xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/dax.h>
29 #include <linux/falloc.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mman.h>
32 #include <linux/fadvise.h>
33 #include <linux/mount.h>
34 
35 static const struct vm_operations_struct xfs_file_vm_ops;
36 
37 /*
38  * Decide if the given file range is aligned to the size of the fundamental
39  * allocation unit for the file.
40  */
41 static bool
42 xfs_is_falloc_aligned(
43 	struct xfs_inode	*ip,
44 	loff_t			pos,
45 	long long int		len)
46 {
47 	struct xfs_mount	*mp = ip->i_mount;
48 	uint64_t		mask;
49 
50 	if (XFS_IS_REALTIME_INODE(ip)) {
51 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52 			u64	rextbytes;
53 			u32	mod;
54 
55 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56 			div_u64_rem(pos, rextbytes, &mod);
57 			if (mod)
58 				return false;
59 			div_u64_rem(len, rextbytes, &mod);
60 			return mod == 0;
61 		}
62 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63 	} else {
64 		mask = mp->m_sb.sb_blocksize - 1;
65 	}
66 
67 	return !((pos | len) & mask);
68 }
69 
70 /*
71  * Fsync operations on directories are much simpler than on regular files,
72  * as there is no file data to flush, and thus also no need for explicit
73  * cache flush operations, and there are no non-transaction metadata updates
74  * on directories either.
75  */
76 STATIC int
77 xfs_dir_fsync(
78 	struct file		*file,
79 	loff_t			start,
80 	loff_t			end,
81 	int			datasync)
82 {
83 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
84 
85 	trace_xfs_dir_fsync(ip);
86 	return xfs_log_force_inode(ip);
87 }
88 
89 static xfs_csn_t
90 xfs_fsync_seq(
91 	struct xfs_inode	*ip,
92 	bool			datasync)
93 {
94 	if (!xfs_ipincount(ip))
95 		return 0;
96 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97 		return 0;
98 	return ip->i_itemp->ili_commit_seq;
99 }
100 
101 /*
102  * All metadata updates are logged, which means that we just have to flush the
103  * log up to the latest LSN that touched the inode.
104  *
105  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106  * the log force before we clear the ili_fsync_fields field. This ensures that
107  * we don't get a racing sync operation that does not wait for the metadata to
108  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
109  * then all that will happen is the log force will do nothing as the lsn will
110  * already be on disk.  We can't race with setting ili_fsync_fields because that
111  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112  * shared until after the ili_fsync_fields is cleared.
113  */
114 static  int
115 xfs_fsync_flush_log(
116 	struct xfs_inode	*ip,
117 	bool			datasync,
118 	int			*log_flushed)
119 {
120 	int			error = 0;
121 	xfs_csn_t		seq;
122 
123 	xfs_ilock(ip, XFS_ILOCK_SHARED);
124 	seq = xfs_fsync_seq(ip, datasync);
125 	if (seq) {
126 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
127 					  log_flushed);
128 
129 		spin_lock(&ip->i_itemp->ili_lock);
130 		ip->i_itemp->ili_fsync_fields = 0;
131 		spin_unlock(&ip->i_itemp->ili_lock);
132 	}
133 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
134 	return error;
135 }
136 
137 STATIC int
138 xfs_file_fsync(
139 	struct file		*file,
140 	loff_t			start,
141 	loff_t			end,
142 	int			datasync)
143 {
144 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145 	struct xfs_mount	*mp = ip->i_mount;
146 	int			error, err2;
147 	int			log_flushed = 0;
148 
149 	trace_xfs_file_fsync(ip);
150 
151 	error = file_write_and_wait_range(file, start, end);
152 	if (error)
153 		return error;
154 
155 	if (xfs_is_shutdown(mp))
156 		return -EIO;
157 
158 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
159 
160 	/*
161 	 * If we have an RT and/or log subvolume we need to make sure to flush
162 	 * the write cache the device used for file data first.  This is to
163 	 * ensure newly written file data make it to disk before logging the new
164 	 * inode size in case of an extending write.
165 	 */
166 	if (XFS_IS_REALTIME_INODE(ip))
167 		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
168 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
169 		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
170 
171 	/*
172 	 * Any inode that has dirty modifications in the log is pinned.  The
173 	 * racy check here for a pinned inode will not catch modifications
174 	 * that happen concurrently to the fsync call, but fsync semantics
175 	 * only require to sync previously completed I/O.
176 	 */
177 	if (xfs_ipincount(ip)) {
178 		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179 		if (err2 && !error)
180 			error = err2;
181 	}
182 
183 	/*
184 	 * If we only have a single device, and the log force about was
185 	 * a no-op we might have to flush the data device cache here.
186 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187 	 * an already allocated file and thus do not have any metadata to
188 	 * commit.
