;
1034 
1035 	/* Don't allow dedupe past EOF in the dest file */
1036 	if (is_dedupe) {
1037 		loff_t	disize;
1038 
1039 		disize = i_size_read(inode_out);
1040 		if (pos_out >= disize || pos_out + len > disize)
1041 			return -EINVAL;
1042 	}
1043 
1044 	/* If we're linking to EOF, continue to the block boundary. */
1045 	if (pos_in + len == isize)
1046 		blen = ALIGN(isize, bs) - pos_in;
1047 	else
1048 		blen = len;
1049 
1050 	/* Only reflink if we're aligned to block boundaries */
1051 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) ||
1052 	    !IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs))
1053 		return -EINVAL;
1054 
1055 	/* Don't allow overlapped reflink within the same file */
1056 	if (same_inode && pos_out + blen > pos_in && pos_out < pos_in + blen)
1057 		return -EINVAL;
1058 
1059 	/* Wait for the completion of any pending IOs on srcfile */
1060 	ret = xfs_file_wait_for_io(inode_in, pos_in, len);
1061 	if (ret)
1062 		goto out;
1063 	ret = xfs_file_wait_for_io(inode_out, pos_out, len);
1064 	if (ret)
1065 		goto out;
1066 
1067 	if (is_dedupe)
1068 		flags |= XFS_REFLINK_DEDUPE;
1069 	ret = xfs_reflink_remap_range(XFS_I(inode_in), pos_in, XFS_I(inode_out),
1070 			pos_out, len, flags);
1071 	if (ret < 0)
1072 		goto out;
1073 
1074 out:
1075 	return ret;
1076 }
1077 
1078 STATIC ssize_t
1079 xfs_file_copy_range(
1080 	struct file	*file_in,
1081 	loff_t		pos_in,
1082 	struct file	*file_out,
1083 	loff_t		pos_out,
1084 	size_t		len,
1085 	unsigned int	flags)
1086 {
1087 	int		error;
1088 
1089 	error = xfs_file_share_range(file_in, pos_in, file_out, pos_out,
1090 				     len, false);
1091 	if (error)
1092 		return error;
1093 	return len;
1094 }
1095 
1096 STATIC int
1097 xfs_file_clone_range(
1098 	struct file	*file_in,
1099 	loff_t		pos_in,
1100 	struct file	*file_out,
1101 	loff_t		pos_out,
1102 	u64		len)
1103 {
1104 	return xfs_file_share_range(file_in, pos_in, file_out, pos_out,
1105 				     len, false);
1106 }
1107 
1108 #define XFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
1109 STATIC ssize_t
1110 xfs_file_dedupe_range(
1111 	struct file	*src_file,
1112 	u64		loff,
1113 	u64		len,
1114 	struct file	*dst_file,
1115 	u64		dst_loff)
1116 {
1117 	int		error;
1118 
1119 	/*
1120 	 * Limit the total length we will dedupe for each operation.
1121 	 * This is intended to bound the total time spent in this
1122 	 * ioctl to something sane.
1123 	 */
1124 	if (len > XFS_MAX_DEDUPE_LEN)
1125 		len = XFS_MAX_DEDUPE_LEN;
1126 
1127 	error = xfs_file_share_range(src_file, loff, dst_file, dst_loff,
1128 				     len, true);
1129 	if (error)
1130 		return error;
1131 	return len;
1132 }
1133 
1134 STATIC int
1135 xfs_file_open(
1136 	struct inode	*inode,
1137 	struct file	*file)
1138 {
1139 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1140 		return -EFBIG;
1141 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1142 		return -EIO;
1143 	return 0;
1144 }
1145 
1146 STATIC int
1147 xfs_dir_open(
1148 	struct inode	*inode,
1149 	struct file	*file)
1150 {
1151 	struct xfs_inode *ip = XFS_I(inode);
1152 	int		mode;
1153 	int		error;
1154 
1155 	error = xfs_file_open(inode, file);
1156 	if (error)
1157 		return error;
1158 
1159 	/*
1160 	 * If there are any blocks, read-ahead block 0 as we're almost
1161 	 * certain to have the next operation be a read there.
