1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/dax.h> 29 #include <linux/falloc.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mman.h> 32 #include <linux/fadvise.h> 33 #include <linux/mount.h> 34 35 static const struct vm_operations_struct xfs_file_vm_ops; 36 37 /* 38 * Decide if the given file range is aligned to the size of the fundamental 39 * allocation unit for the file. 40 */ 41 static bool 42 xfs_is_falloc_aligned( 43 struct xfs_inode *ip, 44 loff_t pos, 45 long long int len) 46 { 47 struct xfs_mount *mp = ip->i_mount; 48 uint64_t mask; 49 50 if (XFS_IS_REALTIME_INODE(ip)) { 51 if (!is_power_of_2(mp->m_sb.sb_rextsize)) { 52 u64 rextbytes; 53 u32 mod; 54 55 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); 56 div_u64_rem(pos, rextbytes, &mod); 57 if (mod) 58 return false; 59 div_u64_rem(len, rextbytes, &mod); 60 return mod == 0; 61 } 62 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; 63 } else { 64 mask = mp->m_sb.sb_blocksize - 1; 65 } 66 67 return !((pos | len) & mask); 68 } 69 70 /* 71 * Fsync operations on directories are much simpler than on regular files, 72 * as there is no file data to flush, and thus also no need for explicit 73 * cache flush operations, and there are no non-transaction metadata updates 74 * on directories either. 75 */ 76 STATIC int 77 xfs_dir_fsync( 78 struct file *file, 79 loff_t start, 80 loff_t end, 81 int datasync) 82 { 83 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 84 85 trace_xfs_dir_fsync(ip); 86 return xfs_log_force_inode(ip); 87 } 88 89 static xfs_csn_t 90 xfs_fsync_seq( 91 struct xfs_inode *ip, 92 bool datasync) 93 { 94 if (!xfs_ipincount(ip)) 95 return 0; 96 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 97 return 0; 98 return ip->i_itemp->ili_commit_seq; 99 } 100 101 /* 102 * All metadata updates are logged, which means that we just have to flush the 103 * log up to the latest LSN that touched the inode. 104 * 105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 106 * the log force before we clear the ili_fsync_fields field. This ensures that 107 * we don't get a racing sync operation that does not wait for the metadata to 108 * hit the journal before returning. If we race with clearing ili_fsync_fields, 109 * then all that will happen is the log force will do nothing as the lsn will 110 * already be on disk. We can't race with setting ili_fsync_fields because that 111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 112 * shared until after the ili_fsync_fields is cleared. 113 */ 114 static int 115 xfs_fsync_flush_log( 116 struct xfs_inode *ip, 117 bool datasync, 118 int *log_flushed) 119 { 120 int error = 0; 121 xfs_csn_t seq; 122 123 xfs_ilock(ip, XFS_ILOCK_SHARED); 124 seq = xfs_fsync_seq(ip, datasync); 125 if (seq) { 126 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, 127 log_flushed); 128 129 spin_lock(&ip->i_itemp->ili_lock); 130 ip->i_itemp->ili_fsync_fields = 0; 131 spin_unlock(&ip->i_itemp->ili_lock); 132 } 133 xfs_iunlock(ip, XFS_ILOCK_SHARED); 134 return error; 135 } 136 137 STATIC int 138 xfs_file_fsync( 139 struct file *file, 140 loff_t start, 141 loff_t end, 142 int datasync) 143 { 144 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 145 struct xfs_mount *mp = ip->i_mount; 146 int error, err2; 147 int log_flushed = 0; 148 149 trace_xfs_file_fsync(ip); 150 151 error = file_write_and_wait_range(file, start, end); 152 if (error) 153 return error; 154 155 if (xfs_is_shutdown(mp)) 156 return -EIO; 157 158 xfs_iflags_clear(ip, XFS_ITRUNCATED); 159 160 /* 161 * If we have an RT and/or log subvolume we need to make sure to flush 162 * the write cache the device used for file data first. This is to 163 * ensure newly written file data make it to disk before logging the new 164 * inode size in case of an extending write. 