189 	 */
190 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
191 	    mp->m_logdev_targp == mp->m_ddev_targp) {
192 		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193 		if (err2 && !error)
194 			error = err2;
195 	}
196 
197 	return error;
198 }
199 
200 static int
201 xfs_ilock_iocb(
202 	struct kiocb		*iocb,
203 	unsigned int		lock_mode)
204 {
205 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
206 
207 	if (iocb->ki_flags & IOCB_NOWAIT) {
208 		if (!xfs_ilock_nowait(ip, lock_mode))
209 			return -EAGAIN;
210 	} else {
211 		xfs_ilock(ip, lock_mode);
212 	}
213 
214 	return 0;
215 }
216 
217 STATIC ssize_t
218 xfs_file_dio_read(
219 	struct kiocb		*iocb,
220 	struct iov_iter		*to)
221 {
222 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
223 	ssize_t			ret;
224 
225 	trace_xfs_file_direct_read(iocb, to);
226 
227 	if (!iov_iter_count(to))
228 		return 0; /* skip atime */
229 
230 	file_accessed(iocb->ki_filp);
231 
232 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
233 	if (ret)
234 		return ret;
235 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
236 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
237 
238 	return ret;
239 }
240 
241 static noinline ssize_t
242 xfs_file_dax_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
247 	ssize_t			ret = 0;
248 
249 	trace_xfs_file_dax_read(iocb, to);
250 
251 	if (!iov_iter_count(to))
252 		return 0; /* skip atime */
253 
254 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
255 	if (ret)
256 		return ret;
257 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
258 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
259 
260 	file_accessed(iocb->ki_filp);
261 	return ret;
262 }
263 
264 STATIC ssize_t
265 xfs_file_buffered_read(
266 	struct kiocb		*iocb,
267 	struct iov_iter		*to)
268 {
269 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
270 	ssize_t			ret;
271 
272 	trace_xfs_file_buffered_read(iocb, to);
273 
274 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
275 	if (ret)
276 		return ret;
277 	ret = generic_file_read_iter(iocb, to);
278 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
279 
280 	return ret;
281 }
282 
283 STATIC ssize_t
284 xfs_file_read_iter(
285 	struct kiocb		*iocb,
286 	struct iov_iter		*to)
287 {
288 	struct inode		*inode = file_inode(iocb->ki_filp);
289 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
290 	ssize_t			ret = 0;
291 
292 	XFS_STATS_INC(mp, xs_read_calls);
293 
294 	if (xfs_is_shutdown(mp))
295 		return -EIO;
296 
297 	if (IS_DAX(inode))
298 		ret = xfs_file_dax_read(iocb, to);
299 	else if (iocb->ki_flags & IOCB_DIRECT)
300 		ret = xfs_file_dio_read(iocb, to);
301 	else
302 		ret = xfs_file_buffered_read(iocb, to);
303 
304 	if (ret > 0)
305 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
306 	return ret;
307 }
308 
309 STATIC ssize_t
310 xfs_file_splice_read(
311 	struct file		*in,
312 	loff_t			*ppos,
313 	struct pipe_inode_info	*pipe,
314 	size_t			len,
315 	unsigned int		flags)
316 {
317 	struct inode		*inode = file_inode(in);
318 	struct xfs_inode	*ip = XFS_I(inode);
319 	struct xfs_mount	*mp = ip->i_mount;
320 	ssize_t			ret = 0;
321 
322 	XFS_STATS_INC(mp, xs_read_calls);
323 
324 	if (xfs_is_shutdown(mp))
325 		return -EIO;
326 
327 	trace_xfs_file_splice_read(ip, *ppos, len);
328 
329 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
330 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
331 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
332 	if (ret > 0)
333 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
334 	return ret;
335 }
336 
337 /*
338  * Common pre-write limit and setup checks.
339  *
340  * Called with the iolocked held either shared and exclusive according to
341  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
342  * if called for a direct write beyond i_size.
343  */
344 STATIC ssize_t
345 xfs_file_write_checks(
346 	struct kiocb		*iocb,
347 	struct iov_iter		*from,
348 	unsigned int		*iolock)
349 {
350 	struct file		*file = iocb->ki_filp;
351 	struct inode		*inode = file->f_mapping->host;
352 	struct xfs_inode	*ip = XFS_I(inode);
353 	ssize_t			error = 0;
354 	size_t			count = iov_iter_count(from);
355 	bool			drained_dio = false;
356 	loff_t			isize;
357 
358 restart:
359 	error = generic_write_checks(iocb, from);
360 	if (error <= 0)
361 		return error;
362 
363 	if (iocb->ki_flags & IOCB_NOWAIT) {
364 		error = break_layout(inode, false);
365 		if (error == -EWOULDBLOCK)
366 			error = -EAGAIN;
367 	} else {
368 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
369 	}
370 
371 	if (error)
372 		return error;
373 
374 	/*
375 	 * For changing security info in file_remove_privs() we need i_rwsem
376 	 * exclusively.
377 	 */
378 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
379 		xfs_iunlock(ip, *iolock);
380 		*iolock = XFS_IOLOCK_EXCL;
381 		error = xfs_ilock_iocb(iocb, *iolock);
382 		if (error) {
383 			*iolock = 0;
384 			return error;
385 		}
386 		goto restart;
387 	}
388 
389 	/*
390 	 * If the offset is beyond the size of the file, we need to zero any
391 	 * blocks that fall between the existing EOF and the start of this
392 	 * write.  If zeroing is needed and we are currently holding the iolock
393 	 * shared, we need to update it to exclusive which implies having to
394 	 * redo all checks before.
395 	 *
396 	 * We need to serialise against EOF updates that occur in IO completions
397 	 * here. We want to make sure that nobody is changing the size while we
398 	 * do this check until we have placed an IO barrier (i.e.  hold the
399 	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
400 	 * spinlock effectively forms a memory barrier once we have the
401 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
402 	 * hence be able to correctly determine if we need to run zeroing.
403 	 *
404 	 * We can do an unlocked check here safely as IO completion can only
405 	 * extend EOF. Truncate is locked out at this point, so the EOF can
406 	 * not move backwards, only forwards. Hence we only need to take the
407 	 * slow path and spin locks when we are at or beyond the current EOF.