1162 	 */
1163 	mode = xfs_ilock_data_map_shared(ip);
1164 	if (ip->i_d.di_nextents > 0)
1165 		xfs_dir3_data_readahead(ip, 0, -1);
1166 	xfs_iunlock(ip, mode);
1167 	return 0;
1168 }
1169 
1170 STATIC int
1171 xfs_file_release(
1172 	struct inode	*inode,
1173 	struct file	*filp)
1174 {
1175 	return xfs_release(XFS_I(inode));
1176 }
1177 
1178 STATIC int
1179 xfs_file_readdir(
1180 	struct file	*file,
1181 	struct dir_context *ctx)
1182 {
1183 	struct inode	*inode = file_inode(file);
1184 	xfs_inode_t	*ip = XFS_I(inode);
1185 	size_t		bufsize;
1186 
1187 	/*
1188 	 * The Linux API doesn't pass down the total size of the buffer
1189 	 * we read into down to the filesystem.  With the filldir concept
1190 	 * it's not needed for correct information, but the XFS dir2 leaf
1191 	 * code wants an estimate of the buffer size to calculate it's
1192 	 * readahead window and size the buffers used for mapping to
1193 	 * physical blocks.
1194 	 *
1195 	 * Try to give it an estimate that's good enough, maybe at some
1196 	 * point we can change the ->readdir prototype to include the
1197 	 * buffer size.  For now we use the current glibc buffer size.
1198 	 */
1199 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1200 
1201 	return xfs_readdir(ip, ctx, bufsize);
1202 }
1203 
1204 /*
1205  * This type is designed to indicate the type of offset we would like
1206  * to search from page cache for xfs_seek_hole_data().
1207  */
1208 enum {
1209 	HOLE_OFF = 0,
1210 	DATA_OFF,
1211 };
1212 
1213 /*
1214  * Lookup the desired type of offset from the given page.
1215  *
1216  * On success, return true and the offset argument will point to the
1217  * start of the region that was found.  Otherwise this function will
1218  * return false and keep the offset argument unchanged.
1219  */
1220 STATIC bool
1221 xfs_lookup_buffer_offset(
1222 	struct page		*page,
1223 	loff_t			*offset,
1224 	unsigned int		type)
1225 {
1226 	loff_t			lastoff = page_offset(page);
1227 	bool			found = false;
1228 	struct buffer_head	*bh, *head;
1229 
1230 	bh = head = page_buffers(page);
1231 	do {
1232 		/*
1233 		 * Unwritten extents that have data in the page
1234 		 * cache covering them can be identified by the
1235 		 * BH_Unwritten state flag.  Pages with multiple
1236 		 * buffers might have a mix of holes, data and
1237 		 * unwritten extents - any buffer with valid
1238 		 * data in it should have BH_Uptodate flag set
1239 		 * on it.
1240 		 */
1241 		if (buffer_unwritten(bh) ||
1242 		    buffer_uptodate(bh)) {
1243 			if (type == DATA_OFF)
1244 				found = true;
1245 		} else {
1246 			if (type == HOLE_OFF)
1247 				found = true;
1248 		}
1249 
1250 		if (found) {
1251 			*offset = lastoff;
1252 			break;
1253 		}
1254 		lastoff += bh->b_size;
1255 	} while ((bh = bh->b_this_page) != head);
1256 
1257 	return found;
1258 }
1259 
1260 /*
1261  * This routine is called to find out and return a data or hole offset
1262  * from the page cache for unwritten extents according to the desired
1263  * type for xfs_seek_hole_data().
1264  *
1265  * The argument offset is used to tell where we start to search from the
1266  * page cache.  Map is used to figure out the end points of the range to
1267  * lookup pages.
1268  *
1269  * Return true if the desired type of offset was found, and the argument
1270  * offset is filled with that address.  Otherwise, return false and keep
1271  * offset unchanged.
1272  */
1273 STATIC bool
1274 xfs_find_get_desired_pgoff(
1275 	struct inode		*inode,
1276 	struct xfs_bmbt_irec	*map,
1277 	unsigned int		type,
1278 	loff_t			*offset)
1279 {
1280 	struct xfs_inode	*ip = XFS_I(inode);
1281 	struct xfs_mount	*mp = ip->i_mount;
1282 	struct pagevec		pvec;
1283 	pgoff_t			index;
1284 	pgoff_t			end;
1285 	loff_t			endoff;
1286 	loff_t			startoff = *offset;
1287 	loff_t			lastoff = startoff;
1288 	bool			found = false;
1289 
1290 	pagevec_init(&pvec, 0);
1291 
1292 	index = startoff >> PAGE_SHIFT;
1293 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1294 	end = endoff >> PAGE_SHIFT;
1295 	do {
1296 		int		want;
1297 		unsigned	nr_pages;
1298 		unsigned int	i;
1299 
1300 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1301 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1302 					  want);
1303 		/*
1304 		 * No page mapped into given range.  If we are searching holes
1305 		 * and if this is the first time we got into the loop, it means
1306 		 * that the given offset is landed in a hole, return it.