165 */ 166 if (XFS_IS_REALTIME_INODE(ip)) 167 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 168 else if (mp->m_logdev_targp != mp->m_ddev_targp) 169 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 170 171 /* 172 * Any inode that has dirty modifications in the log is pinned. The 173 * racy check here for a pinned inode will not catch modifications 174 * that happen concurrently to the fsync call, but fsync semantics 175 * only require to sync previously completed I/O. 176 */ 177 if (xfs_ipincount(ip)) { 178 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed); 179 if (err2 && !error) 180 error = err2; 181 } 182 183 /* 184 * If we only have a single device, and the log force about was 185 * a no-op we might have to flush the data device cache here. 186 * This can only happen for fdatasync/O_DSYNC if we were overwriting 187 * an already allocated file and thus do not have any metadata to 188 * commit. 189 */ 190 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 191 mp->m_logdev_targp == mp->m_ddev_targp) { 192 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 193 if (err2 && !error) 194 error = err2; 195 } 196 197 return error; 198 } 199 200 static int 201 xfs_ilock_iocb( 202 struct kiocb *iocb, 203 unsigned int lock_mode) 204 { 205 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 206 207 if (iocb->ki_flags & IOCB_NOWAIT) { 208 if (!xfs_ilock_nowait(ip, lock_mode)) 209 return -EAGAIN; 210 } else { 211 xfs_ilock(ip, lock_mode); 212 } 213 214 return 0; 215 } 216 217 STATIC ssize_t 218 xfs_file_dio_read( 219 struct kiocb *iocb, 220 struct iov_iter *to) 221 { 222 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 223 ssize_t ret; 224 225 trace_xfs_file_direct_read(iocb, to); 226 227 if (!iov_iter_count(to)) 228 return 0; /* skip atime */ 229 230 file_accessed(iocb->ki_filp); 231 232 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 233 if (ret) 234 return ret; 235 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0); 236 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 237 238 return ret; 239 } 240 241 static noinline ssize_t 242 xfs_file_dax_read( 243 struct kiocb *iocb, 244 struct iov_iter *to) 245 { 246 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 247 ssize_t ret = 0; 248 249 trace_xfs_file_dax_read(iocb, to); 250 251 if (!iov_iter_count(to)) 252 return 0; /* skip atime */ 253 254 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 255 if (ret) 256 return ret; 257 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 258 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 259 260 file_accessed(iocb->ki_filp); 261 return ret; 262 } 263 264 STATIC ssize_t 265 xfs_file_buffered_read( 266 struct kiocb *iocb, 267 struct iov_iter *to) 268 { 269 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 270 ssize_t ret; 271 272 trace_xfs_file_buffered_read(iocb, to); 273 274 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 275 if (ret) 276 return ret; 277 ret = generic_file_read_iter(iocb, to); 278 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 279 280 return ret; 281 } 282 283 STATIC ssize_t 284 xfs_file_read_iter( 285 struct kiocb *iocb, 286 struct iov_iter *to) 287 { 288 struct inode *inode = file_inode(iocb->ki_filp); 289 struct xfs_mount *mp = XFS_I(inode)->i_mount; 290 ssize_t ret = 0; 291 292 XFS_STATS_INC(mp, xs_read_calls); 293 294 if (xfs_is_shutdown(mp)) 295 return -EIO; 296 297 if (IS_DAX(inode)) 298 ret = xfs_file_dax_read(iocb, to); 299 else if (iocb->ki_flags & IOCB_DIRECT) 300 ret = xfs_file_dio_read(iocb, to); 301 else 302 ret = xfs_file_buffered_read(iocb, to); 303 304 if (ret > 0) 305 XFS_STATS_ADD(mp, xs_read_bytes, ret); 306 return ret; 307 } 308 309 STATIC ssize_t 310 xfs_file_splice_read( 311 struct file *in, 312 loff_t *ppos, 313 struct pipe_inode_info *pipe, 314 size_t len, 315 unsigned int flags) 316 { 317 struct inode *inode = file_inode(in); 318 struct xfs_inode *ip = XFS_I(inode); 319 struct xfs_mount *mp = ip->i_mount; 320 ssize_t ret = 0; 321 322 XFS_STATS_INC(mp, xs_read_calls); 323 324 if (xfs_is_shutdown(mp)) 325 return -EIO; 326 327 trace_xfs_file_splice_read(ip, *ppos, len); 328 329 xfs_ilock(ip, XFS_IOLOCK_SHARED); 330 ret = filemap_splice_read(in, ppos, pipe, len, flags); 331 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 332 if (ret > 0) 333 XFS_STATS_ADD(mp, xs_read_bytes, ret); 334 return ret; 335 } 336 337 /* 338 * Common pre-write limit and setup checks. 