408 	 */
409 	if (iocb->ki_pos <= i_size_read(inode))
410 		goto out;
411 
412 	spin_lock(&ip->i_flags_lock);
413 	isize = i_size_read(inode);
414 	if (iocb->ki_pos > isize) {
415 		spin_unlock(&ip->i_flags_lock);
416 
417 		if (iocb->ki_flags & IOCB_NOWAIT)
418 			return -EAGAIN;
419 
420 		if (!drained_dio) {
421 			if (*iolock == XFS_IOLOCK_SHARED) {
422 				xfs_iunlock(ip, *iolock);
423 				*iolock = XFS_IOLOCK_EXCL;
424 				xfs_ilock(ip, *iolock);
425 				iov_iter_reexpand(from, count);
426 			}
427 			/*
428 			 * We now have an IO submission barrier in place, but
429 			 * AIO can do EOF updates during IO completion and hence
430 			 * we now need to wait for all of them to drain. Non-AIO
431 			 * DIO will have drained before we are given the
432 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
433 			 * no-op.
434 			 */
435 			inode_dio_wait(inode);
436 			drained_dio = true;
437 			goto restart;
438 		}
439 
440 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
441 		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
442 		if (error)
443 			return error;
444 	} else
445 		spin_unlock(&ip->i_flags_lock);
446 
447 out:
448 	return kiocb_modified(iocb);
449 }
450 
451 static int
452 xfs_dio_write_end_io(
453 	struct kiocb		*iocb,
454 	ssize_t			size,
455 	int			error,
456 	unsigned		flags)
457 {
458 	struct inode		*inode = file_inode(iocb->ki_filp);
459 	struct xfs_inode	*ip = XFS_I(inode);
460 	loff_t			offset = iocb->ki_pos;
461 	unsigned int		nofs_flag;
462 
463 	trace_xfs_end_io_direct_write(ip, offset, size);
464 
465 	if (xfs_is_shutdown(ip->i_mount))
466 		return -EIO;
467 
468 	if (error)
469 		return error;
470 	if (!size)
471 		return 0;
472 
473 	/*
474 	 * Capture amount written on completion as we can't reliably account
475 	 * for it on submission.
476 	 */
477 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
478 
479 	/*
480 	 * We can allocate memory here while doing writeback on behalf of
481 	 * memory reclaim.  To avoid memory allocation deadlocks set the
482 	 * task-wide nofs context for the following operations.
483 	 */
484 	nofs_flag = memalloc_nofs_save();
485 
486 	if (flags & IOMAP_DIO_COW) {
487 		error = xfs_reflink_end_cow(ip, offset, size);
488 		if (error)
489 			goto out;
490 	}
491 
492 	/*
493 	 * Unwritten conversion updates the in-core isize after extent
494 	 * conversion but before updating the on-disk size. Updating isize any
495 	 * earlier allows a racing dio read to find unwritten extents before
496 	 * they are converted.
497 	 */
498 	if (flags & IOMAP_DIO_UNWRITTEN) {
499 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
500 		goto out;
501 	}
502 
503 	/*
504 	 * We need to update the in-core inode size here so that we don't end up
505 	 * with the on-disk inode size being outside the in-core inode size. We
506 	 * have no other method of updating EOF for AIO, so always do it here
507 	 * if necessary.
508 	 *
509 	 * We need to lock the test/set EOF update as we can be racing with
510 	 * other IO completions here to update the EOF. Failing to serialise
511 	 * here can result in EOF moving backwards and Bad Things Happen when
512 	 * that occurs.
513 	 *
514 	 * As IO completion only ever extends EOF, we can do an unlocked check
515 	 * here to avoid taking the spinlock. If we land within the current EOF,
516 	 * then we do not need to do an extending update at all, and we don't
517 	 * need to take the lock to check this. If we race with an update moving
518 	 * EOF, then we'll either still be beyond EOF and need to take the lock,
519 	 * or we'll be within EOF and we don't need to take it at all.
520 	 */
521 	if (offset + size <= i_size_read(inode))
522 		goto out;
523 
524 	spin_lock(&ip->i_flags_lock);
525 	if (offset + size > i_size_read(inode)) {
526 		i_size_write(inode, offset + size);
527 		spin_unlock(&ip->i_flags_lock);
528 		error = xfs_setfilesize(ip, offset, size);
529 	} else {
530 		spin_unlock(&ip->i_flags_lock);
531 	}
532 
533 out:
534 	memalloc_nofs_restore(nofs_flag);
535 	return error;
536 }
537 
538 static const struct iomap_dio_ops xfs_dio_write_ops = {
539 	.end_io		= xfs_dio_write_end_io,
540 };
541 
542 /*
543  * Handle block aligned direct I/O writes
544  */
545 static noinline ssize_t
546 xfs_file_dio_write_aligned(
547 	struct xfs_inode	*ip,
548 	struct kiocb		*iocb,
549 	struct iov_iter		*from)
550 {
551 	unsigned int		iolock = XFS_IOLOCK_SHARED;
552 	ssize_t			ret;
553 
554 	ret = xfs_ilock_iocb(iocb, iolock);
555 	if (ret)
556 		return ret;
557 	ret = xfs_file_write_checks(iocb, from, &iolock);
558 	if (ret)
559 		goto out_unlock;
560 
561 	/*
562 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
563 	 * the iolock back to shared if we had to take the exclusive lock in
564 	 * xfs_file_write_checks() for other reasons.
565 	 */
566 	if (iolock == XFS_IOLOCK_EXCL) {
567 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
568 		iolock = XFS_IOLOCK_SHARED;
569 	}
570 	trace_xfs_file_direct_write(iocb, from);
571 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
572 			   &xfs_dio_write_ops, 0, NULL, 0);
573 out_unlock:
574 	if (iolock)
575 		xfs_iunlock(ip, iolock);
576 	return ret;
577 }
578 
579 /*
580  * Handle block unaligned direct I/O writes
581  *
582  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
583  * them to be done in parallel with reads and other direct I/O writes.  However,
584  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
585  * to do sub-block zeroing and that requires serialisation against other direct
586  * I/O to the same block.  In this case we need to serialise the submission of
587  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
588  * In the case where sub-block zeroing is not required, we can do concurrent
589  * sub-block dios to the same block successfully.