1307 		 *
1308 		 * If we have already stepped through some block buffers to find
1309 		 * holes but they all contains data.  In this case, the last
1310 		 * offset is already updated and pointed to the end of the last
1311 		 * mapped page, if it does not reach the endpoint to search,
1312 		 * that means there should be a hole between them.
1313 		 */
1314 		if (nr_pages == 0) {
1315 			/* Data search found nothing */
1316 			if (type == DATA_OFF)
1317 				break;
1318 
1319 			ASSERT(type == HOLE_OFF);
1320 			if (lastoff == startoff || lastoff < endoff) {
1321 				found = true;
1322 				*offset = lastoff;
1323 			}
1324 			break;
1325 		}
1326 
1327 		/*
1328 		 * At lease we found one page.  If this is the first time we
1329 		 * step into the loop, and if the first page index offset is
1330 		 * greater than the given search offset, a hole was found.
1331 		 */
1332 		if (type == HOLE_OFF && lastoff == startoff &&
1333 		    lastoff < page_offset(pvec.pages[0])) {
1334 			found = true;
1335 			break;
1336 		}
1337 
1338 		for (i = 0; i < nr_pages; i++) {
1339 			struct page	*page = pvec.pages[i];
1340 			loff_t		b_offset;
1341 
1342 			/*
1343 			 * At this point, the page may be truncated or
1344 			 * invalidated (changing page->mapping to NULL),
1345 			 * or even swizzled back from swapper_space to tmpfs
1346 			 * file mapping. However, page->index will not change
1347 			 * because we have a reference on the page.
1348 			 *
1349 			 * Searching done if the page index is out of range.
1350 			 * If the current offset is not reaches the end of
1351 			 * the specified search range, there should be a hole
1352 			 * between them.
1353 			 */
1354 			if (page->index > end) {
1355 				if (type == HOLE_OFF && lastoff < endoff) {
1356 					*offset = lastoff;
1357 					found = true;
1358 				}
1359 				goto out;
1360 			}
1361 
1362 			lock_page(page);
1363 			/*
1364 			 * Page truncated or invalidated(page->mapping == NULL).
1365 			 * We can freely skip it and proceed to check the next
1366 			 * page.
1367 			 */
1368 			if (unlikely(page->mapping != inode->i_mapping)) {
1369 				unlock_page(page);
1370 				continue;
1371 			}
1372 
1373 			if (!page_has_buffers(page)) {
1374 				unlock_page(page);
1375 				continue;
1376 			}
1377 
1378 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1379 			if (found) {
1380 				/*
1381 				 * The found offset may be less than the start
1382 				 * point to search if this is the first time to
1383 				 * come here.
1384 				 */
1385 				*offset = max_t(loff_t, startoff, b_offset);
1386 				unlock_page(page);
1387 				goto out;
1388 			}
1389 
1390 			/*
1391 			 * We either searching data but nothing was found, or
1392 			 * searching hole but found a data buffer.  In either
1393 			 * case, probably the next page contains the desired
1394 			 * things, update the last offset to it so.
1395 			 */
1396 			lastoff = page_offset(page) + PAGE_SIZE;
1397 			unlock_page(page);
1398 		}
1399 
1400 		/*
1401 		 * The number of returned pages less than our desired, search
1402 		 * done.  In this case, nothing was found for searching data,
1403 		 * but we found a hole behind the last offset.
1404 		 */
1405 		if (nr_pages < want) {
1406 			if (type == HOLE_OFF) {
1407 				*offset = lastoff;
1408 				found = true;
1409 			}
1410 			break;
1411 		}
1412 
1413 		index = pvec.pages[i - 1]->index + 1;
1414 		pagevec_release(&pvec);
1415 	} while (index <= end);
1416 
1417 out:
1418 	pagevec_release(&pvec);
1419 	return found;
1420 }
1421 
1422 /*
1423  * caller must lock inode with xfs_ilock_data_map_shared,
1424  * can we craft an appropriate ASSERT?