339 * 340 * Called with the iolocked held either shared and exclusive according to 341 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 342 * if called for a direct write beyond i_size. 343 */ 344 STATIC ssize_t 345 xfs_file_write_checks( 346 struct kiocb *iocb, 347 struct iov_iter *from, 348 unsigned int *iolock) 349 { 350 struct file *file = iocb->ki_filp; 351 struct inode *inode = file->f_mapping->host; 352 struct xfs_inode *ip = XFS_I(inode); 353 ssize_t error = 0; 354 size_t count = iov_iter_count(from); 355 bool drained_dio = false; 356 loff_t isize; 357 358 restart: 359 error = generic_write_checks(iocb, from); 360 if (error <= 0) 361 return error; 362 363 if (iocb->ki_flags & IOCB_NOWAIT) { 364 error = break_layout(inode, false); 365 if (error == -EWOULDBLOCK) 366 error = -EAGAIN; 367 } else { 368 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 369 } 370 371 if (error) 372 return error; 373 374 /* 375 * For changing security info in file_remove_privs() we need i_rwsem 376 * exclusively. 377 */ 378 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 379 xfs_iunlock(ip, *iolock); 380 *iolock = XFS_IOLOCK_EXCL; 381 error = xfs_ilock_iocb(iocb, *iolock); 382 if (error) { 383 *iolock = 0; 384 return error; 385 } 386 goto restart; 387 } 388 389 /* 390 * If the offset is beyond the size of the file, we need to zero any 391 * blocks that fall between the existing EOF and the start of this 392 * write. If zeroing is needed and we are currently holding the iolock 393 * shared, we need to update it to exclusive which implies having to 394 * redo all checks before. 395 * 396 * We need to serialise against EOF updates that occur in IO completions 397 * here. We want to make sure that nobody is changing the size while we 398 * do this check until we have placed an IO barrier (i.e. hold the 399 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The 400 * spinlock effectively forms a memory barrier once we have the 401 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and 402 * hence be able to correctly determine if we need to run zeroing. 403 * 404 * We can do an unlocked check here safely as IO completion can only 405 * extend EOF. Truncate is locked out at this point, so the EOF can 406 * not move backwards, only forwards. Hence we only need to take the 407 * slow path and spin locks when we are at or beyond the current EOF. 408 */ 409 if (iocb->ki_pos <= i_size_read(inode)) 410 goto out; 411 412 spin_lock(&ip->i_flags_lock); 413 isize = i_size_read(inode); 414 if (iocb->ki_pos > isize) { 415 spin_unlock(&ip->i_flags_lock); 416 417 if (iocb->ki_flags & IOCB_NOWAIT) 418 return -EAGAIN; 419 420 if (!drained_dio) { 421 if (*iolock == XFS_IOLOCK_SHARED) { 422 xfs_iunlock(ip, *iolock); 423 *iolock = XFS_IOLOCK_EXCL; 424 xfs_ilock(ip, *iolock); 425 iov_iter_reexpand(from, count); 426 } 427 /* 428 * We now have an IO submission barrier in place, but 429 * AIO can do EOF updates during IO completion and hence 430 * we now need to wait for all of them to drain. Non-AIO 431 * DIO will have drained before we are given the 432 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 433 * no-op. 434 */ 435 inode_dio_wait(inode); 436 drained_dio = true; 437 goto restart; 438 } 439 440 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 441 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); 442 if (error) 443 return error; 444 } else 445 spin_unlock(&ip->i_flags_lock); 446 447 out: 448 return kiocb_modified(iocb); 449 } 450 451 static int 452 xfs_dio_write_end_io( 453 struct kiocb *iocb, 454 ssize_t size, 455 int error, 456 unsigned flags) 457 { 458 struct inode *inode = file_inode(iocb->ki_filp); 459 struct xfs_inode *ip = XFS_I(inode); 460 loff_t offset = iocb->ki_pos; 461 unsigned int nofs_flag; 462 463 trace_xfs_end_io_direct_write(ip, offset, size); 464 465 if (xfs_is_shutdown(ip->i_mount)) 466 return -EIO; 467 468 if (error) 469 return error; 470 if (!size) 471 return 0; 472 473 /* 474 * Capture amount written on completion as we can't reliably account 475 * for it on submission. 