590  *
591  * Optimistically submit the I/O using the shared lock first, but use the
592  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
593  * if block allocation or partial block zeroing would be required.  In that case
594  * we try again with the exclusive lock.
595  */
596 static noinline ssize_t
597 xfs_file_dio_write_unaligned(
598 	struct xfs_inode	*ip,
599 	struct kiocb		*iocb,
600 	struct iov_iter		*from)
601 {
602 	size_t			isize = i_size_read(VFS_I(ip));
603 	size_t			count = iov_iter_count(from);
604 	unsigned int		iolock = XFS_IOLOCK_SHARED;
605 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
606 	ssize_t			ret;
607 
608 	/*
609 	 * Extending writes need exclusivity because of the sub-block zeroing
610 	 * that the DIO code always does for partial tail blocks beyond EOF, so
611 	 * don't even bother trying the fast path in this case.
612 	 */
613 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
614 		if (iocb->ki_flags & IOCB_NOWAIT)
615 			return -EAGAIN;
616 retry_exclusive:
617 		iolock = XFS_IOLOCK_EXCL;
618 		flags = IOMAP_DIO_FORCE_WAIT;
619 	}
620 
621 	ret = xfs_ilock_iocb(iocb, iolock);
622 	if (ret)
623 		return ret;
624 
625 	/*
626 	 * We can't properly handle unaligned direct I/O to reflink files yet,
627 	 * as we can't unshare a partial block.
628 	 */
629 	if (xfs_is_cow_inode(ip)) {
630 		trace_xfs_reflink_bounce_dio_write(iocb, from);
631 		ret = -ENOTBLK;
632 		goto out_unlock;
633 	}
634 
635 	ret = xfs_file_write_checks(iocb, from, &iolock);
636 	if (ret)
637 		goto out_unlock;
638 
639 	/*
640 	 * If we are doing exclusive unaligned I/O, this must be the only I/O
641 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
642 	 * conversions from the AIO end_io handler.  Wait for all other I/O to
643 	 * drain first.
644 	 */
645 	if (flags & IOMAP_DIO_FORCE_WAIT)
646 		inode_dio_wait(VFS_I(ip));
647 
648 	trace_xfs_file_direct_write(iocb, from);
649 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
650 			   &xfs_dio_write_ops, flags, NULL, 0);
651 
652 	/*
653 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
654 	 * layer rejected it for mapping or locking reasons. If we are doing
655 	 * nonblocking user I/O, propagate the error.
656 	 */
657 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
658 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
659 		xfs_iunlock(ip, iolock);
660 		goto retry_exclusive;
661 	}
662 
663 out_unlock:
664 	if (iolock)
665 		xfs_iunlock(ip, iolock);
666 	return ret;
667 }
668 
669 static ssize_t
670 xfs_file_dio_write(
671 	struct kiocb		*iocb,
672 	struct iov_iter		*from)
673 {
674 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
675 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
676 	size_t			count = iov_iter_count(from);
677 
678 	/* direct I/O must be aligned to device logical sector size */
679 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
680 		return -EINVAL;
681 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
682 		return xfs_file_dio_write_unaligned(ip, iocb, from);
683 	return xfs_file_dio_write_aligned(ip, iocb, from);
684 }
685 
686 static noinline ssize_t
687 xfs_file_dax_write(
688 	struct kiocb		*iocb,
689 	struct iov_iter		*from)
690 {
691 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
692 	struct xfs_inode	*ip = XFS_I(inode);
693 	unsigned int		iolock = XFS_IOLOCK_EXCL;
694 	ssize_t			ret, error = 0;
695 	loff_t			pos;
696 
697 	ret = xfs_ilock_iocb(iocb, iolock);
698 	if (ret)
699 		return ret;
700 	ret = xfs_file_write_checks(iocb, from, &iolock);
701 	if (ret)
702 		goto out;
703 
704 	pos = iocb->ki_pos;
705 
706 	trace_xfs_file_dax_write(iocb, from);
707 	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
708 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
709 		i_size_write(inode, iocb->ki_pos);
710 		error = xfs_setfilesize(ip, pos, ret);
711 	}
712 out:
713 	if (iolock)
714 		xfs_iunlock(ip, iolock);
715 	if (error)
716 		return error;
717 
718 	if (ret > 0) {
719 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
720 
721 		/* Handle various SYNC-type writes */
722 		ret = generic_write_sync(iocb, ret);
723 	}
724 	return ret;
725 }
726 
727 STATIC ssize_t
728 xfs_file_buffered_write(
729 	struct kiocb		*iocb,
730 	struct iov_iter		*from)
731 {
732 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
733 	struct xfs_inode	*ip = XFS_I(inode);
734 	ssize_t			ret;
735 	bool			cleared_space = false;
736 	unsigned int		iolock;
737 
738 write_retry:
739 	iolock = XFS_IOLOCK_EXCL;
740 	ret = xfs_ilock_iocb(iocb, iolock);
741 	if (ret)
742 		return ret;
743 
744 	ret = xfs_file_write_checks(iocb, from, &iolock);
745 	if (ret)
746 		goto out;
747 
748 	/* We can write back this queue in page reclaim */
749 	current->backing_dev_info = inode_to_bdi(inode);
750 
751 	trace_xfs_file_buffered_write(iocb, from);
752 	ret = iomap_file_buffered_write(iocb, from,
753 			&xfs_buffered_write_iomap_ops);
754 	if (likely(ret >= 0))
755 		iocb->ki_pos += ret;
756 
757 	/*
758 	 * If we hit a space limit, try to free up some lingering preallocated
759 	 * space before returning an error. In the case of ENOSPC, first try to
760 	 * write back all dirty inodes to free up some of the excess reserved
761 	 * metadata space. This reduces the chances that the eofblocks scan
762 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
763 	 * also behaves as a filter to prevent too many eofblocks scans from
764 	 * running at the same time.  Use a synchronous scan to increase the
765 	 * effectiveness of the scan.