1425  *
1426  * end is because the VFS-level lseek interface is defined such that any
1427  * offset past i_size shall return -ENXIO, but we use this for quota code
1428  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1429  */
1430 loff_t
1431 __xfs_seek_hole_data(
1432 	struct inode		*inode,
1433 	loff_t			start,
1434 	loff_t			end,
1435 	int			whence)
1436 {
1437 	struct xfs_inode	*ip = XFS_I(inode);
1438 	struct xfs_mount	*mp = ip->i_mount;
1439 	loff_t			uninitialized_var(offset);
1440 	xfs_fileoff_t		fsbno;
1441 	xfs_filblks_t		lastbno;
1442 	int			error;
1443 
1444 	if (start >= end) {
1445 		error = -ENXIO;
1446 		goto out_error;
1447 	}
1448 
1449 	/*
1450 	 * Try to read extents from the first block indicated
1451 	 * by fsbno to the end block of the file.
1452 	 */
1453 	fsbno = XFS_B_TO_FSBT(mp, start);
1454 	lastbno = XFS_B_TO_FSB(mp, end);
1455 
1456 	for (;;) {
1457 		struct xfs_bmbt_irec	map[2];
1458 		int			nmap = 2;
1459 		unsigned int		i;
1460 
1461 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1462 				       XFS_BMAPI_ENTIRE);
1463 		if (error)
1464 			goto out_error;
1465 
1466 		/* No extents at given offset, must be beyond EOF */
1467 		if (nmap == 0) {
1468 			error = -ENXIO;
1469 			goto out_error;
1470 		}
1471 
1472 		for (i = 0; i < nmap; i++) {
1473 			offset = max_t(loff_t, start,
1474 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1475 
1476 			/* Landed in the hole we wanted? */
1477 			if (whence == SEEK_HOLE &&
1478 			    map[i].br_startblock == HOLESTARTBLOCK)
1479 				goto out;
1480 
1481 			/* Landed in the data extent we wanted? */
1482 			if (whence == SEEK_DATA &&
1483 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1484 			     (map[i].br_state == XFS_EXT_NORM &&
1485 			      !isnullstartblock(map[i].br_startblock))))
1486 				goto out;
1487 
1488 			/*
1489 			 * Landed in an unwritten extent, try to search
1490 			 * for hole or data from page cache.
1491 			 */
1492 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1493 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1494 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1495 							&offset))
1496 					goto out;
1497 			}
1498 		}
1499 
1500 		/*
1501 		 * We only received one extent out of the two requested. This
1502 		 * means we've hit EOF and didn't find what we are looking for.
1503 		 */
1504 		if (nmap == 1) {
1505 			/*
1506 			 * If we were looking for a hole, set offset to
1507 			 * the end of the file (i.e., there is an implicit
1508 			 * hole at the end of any file).
1509 		 	 */
1510 			if (whence == SEEK_HOLE) {
1511 				offset = end;
1512 				break;
1513 			}
1514 			/*
1515 			 * If we were looking for data, it's nowhere to be found
1516 			 */
1517 			ASSERT(whence == SEEK_DATA);
1518 			error = -ENXIO;
1519 			goto out_error;
1520 		}
1521 
1522 		ASSERT(i > 1);
1523 
1524 		/*
1525 		 * Nothing was found, proceed to the next round of search
1526 		 * if the next reading offset is not at or beyond EOF.
1527 		 */
1528 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1529 		start = XFS_FSB_TO_B(mp, fsbno);
1530 		if (start >= end) {
1531 			if (whence == SEEK_HOLE) {
1532 				offset = end;
1533 				break;
1534 			}
1535 			ASSERT(whence == SEEK_DATA);
1536 			error = -ENXIO;
1537 			goto out_error;
1538 		}
1539 	}
1540 
1541 out:
1542 	/*
1543 	 * If at this point we have found the hole we wanted, the returned
1544 	 * offset may be bigger than the file size as it may be aligned to
1545 	 * page boundary for unwritten extents.  We need to deal with this
1546 	 * situation in particular.