476 */ 477 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 478 479 /* 480 * We can allocate memory here while doing writeback on behalf of 481 * memory reclaim. To avoid memory allocation deadlocks set the 482 * task-wide nofs context for the following operations. 483 */ 484 nofs_flag = memalloc_nofs_save(); 485 486 if (flags & IOMAP_DIO_COW) { 487 error = xfs_reflink_end_cow(ip, offset, size); 488 if (error) 489 goto out; 490 } 491 492 /* 493 * Unwritten conversion updates the in-core isize after extent 494 * conversion but before updating the on-disk size. Updating isize any 495 * earlier allows a racing dio read to find unwritten extents before 496 * they are converted. 497 */ 498 if (flags & IOMAP_DIO_UNWRITTEN) { 499 error = xfs_iomap_write_unwritten(ip, offset, size, true); 500 goto out; 501 } 502 503 /* 504 * We need to update the in-core inode size here so that we don't end up 505 * with the on-disk inode size being outside the in-core inode size. We 506 * have no other method of updating EOF for AIO, so always do it here 507 * if necessary. 508 * 509 * We need to lock the test/set EOF update as we can be racing with 510 * other IO completions here to update the EOF. Failing to serialise 511 * here can result in EOF moving backwards and Bad Things Happen when 512 * that occurs. 513 * 514 * As IO completion only ever extends EOF, we can do an unlocked check 515 * here to avoid taking the spinlock. If we land within the current EOF, 516 * then we do not need to do an extending update at all, and we don't 517 * need to take the lock to check this. If we race with an update moving 518 * EOF, then we'll either still be beyond EOF and need to take the lock, 519 * or we'll be within EOF and we don't need to take it at all. 520 */ 521 if (offset + size <= i_size_read(inode)) 522 goto out; 523 524 spin_lock(&ip->i_flags_lock); 525 if (offset + size > i_size_read(inode)) { 526 i_size_write(inode, offset + size); 527 spin_unlock(&ip->i_flags_lock); 528 error = xfs_setfilesize(ip, offset, size); 529 } else { 530 spin_unlock(&ip->i_flags_lock); 531 } 532 533 out: 534 memalloc_nofs_restore(nofs_flag); 535 return error; 536 } 537 538 static const struct iomap_dio_ops xfs_dio_write_ops = { 539 .end_io = xfs_dio_write_end_io, 540 }; 541 542 /* 543 * Handle block aligned direct I/O writes 544 */ 545 static noinline ssize_t 546 xfs_file_dio_write_aligned( 547 struct xfs_inode *ip, 548 struct kiocb *iocb, 549 struct iov_iter *from) 550 { 551 unsigned int iolock = XFS_IOLOCK_SHARED; 552 ssize_t ret; 553 554 ret = xfs_ilock_iocb(iocb, iolock); 555 if (ret) 556 return ret; 557 ret = xfs_file_write_checks(iocb, from, &iolock); 558 if (ret) 559 goto out_unlock; 560 561 /* 562 * We don't need to hold the IOLOCK exclusively across the IO, so demote 563 * the iolock back to shared if we had to take the exclusive lock in 564 * xfs_file_write_checks() for other reasons. 565 */ 566 if (iolock == XFS_IOLOCK_EXCL) { 567 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 568 iolock = XFS_IOLOCK_SHARED; 569 } 570 trace_xfs_file_direct_write(iocb, from); 571 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 572 &xfs_dio_write_ops, 0, NULL, 0); 573 out_unlock: 574 if (iolock) 575 xfs_iunlock(ip, iolock); 576 return ret; 577 } 578 579 /* 580 * Handle block unaligned direct I/O writes 581 * 582 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 583 * them to be done in parallel with reads and other direct I/O writes. However, 584 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 585 * to do sub-block zeroing and that requires serialisation against other direct 586 * I/O to the same block. In this case we need to serialise the submission of 587 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 588 * In the case where sub-block zeroing is not required, we can do concurrent 589 * sub-block dios to the same block successfully. 