766 	 */
767 	if (ret == -EDQUOT && !cleared_space) {
768 		xfs_iunlock(ip, iolock);
769 		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
770 		cleared_space = true;
771 		goto write_retry;
772 	} else if (ret == -ENOSPC && !cleared_space) {
773 		struct xfs_icwalk	icw = {0};
774 
775 		cleared_space = true;
776 		xfs_flush_inodes(ip->i_mount);
777 
778 		xfs_iunlock(ip, iolock);
779 		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
780 		xfs_blockgc_free_space(ip->i_mount, &icw);
781 		goto write_retry;
782 	}
783 
784 	current->backing_dev_info = NULL;
785 out:
786 	if (iolock)
787 		xfs_iunlock(ip, iolock);
788 
789 	if (ret > 0) {
790 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
791 		/* Handle various SYNC-type writes */
792 		ret = generic_write_sync(iocb, ret);
793 	}
794 	return ret;
795 }
796 
797 STATIC ssize_t
798 xfs_file_write_iter(
799 	struct kiocb		*iocb,
800 	struct iov_iter		*from)
801 {
802 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
803 	struct xfs_inode	*ip = XFS_I(inode);
804 	ssize_t			ret;
805 	size_t			ocount = iov_iter_count(from);
806 
807 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
808 
809 	if (ocount == 0)
810 		return 0;
811 
812 	if (xfs_is_shutdown(ip->i_mount))
813 		return -EIO;
814 
815 	if (IS_DAX(inode))
816 		return xfs_file_dax_write(iocb, from);
817 
818 	if (iocb->ki_flags & IOCB_DIRECT) {
819 		/*
820 		 * Allow a directio write to fall back to a buffered
821 		 * write *only* in the case that we're doing a reflink
822 		 * CoW.  In all other directio scenarios we do not
823 		 * allow an operation to fall back to buffered mode.
824 		 */
825 		ret = xfs_file_dio_write(iocb, from);
826 		if (ret != -ENOTBLK)
827 			return ret;
828 	}
829 
830 	return xfs_file_buffered_write(iocb, from);
831 }
832 
833 static void
834 xfs_wait_dax_page(
835 	struct inode		*inode)
836 {
837 	struct xfs_inode        *ip = XFS_I(inode);
838 
839 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
840 	schedule();
841 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
842 }
843 
844 int
845 xfs_break_dax_layouts(
846 	struct inode		*inode,
847 	bool			*retry)
848 {
849 	struct page		*page;
850 
851 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
852 
853 	page = dax_layout_busy_page(inode->i_mapping);
854 	if (!page)
855 		return 0;
856 
857 	*retry = true;
858 	return ___wait_var_event(&page->_refcount,
859 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
860 			0, 0, xfs_wait_dax_page(inode));
861 }
862 
863 int
864 xfs_break_layouts(
865 	struct inode		*inode,
866 	uint			*iolock,
867 	enum layout_break_reason reason)
868 {
869 	bool			retry;
870 	int			error;
871 
872 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
873 
874 	do {
875 		retry = false;
876 		switch (reason) {
877 		case BREAK_UNMAP:
878 			error = xfs_break_dax_layouts(inode, &retry);
879 			if (error || retry)
880 				break;
881 			fallthrough;
882 		case BREAK_WRITE:
883 			error = xfs_break_leased_layouts(inode, iolock, &retry);
884 			break;
885 		default:
886 			WARN_ON_ONCE(1);
887 			error = -EINVAL;
888 		}
889 	} while (error == 0 && retry);
890 
891 	return error;
892 }
893 
894 /* Does this file, inode, or mount want synchronous writes? */
895 static inline bool xfs_file_sync_writes(struct file *filp)
896 {
897 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
898 
899 	if (xfs_has_wsync(ip->i_mount))
900 		return true;
901 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
902 		return true;
903 	if (IS_SYNC(file_inode(filp)))
904 		return true;
905 
906 	return false;
907 }
908 
909 #define	XFS_FALLOC_FL_SUPPORTED						\
910 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
911 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
912 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
913 
914 STATIC long
915 xfs_file_fallocate(
916 	struct file		*file,
917 	int			mode,
918 	loff_t			offset,
919 	loff_t			len)
920 {
921 	struct inode		*inode = file_inode(file);
922 	struct xfs_inode	*ip = XFS_I(inode);
923 	long			error;
924 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
925 	loff_t			new_size = 0;
926 	bool			do_file_insert = false;
927 
928 	if (!S_ISREG(inode->i_mode))
929 		return -EINVAL;
930 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
931 		return -EOPNOTSUPP;
932 
933 	xfs_ilock(ip, iolock);
934 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
935 	if (error)
936 		goto out_unlock;
937 
938 	/*
939 	 * Must wait for all AIO to complete before we continue as AIO can
940 	 * change the file size on completion without holding any locks we
941 	 * currently hold. We must do this first because AIO can update both
942 	 * the on disk and in memory inode sizes, and the operations that follow
943 	 * require the in-memory size to be fully up-to-date.
944 	 */
945 	inode_dio_wait(inode);
946 
947 	/*
948 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
949 	 * the cached range over the first operation we are about to run.
950 	 *
951 	 * We care about zero and collapse here because they both run a hole
952 	 * punch over the range first. Because that can zero data, and the range
953 	 * of invalidation for the shift operations is much larger, we still do
954 	 * the required flush for collapse in xfs_prepare_shift().
955 	 *
956 	 * Insert has the same range requirements as collapse, and we extend the
957 	 * file first which can zero data. Hence insert has the same
958 	 * flush/invalidate requirements as collapse and so they are both
959 	 * handled at the right time by xfs_prepare_shift().