1547 	 */
1548 	if (whence == SEEK_HOLE)
1549 		offset = min_t(loff_t, offset, end);
1550 
1551 	return offset;
1552 
1553 out_error:
1554 	return error;
1555 }
1556 
1557 STATIC loff_t
1558 xfs_seek_hole_data(
1559 	struct file		*file,
1560 	loff_t			start,
1561 	int			whence)
1562 {
1563 	struct inode		*inode = file->f_mapping->host;
1564 	struct xfs_inode	*ip = XFS_I(inode);
1565 	struct xfs_mount	*mp = ip->i_mount;
1566 	uint			lock;
1567 	loff_t			offset, end;
1568 	int			error = 0;
1569 
1570 	if (XFS_FORCED_SHUTDOWN(mp))
1571 		return -EIO;
1572 
1573 	lock = xfs_ilock_data_map_shared(ip);
1574 
1575 	end = i_size_read(inode);
1576 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1577 	if (offset < 0) {
1578 		error = offset;
1579 		goto out_unlock;
1580 	}
1581 
1582 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1583 
1584 out_unlock:
1585 	xfs_iunlock(ip, lock);
1586 
1587 	if (error)
1588 		return error;
1589 	return offset;
1590 }
1591 
1592 STATIC loff_t
1593 xfs_file_llseek(
1594 	struct file	*file,
1595 	loff_t		offset,
1596 	int		whence)
1597 {
1598 	switch (whence) {
1599 	case SEEK_END:
1600 	case SEEK_CUR:
1601 	case SEEK_SET:
1602 		return generic_file_llseek(file, offset, whence);
1603 	case SEEK_HOLE:
1604 	case SEEK_DATA:
1605 		return xfs_seek_hole_data(file, offset, whence);
1606 	default:
1607 		return -EINVAL;
1608 	}
1609 }
1610 
1611 /*
1612  * Locking for serialisation of IO during page faults. This results in a lock
1613  * ordering of:
1614  *
1615  * mmap_sem (MM)
1616  *   sb_start_pagefault(vfs, freeze)
1617  *     i_mmaplock (XFS - truncate serialisation)
1618  *       page_lock (MM)
1619  *         i_lock (XFS - extent map serialisation)
1620  */
1621 
1622 /*
1623  * mmap()d file has taken write protection fault and is being made writable. We
1624  * can set the page state up correctly for a writable page, which means we can
1625  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1626  * mapping.
1627  */
1628 STATIC int
1629 xfs_filemap_page_mkwrite(
1630 	struct vm_area_struct	*vma,
1631 	struct vm_fault		*vmf)
1632 {
1633 	struct inode		*inode = file_inode(vma->vm_file);
1634 	int			ret;
1635 
1636 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1637 
1638 	sb_start_pagefault(inode->i_sb);
1639 	file_update_time(vma->vm_file);
1640 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1641 
1642 	if (IS_DAX(inode)) {
1643 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1644 	} else {
1645 		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1646 		ret = block_page_mkwrite_return(ret);
1647 	}
1648 
1649 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1650 	sb_end_pagefault(inode->i_sb);
1651 
1652 	return ret;
1653 }
1654 
1655 STATIC int
1656 xfs_filemap_fault(
1657 	struct vm_area_struct	*vma,
1658 	struct vm_fault		*vmf)
1659 {
1660 	struct inode		*inode = file_inode(vma->vm_file);
1661 	int			ret;
1662 
1663 	trace_xfs_filemap_fault(XFS_I(inode));
1664 
1665 	/* DAX can shortcut the normal fault path on write faults! */
1666 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1667 		return xfs_filemap_page_mkwrite(vma, vmf);
1668 
1669 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1670 	if (IS_DAX(inode)) {
1671 		/*
1672 		 * we do not want to trigger unwritten extent conversion on read
1673 		 * faults - that is unnecessary overhead and would also require
1674 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1675 		 * ioend for conversion on read-only mappings.
1676 		 */
1677 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1678 	} else
1679 		ret = filemap_fault(vma, vmf);
1680 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1681 
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1687  * both read and write faults. Hence we need to handle both cases. There is no
1688  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1689  * handle both cases here. @flags carries the information on the type of fault
1690  * occuring.