590 * 591 * Optimistically submit the I/O using the shared lock first, but use the 592 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 593 * if block allocation or partial block zeroing would be required. In that case 594 * we try again with the exclusive lock. 595 */ 596 static noinline ssize_t 597 xfs_file_dio_write_unaligned( 598 struct xfs_inode *ip, 599 struct kiocb *iocb, 600 struct iov_iter *from) 601 { 602 size_t isize = i_size_read(VFS_I(ip)); 603 size_t count = iov_iter_count(from); 604 unsigned int iolock = XFS_IOLOCK_SHARED; 605 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 606 ssize_t ret; 607 608 /* 609 * Extending writes need exclusivity because of the sub-block zeroing 610 * that the DIO code always does for partial tail blocks beyond EOF, so 611 * don't even bother trying the fast path in this case. 612 */ 613 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 614 if (iocb->ki_flags & IOCB_NOWAIT) 615 return -EAGAIN; 616 retry_exclusive: 617 iolock = XFS_IOLOCK_EXCL; 618 flags = IOMAP_DIO_FORCE_WAIT; 619 } 620 621 ret = xfs_ilock_iocb(iocb, iolock); 622 if (ret) 623 return ret; 624 625 /* 626 * We can't properly handle unaligned direct I/O to reflink files yet, 627 * as we can't unshare a partial block. 628 */ 629 if (xfs_is_cow_inode(ip)) { 630 trace_xfs_reflink_bounce_dio_write(iocb, from); 631 ret = -ENOTBLK; 632 goto out_unlock; 633 } 634 635 ret = xfs_file_write_checks(iocb, from, &iolock); 636 if (ret) 637 goto out_unlock; 638 639 /* 640 * If we are doing exclusive unaligned I/O, this must be the only I/O 641 * in-flight. Otherwise we risk data corruption due to unwritten extent 642 * conversions from the AIO end_io handler. Wait for all other I/O to 643 * drain first. 644 */ 645 if (flags & IOMAP_DIO_FORCE_WAIT) 646 inode_dio_wait(VFS_I(ip)); 647 648 trace_xfs_file_direct_write(iocb, from); 649 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 650 &xfs_dio_write_ops, flags, NULL, 0); 651 652 /* 653 * Retry unaligned I/O with exclusive blocking semantics if the DIO 654 * layer rejected it for mapping or locking reasons. If we are doing 655 * nonblocking user I/O, propagate the error. 656 */ 657 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 658 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 659 xfs_iunlock(ip, iolock); 660 goto retry_exclusive; 661 } 662 663 out_unlock: 664 if (iolock) 665 xfs_iunlock(ip, iolock); 666 return ret; 667 } 668 669 static ssize_t 670 xfs_file_dio_write( 671 struct kiocb *iocb, 672 struct iov_iter *from) 673 { 674 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 675 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 676 size_t count = iov_iter_count(from); 677 678 /* direct I/O must be aligned to device logical sector size */ 679 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 680 return -EINVAL; 681 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 682 return xfs_file_dio_write_unaligned(ip, iocb, from); 683 return xfs_file_dio_write_aligned(ip, iocb, from); 684 } 685 686 static noinline ssize_t 687 xfs_file_dax_write( 688 struct kiocb *iocb, 689 struct iov_iter *from) 690 { 691 struct inode *inode = iocb->ki_filp->f_mapping->host; 692 struct xfs_inode *ip = XFS_I(inode); 693 unsigned int iolock = XFS_IOLOCK_EXCL; 694 ssize_t ret, error = 0; 695 loff_t pos; 696 697 ret = xfs_ilock_iocb(iocb, iolock); 698 if (ret) 699 return ret; 700 ret = xfs_file_write_checks(iocb, from, &iolock); 701 if (ret) 702 goto out; 703 704 pos = iocb->ki_pos; 705 706 trace_xfs_file_dax_write(iocb, from); 707 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops); 708 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 709 i_size_write(inode, iocb->ki_pos); 710 error = xfs_setfilesize(ip, pos, ret); 711 } 712 out: 713 if (iolock) 714 xfs_iunlock(ip, iolock); 715 if (error) 716 return error; 717 718 if (ret > 0) { 719 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 720 721 /* Handle various SYNC-type writes */ 722 ret = generic_write_sync(iocb, ret); 723 } 724 return ret; 725 } 726 727 STATIC ssize_t 728 xfs_file_buffered_write( 729 struct kiocb *iocb, 730 struct iov_iter *from) 731 { 732 struct inode *inode = iocb->ki_filp->f_mapping->host; 733 struct xfs_inode *ip = XFS_I(inode); 734 ssize_t ret; 735 bool