960 	 */
961 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
962 		    FALLOC_FL_COLLAPSE_RANGE)) {
963 		error = xfs_flush_unmap_range(ip, offset, len);
964 		if (error)
965 			goto out_unlock;
966 	}
967 
968 	error = file_modified(file);
969 	if (error)
970 		goto out_unlock;
971 
972 	if (mode & FALLOC_FL_PUNCH_HOLE) {
973 		error = xfs_free_file_space(ip, offset, len);
974 		if (error)
975 			goto out_unlock;
976 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
977 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
978 			error = -EINVAL;
979 			goto out_unlock;
980 		}
981 
982 		/*
983 		 * There is no need to overlap collapse range with EOF,
984 		 * in which case it is effectively a truncate operation
985 		 */
986 		if (offset + len >= i_size_read(inode)) {
987 			error = -EINVAL;
988 			goto out_unlock;
989 		}
990 
991 		new_size = i_size_read(inode) - len;
992 
993 		error = xfs_collapse_file_space(ip, offset, len);
994 		if (error)
995 			goto out_unlock;
996 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
997 		loff_t		isize = i_size_read(inode);
998 
999 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1000 			error = -EINVAL;
1001 			goto out_unlock;
1002 		}
1003 
1004 		/*
1005 		 * New inode size must not exceed ->s_maxbytes, accounting for
1006 		 * possible signed overflow.
1007 		 */
1008 		if (inode->i_sb->s_maxbytes - isize < len) {
1009 			error = -EFBIG;
1010 			goto out_unlock;
1011 		}
1012 		new_size = isize + len;
1013 
1014 		/* Offset should be less than i_size */
1015 		if (offset >= isize) {
1016 			error = -EINVAL;
1017 			goto out_unlock;
1018 		}
1019 		do_file_insert = true;
1020 	} else {
1021 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1022 		    offset + len > i_size_read(inode)) {
1023 			new_size = offset + len;
1024 			error = inode_newsize_ok(inode, new_size);
1025 			if (error)
1026 				goto out_unlock;
1027 		}
1028 
1029 		if (mode & FALLOC_FL_ZERO_RANGE) {
1030 			/*
1031 			 * Punch a hole and prealloc the range.  We use a hole
1032 			 * punch rather than unwritten extent conversion for two
1033 			 * reasons:
1034 			 *
1035 			 *   1.) Hole punch handles partial block zeroing for us.
1036 			 *   2.) If prealloc returns ENOSPC, the file range is
1037 			 *       still zero-valued by virtue of the hole punch.
1038 			 */
1039 			unsigned int blksize = i_blocksize(inode);
1040 
1041 			trace_xfs_zero_file_space(ip);
1042 
1043 			error = xfs_free_file_space(ip, offset, len);
1044 			if (error)
1045 				goto out_unlock;
1046 
1047 			len = round_up(offset + len, blksize) -
1048 			      round_down(offset, blksize);
1049 			offset = round_down(offset, blksize);
1050 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1051 			error = xfs_reflink_unshare(ip, offset, len);
1052 			if (error)
1053 				goto out_unlock;
1054 		} else {
1055 			/*
1056 			 * If always_cow mode we can't use preallocations and
1057 			 * thus should not create them.
1058 			 */
1059 			if (xfs_is_always_cow_inode(ip)) {
1060 				error = -EOPNOTSUPP;
1061 				goto out_unlock;
1062 			}
1063 		}
1064 
1065 		if (!xfs_is_always_cow_inode(ip)) {
1066 			error = xfs_alloc_file_space(ip, offset, len);
1067 			if (error)
1068 				goto out_unlock;
1069 		}
1070 	}
1071 
1072 	/* Change file size if needed */
1073 	if (new_size) {
1074 		struct iattr iattr;
1075 
1076 		iattr.ia_valid = ATTR_SIZE;
1077 		iattr.ia_size = new_size;
1078 		error = xfs_vn_setattr_size(file_mnt_idmap(file),
1079 					    file_dentry(file), &iattr);
1080 		if (error)
1081 			goto out_unlock;
1082 	}
1083 
1084 	/*
1085 	 * Perform hole insertion now that the file size has been
1086 	 * updated so that if we crash during the operation we don't
1087 	 * leave shifted extents past EOF and hence losing access to
1088 	 * the data that is contained within them.