1691  */
1692 STATIC int
1693 xfs_filemap_pmd_fault(
1694 	struct vm_area_struct	*vma,
1695 	unsigned long		addr,
1696 	pmd_t			*pmd,
1697 	unsigned int		flags)
1698 {
1699 	struct inode		*inode = file_inode(vma->vm_file);
1700 	struct xfs_inode	*ip = XFS_I(inode);
1701 	int			ret;
1702 
1703 	if (!IS_DAX(inode))
1704 		return VM_FAULT_FALLBACK;
1705 
1706 	trace_xfs_filemap_pmd_fault(ip);
1707 
1708 	if (flags & FAULT_FLAG_WRITE) {
1709 		sb_start_pagefault(inode->i_sb);
1710 		file_update_time(vma->vm_file);
1711 	}
1712 
1713 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1714 	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1715 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1716 
1717 	if (flags & FAULT_FLAG_WRITE)
1718 		sb_end_pagefault(inode->i_sb);
1719 
1720 	return ret;
1721 }
1722 
1723 /*
1724  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1725  * updates on write faults. In reality, it's need to serialise against
1726  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1727  * to ensure we serialise the fault barrier in place.
1728  */
1729 static int
1730 xfs_filemap_pfn_mkwrite(
1731 	struct vm_area_struct	*vma,
1732 	struct vm_fault		*vmf)
1733 {
1734 
1735 	struct inode		*inode = file_inode(vma->vm_file);
1736 	struct xfs_inode	*ip = XFS_I(inode);
1737 	int			ret = VM_FAULT_NOPAGE;
1738 	loff_t			size;
1739 
1740 	trace_xfs_filemap_pfn_mkwrite(ip);
1741 
1742 	sb_start_pagefault(inode->i_sb);
1743 	file_update_time(vma->vm_file);
1744 
1745 	/* check if the faulting page hasn't raced with truncate */
1746 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1747 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1748 	if (vmf->pgoff >= size)
1749 		ret = VM_FAULT_SIGBUS;
1750 	else if (IS_DAX(inode))
1751 		ret = dax_pfn_mkwrite(vma, vmf);
1752 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1753 	sb_end_pagefault(inode->i_sb);
1754 	return ret;
1755 
1756 }
1757 
1758 static const struct vm_operations_struct xfs_file_vm_ops = {
1759 	.fault		= xfs_filemap_fault,
1760 	.pmd_fault	= xfs_filemap_pmd_fault,
1761 	.map_pages	= filemap_map_pages,
1762 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1763 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1764 };
1765 
1766 STATIC int
1767 xfs_file_mmap(
1768 	struct file	*filp,
1769 	struct vm_area_struct *vma)
1770 {
1771 	file_accessed(filp);
1772 	vma->vm_ops = &xfs_file_vm_ops;
1773 	if (IS_DAX(file_inode(filp)))
1774 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1775 	return 0;
1776 }
1777 
1778 const struct file_operations xfs_file_operations = {
1779 	.llseek		= xfs_file_llseek,
1780 	.read_iter	= xfs_file_read_iter,
1781 	.write_iter	= xfs_file_write_iter,
1782 	.splice_read	= generic_file_splice_read,
1783 	.splice_write	= iter_file_splice_write,
1784 	.unlocked_ioctl	= xfs_file_ioctl,
1785 #ifdef CONFIG_COMPAT
1786 	.compat_ioctl	= xfs_file_compat_ioctl,
1787 #endif
1788 	.mmap		= xfs_file_mmap,
1789 	.open		= xfs_file_open,
1790 	.release	= xfs_file_release,
1791 	.fsync		= xfs_file_fsync,
1792 	.get_unmapped_area = thp_get_unmapped_area,
1793 	.fallocate	= xfs_file_fallocate,
1794 	.copy_file_range = xfs_file_copy_range,
1795 	.clone_file_range = xfs_file_clone_range,
1796 	.dedupe_file_range = xfs_file_dedupe_range,
1797 };
1798 
1799 const struct file_operations xfs_dir_file_operations = {
1800 	.open		= xfs_dir_open,
1801 	.read		= generic_read_dir,
1802 	.iterate_shared	= xfs_file_readdir,
1803 	.llseek		= generic_file_llseek,
1804 	.unlocked_ioctl	= xfs_file_ioctl,
1805 #ifdef CONFIG_COMPAT
1806 	.compat_ioctl	= xfs_file_compat_ioctl,
1807 #endif
1808 	.fsync		= xfs_dir_fsync,
1809 };
1810