cleared_space = false; 736 unsigned int iolock; 737 738 write_retry: 739 iolock = XFS_IOLOCK_EXCL; 740 ret = xfs_ilock_iocb(iocb, iolock); 741 if (ret) 742 return ret; 743 744 ret = xfs_file_write_checks(iocb, from, &iolock); 745 if (ret) 746 goto out; 747 748 /* We can write back this queue in page reclaim */ 749 current->backing_dev_info = inode_to_bdi(inode); 750 751 trace_xfs_file_buffered_write(iocb, from); 752 ret = iomap_file_buffered_write(iocb, from, 753 &xfs_buffered_write_iomap_ops); 754 if (likely(ret >= 0)) 755 iocb->ki_pos += ret; 756 757 /* 758 * If we hit a space limit, try to free up some lingering preallocated 759 * space before returning an error. In the case of ENOSPC, first try to 760 * write back all dirty inodes to free up some of the excess reserved 761 * metadata space. This reduces the chances that the eofblocks scan 762 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 763 * also behaves as a filter to prevent too many eofblocks scans from 764 * running at the same time. Use a synchronous scan to increase the 765 * effectiveness of the scan. 766 */ 767 if (ret == -EDQUOT && !cleared_space) { 768 xfs_iunlock(ip, iolock); 769 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); 770 cleared_space = true; 771 goto write_retry; 772 } else if (ret == -ENOSPC && !cleared_space) { 773 struct xfs_icwalk icw = {0}; 774 775 cleared_space = true; 776 xfs_flush_inodes(ip->i_mount); 777 778 xfs_iunlock(ip, iolock); 779 icw.icw_flags = XFS_ICWALK_FLAG_SYNC; 780 xfs_blockgc_free_space(ip->i_mount, &icw); 781 goto write_retry; 782 } 783 784 current->backing_dev_info = NULL; 785 out: 786 if (iolock) 787 xfs_iunlock(ip, iolock); 788 789 if (ret > 0) { 790 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 791 /* Handle various SYNC-type writes */ 792 ret = generic_write_sync(iocb, ret); 793 } 794 return ret; 795 } 796 797 STATIC ssize_t 798 xfs_file_write_iter( 799 struct kiocb *iocb, 800 struct iov_iter *from) 801 { 802 struct inode *inode = iocb->ki_filp->f_mapping->host; 803 struct xfs_inode *ip = XFS_I(inode); 804 ssize_t ret; 805 size_t ocount = iov_iter_count(from); 806 807 XFS_STATS_INC(ip->i_mount, xs_write_calls); 808 809 if (ocount == 0) 810 return 0; 811 812 if (xfs_is_shutdown(ip->i_mount)) 813 return -EIO; 814 815 if (IS_DAX(inode)) 816 return xfs_file_dax_write(iocb, from); 817 818 if (iocb->ki_flags & IOCB_DIRECT) { 819 /* 820 * Allow a directio write to fall back to a buffered 821 * write *only* in the case that we're doing a reflink 822 * CoW. In all other directio scenarios we do not 823 * allow an operation to fall back to buffered mode. 824 */ 825 ret = xfs_file_dio_write(iocb, from); 826 if (ret != -ENOTBLK) 827 return ret; 828 } 829 830 return xfs_file_buffered_write(iocb, from); 831 } 832 833 static void 834 xfs_wait_dax_page( 835 struct inode *inode) 836 { 837 struct xfs_inode *ip = XFS_I(inode); 838 839 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 840 schedule(); 841 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 842 } 843 844 int 845 xfs_break_dax_layouts( 846 struct inode *inode, 847 bool *retry) 848 { 849 struct page *page; 850 851 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 852 853 page = dax_layout_busy_page(inode->i_mapping); 854 if (!page) 855 return 0; 856 857 *retry = true; 858 return ___wait_var_event(&page->_refcount, 859 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 860 0, 0, xfs_wait_dax_page(inode)); 861 } 862 863 int 864 xfs_break_layouts( 865 struct inode *inode, 866 uint *iolock, 867 enum layout_break_reason reason) 868 { 869 bool retry; 870 int error; 871 872 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 873 874 do { 875 retry = false; 876 switch (reason) { 877 case BREAK_UNMAP: 878 error = xfs_break_dax_layouts(inode, &retry); 879 if (error || retry) 880 break; 881 fallthrough; 882 case BREAK_WRITE: 883 error = xfs_break_leased_layouts(inode, iolock, &retry); 884 break; 885 default: 886 WARN_ON_ONCE(1); 887 error = -EINVAL; 888 } 889 } while (error == 0 && retry); 890 891 return error; 892 } 893 894 /* Does this file, inode, or