1089 	 */
1090 	if (do_file_insert) {
1091 		error = xfs_insert_file_space(ip, offset, len);
1092 		if (error)
1093 			goto out_unlock;
1094 	}
1095 
1096 	if (xfs_file_sync_writes(file))
1097 		error = xfs_log_force_inode(ip);
1098 
1099 out_unlock:
1100 	xfs_iunlock(ip, iolock);
1101 	return error;
1102 }
1103 
1104 STATIC int
1105 xfs_file_fadvise(
1106 	struct file	*file,
1107 	loff_t		start,
1108 	loff_t		end,
1109 	int		advice)
1110 {
1111 	struct xfs_inode *ip = XFS_I(file_inode(file));
1112 	int ret;
1113 	int lockflags = 0;
1114 
1115 	/*
1116 	 * Operations creating pages in page cache need protection from hole
1117 	 * punching and similar ops
1118 	 */
1119 	if (advice == POSIX_FADV_WILLNEED) {
1120 		lockflags = XFS_IOLOCK_SHARED;
1121 		xfs_ilock(ip, lockflags);
1122 	}
1123 	ret = generic_fadvise(file, start, end, advice);
1124 	if (lockflags)
1125 		xfs_iunlock(ip, lockflags);
1126 	return ret;
1127 }
1128 
1129 STATIC loff_t
1130 xfs_file_remap_range(
1131 	struct file		*file_in,
1132 	loff_t			pos_in,
1133 	struct file		*file_out,
1134 	loff_t			pos_out,
1135 	loff_t			len,
1136 	unsigned int		remap_flags)
1137 {
1138 	struct inode		*inode_in = file_inode(file_in);
1139 	struct xfs_inode	*src = XFS_I(inode_in);
1140 	struct inode		*inode_out = file_inode(file_out);
1141 	struct xfs_inode	*dest = XFS_I(inode_out);
1142 	struct xfs_mount	*mp = src->i_mount;
1143 	loff_t			remapped = 0;
1144 	xfs_extlen_t		cowextsize;
1145 	int			ret;
1146 
1147 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1148 		return -EINVAL;
1149 
1150 	if (!xfs_has_reflink(mp))
1151 		return -EOPNOTSUPP;
1152 
1153 	if (xfs_is_shutdown(mp))
1154 		return -EIO;
1155 
1156 	/* Prepare and then clone file data. */
1157 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1158 			&len, remap_flags);
1159 	if (ret || len == 0)
1160 		return ret;
1161 
1162 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1163 
1164 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1165 			&remapped);
1166 	if (ret)
1167 		goto out_unlock;
1168 
1169 	/*
1170 	 * Carry the cowextsize hint from src to dest if we're sharing the
1171 	 * entire source file to the entire destination file, the source file
1172 	 * has a cowextsize hint, and the destination file does not.
1173 	 */
1174 	cowextsize = 0;
1175 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1176 	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1177 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1178 	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1179 		cowextsize = src->i_cowextsize;
1180 
1181 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1182 			remap_flags);
1183 	if (ret)
1184 		goto out_unlock;
1185 
1186 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1187 		xfs_log_force_inode(dest);
1188 out_unlock:
1189 	xfs_iunlock2_io_mmap(src, dest);
1190 	if (ret)
1191 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1192 	return remapped > 0 ? remapped : ret;
1193 }
1194 
1195 STATIC int
1196 xfs_file_open(
1197 	struct inode	*inode,
1198 	struct file	*file)
1199 {
1200 	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1201 		return -EIO;
1202 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1203 			FMODE_DIO_PARALLEL_WRITE;
1204 	return generic_file_open(inode, file);
1205 }
1206 
1207 STATIC int
1208 xfs_dir_open(
1209 	struct inode	*inode,
1210 	struct file	*file)
1211 {
1212 	struct xfs_inode *ip = XFS_I(inode);
1213 	unsigned int	mode;
1214 	int		error;
1215 
1216 	error = xfs_file_open(inode, file);
1217 	if (error)
1218 		return error;
1219 
1220 	/*
1221 	 * If there are any blocks, read-ahead block 0 as we're almost
1222 	 * certain to have the next operation be a read there.
1223 	 */
1224 	mode = xfs_ilock_data_map_shared(ip);
1225 	if (ip->i_df.if_nextents > 0)
1226 		error = xfs_dir3_data_readahead(ip, 0, 0);
1227 	xfs_iunlock(ip, mode);
1228 	return error;
1229 }
1230 
1231 STATIC int
1232 xfs_file_release(
1233 	struct inode	*inode,
1234 	struct file	*filp)
1235 {
1236 	return xfs_release(XFS_I(inode));
1237 }
1238 
1239 STATIC int
1240 xfs_file_readdir(
1241 	struct file	*file,
1242 	struct dir_context *ctx)
1243 {
1244 	struct inode	*inode = file_inode(file);
1245 	xfs_inode_t	*ip = XFS_I(inode);
1246 	size_t		bufsize;
1247 
1248 	/*
1249 	 * The Linux API doesn't pass down the total size of the buffer
1250 	 * we read into down to the filesystem.  With the filldir concept
1251 	 * it's not needed for correct information, but the XFS dir2 leaf
1252 	 * code wants an estimate of the buffer size to calculate it's
1253 	 * readahead window and size the buffers used for mapping to
1254 	 * physical blocks.
1255 	 *
1256 	 * Try to give it an estimate that's good enough, maybe at some
1257 	 * point we can change the ->readdir prototype to include the
1258 	 * buffer size.  For now we use the current glibc buffer size.
1259 	 */
1260 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1261 
1262 	return xfs_readdir(NULL, ip, ctx, bufsize);
1263 }
1264 
1265 STATIC loff_t
1266 xfs_file_llseek(
1267 	struct file	*file,
1268 	loff_t		offset,
1269 	int		whence)
1270 {
1271 	struct inode		*inode = file->f_mapping->host;
1272 
1273 	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1274 		return -EIO;
1275 
1276 	switch (whence) {
1277 	default:
1278 		return generic_file_llseek(file, offset, whence);
1279 	case SEEK_HOLE:
1280 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1281 		break;
1282 	case SEEK_DATA:
1283 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1284 		break;
1285 	}
1286 
1287 	if (offset < 0)
1288 		return offset;
1289 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1290 }
1291 
1292 #ifdef CONFIG_FS_DAX
1293 static inline vm_fault_t
1294 xfs_dax_fault(
1295 	struct vm_fault		*vmf,
1296 	enum page_entry_size	pe_size,
1297 	bool			write_fault,
1298 	pfn_t			*pfn)
1299 {
1300 	return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1301 			(write_fault && !vmf->cow_page) ?
1302 				&xfs_dax_write_iomap_ops :
1303 				&xfs_read_iomap_ops);
1304 }
1305 #else
1306 static inline vm_fault_t
1307 xfs_dax_fault(
1308 	struct vm_fault		*vmf,
1309 	enum page_entry_size	pe_size,
1310 	bool			write_fault,
1311 	pfn_t			*pfn)
1312 {
1313 	ASSERT(0);
1314 	return VM_FAULT_SIGBUS;
1315 }
1316 #endif
1317 
1318 /*
1319  * Locking for serialisation of IO during page faults. This results in a lock
1320  * ordering of:
1321  *
1322  * mmap_lock (MM)
1323  *   sb_start_pagefault(vfs, freeze)
1324  *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1325  *       page_lock (MM)
1326  *         i_lock (XFS - extent map serialisation)
1327  */
1328 static vm_fault_t
1329 __xfs_filemap_fault(
1330 	struct vm_fault		*vmf,
1331 	enum page_entry_size	pe_size,
1332 	bool			write_fault)
1333 {
1334 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1335 	struct xfs_inode	*ip = XFS_I(inode);
1336 	vm_fault_t		ret;
1337 
1338 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1339 
1340 	if (write_fault) {
1341 		sb_start_pagefault(inode->i_sb);
1342 		file_update_time(vmf->vma->vm_file);
1343 	}
1344 
1345 	if (IS_DAX(inode)) {
1346 		pfn_t pfn;
1347 
1348 		xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1349 		ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
1350 		if (ret & VM_FAULT_NEEDDSYNC)
1351 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1352 		xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1353 	} else {
1354 		if (write_fault) {
1355 			xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1356 			ret = iomap_page_mkwrite(vmf,
1357 					&xfs_page_mkwrite_iomap_ops);
1358 			xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1359 		} else {
1360 			ret = filemap_fault(vmf);
1361 		}
1362 	}
1363 
1364 	if (write_fault)
1365 		sb_end_pagefault(inode->i_sb);
1366 	return ret;
1367 }
1368 
1369 static inline bool
1370 xfs_is_write_fault(
1371 	struct vm_fault		*vmf)
1372 {
1373 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1374 	       (vmf->vma->vm_flags & VM_SHARED);
1375 }
1376 
1377 static vm_fault_t
1378 xfs_filemap_fault(
1379 	struct vm_fault		*vmf)
1380 {
1381 	/* DAX can shortcut the normal fault path on write faults! */
1382 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1383 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1384 			xfs_is_write_fault(vmf));
1385 }
1386 
1387 static vm_fault_t
1388 xfs_filemap_huge_fault(
1389 	struct vm_fault		*vmf,
1390 	enum page_entry_size	pe_size)
1391 {
1392 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1393 		return VM_FAULT_FALLBACK;
1394 
1395 	/* DAX can shortcut the normal fault path on write faults! */
1396 	return __xfs_filemap_fault(vmf, pe_size,
1397 			xfs_is_write_fault(vmf));
1398 }
1399 
1400 static vm_fault_t
1401 xfs_filemap_page_mkwrite(
1402 	struct vm_fault		*vmf)
1403 {
1404 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1405 }
1406 
1407 /*
1408  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1409  * on write faults. In reality, it needs to serialise against truncate and
1410  * prepare memory for writing so handle is as standard write fault.
1411  */
1412 static vm_fault_t
1413 xfs_filemap_pfn_mkwrite(
1414 	struct vm_fault		*vmf)
1415 {
1416 
1417 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1418 }
1419 
1420 static const struct vm_operations_struct xfs_file_vm_ops = {
1421 	.fault		= xfs_filemap_fault,
1422 	.huge_fault	= xfs_filemap_huge_fault,
1423 	.map_pages	= filemap_map_pages,
1424 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1425 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1426 };
1427 
1428 STATIC int
1429 xfs_file_mmap(
1430 	struct file		*file,
1431 	struct vm_area_struct	*vma)
1432 {
1433 	struct inode		*inode = file_inode(file);
1434 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1435 
1436 	/*
1437 	 * We don't support synchronous mappings for non-DAX files and
1438 	 * for DAX files if underneath dax_device is not synchronous.
1439 	 */
1440 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1441 		return -EOPNOTSUPP;
1442 
1443 	file_accessed(file);
1444 	vma->vm_ops = &xfs_file_vm_ops;
1445 	if (IS_DAX(inode))
1446 		vm_flags_set(vma, VM_HUGEPAGE);
1447 	return 0;
1448 }
1449 
1450 const struct file_operations xfs_file_operations = {
1451 	.llseek		= xfs_file_llseek,
1452 	.read_iter	= xfs_file_read_iter,
1453 	.write_iter	= xfs_file_write_iter,
1454 	.splice_read	= xfs_file_splice_read,
1455 	.splice_write	= iter_file_splice_write,
1456 	.iopoll		= iocb_bio_iopoll,
1457 	.unlocked_ioctl	= xfs_file_ioctl,
1458 #ifdef CONFIG_COMPAT
1459 	.compat_ioctl	= xfs_file_compat_ioctl,
1460 #endif
1461 	.mmap		= xfs_file_mmap,
1462 	.mmap_supported_flags = MAP_SYNC,
1463 	.open		= xfs_file_open,
1464 	.release	= xfs_file_release,
1465 	.fsync		= xfs_file_fsync,
1466 	.get_unmapped_area = thp_get_unmapped_area,
1467 	.fallocate	= xfs_file_fallocate,
1468 	.fadvise	= xfs_file_fadvise,
1469 	.remap_file_range = xfs_file_remap_range,
1470 };
1471 
1472 const struct file_operations xfs_dir_file_operations = {
1473 	.open		= xfs_dir_open,
1474 	.read		= generic_read_dir,
1475 	.iterate_shared	= xfs_file_readdir,
1476 	.llseek		= generic_file_llseek,
1477 	.unlocked_ioctl	= xfs_file_ioctl,
1478 #ifdef CONFIG_COMPAT
1479 	.compat_ioctl	= xfs_file_compat_ioctl,
1480 #endif
1481 	.fsync		= xfs_dir_fsync,
1482 };
1483