mount want synchronous writes? */ 895 static inline bool xfs_file_sync_writes(struct file *filp) 896 { 897 struct xfs_inode *ip = XFS_I(file_inode(filp)); 898 899 if (xfs_has_wsync(ip->i_mount)) 900 return true; 901 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 902 return true; 903 if (IS_SYNC(file_inode(filp))) 904 return true; 905 906 return false; 907 } 908 909 #define XFS_FALLOC_FL_SUPPORTED \ 910 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 911 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 912 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 913 914 STATIC long 915 xfs_file_fallocate( 916 struct file *file, 917 int mode, 918 loff_t offset, 919 loff_t len) 920 { 921 struct inode *inode = file_inode(file); 922 struct xfs_inode *ip = XFS_I(inode); 923 long error; 924 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 925 loff_t new_size = 0; 926 bool do_file_insert = false; 927 928 if (!S_ISREG(inode->i_mode)) 929 return -EINVAL; 930 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 931 return -EOPNOTSUPP; 932 933 xfs_ilock(ip, iolock); 934 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 935 if (error) 936 goto out_unlock; 937 938 /* 939 * Must wait for all AIO to complete before we continue as AIO can 940 * change the file size on completion without holding any locks we 941 * currently hold. We must do this first because AIO can update both 942 * the on disk and in memory inode sizes, and the operations that follow 943 * require the in-memory size to be fully up-to-date. 944 */ 945 inode_dio_wait(inode); 946 947 /* 948 * Now AIO and DIO has drained we flush and (if necessary) invalidate 949 * the cached range over the first operation we are about to run. 950 * 951 * We care about zero and collapse here because they both run a hole 952 * punch over the range first. Because that can zero data, and the range 953 * of invalidation for the shift operations is much larger, we still do 954 * the required flush for collapse in xfs_prepare_shift(). 955 * 956 * Insert has the same range requirements as collapse, and we extend the 957 * file first which can zero data. Hence insert has the same 958 * flush/invalidate requirements as collapse and so they are both 959 * handled at the right time by xfs_prepare_shift(). 960 */ 961 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 962 FALLOC_FL_COLLAPSE_RANGE)) { 963 error = xfs_flush_unmap_range(ip, offset, len); 964 if (error) 965 goto out_unlock; 966 } 967 968 error = file_modified(file); 969 if (error) 970 goto out_unlock; 971 972 if (mode & FALLOC_FL_PUNCH_HOLE) { 973 error = xfs_free_file_space(ip, offset, len); 974 if (error) 975 goto out_unlock; 976 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 977 if (!xfs_is_falloc_aligned(ip, offset, len)) { 978 error = -EINVAL; 979 goto out_unlock; 980 } 981 982 /* 983 * There is no need to overlap collapse range with EOF, 984 * in which case it is effectively a truncate operation 985 */ 986 if (offset + len >= i_size_read(inode)) { 987 error = -EINVAL; 988 goto out_unlock; 989 } 990 991 new_size = i_size_read(inode) - len; 992 993 error = xfs_collapse_file_space(ip, offset, len); 994 if (error) 995 goto out_unlock; 996 } else if (mode & FALLOC_FL_INSERT_RANGE) { 997 loff_t isize = i_size_read(inode); 998 999 if (!xfs_is_falloc_aligned(ip, offset, len)) { 1000 error = -EINVAL; 1001 goto out_unlock; 1002 } 1003 1004 /* 1005 * New inode size must not exceed ->s_maxbytes, accounting for 1006 * possible signed overflow. 1007 */ 1008 if (inode->i_sb->s_maxbytes - isize < len) { 1009 error = -EFBIG; 1010 goto out_unlock; 1011 } 1012 new_size = isize + len; 1013 1014 /* Offset should be less than i_size */ 1015 if (offset >= isize) { 1016 error = -EINVAL; 1017 goto out_unlock; 1018 } 1019 do_file_insert = true; 1020 } else { 1021 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1022 offset + len > i_size_read(inode)) { 1023 new_size = offset + len; 1024 error = inode_newsize_ok(inode, new_size); 1025 if (error) 1026 goto out_unlock; 1027 } 1028 1029 if (mode & FALLOC_FL_ZERO_RANGE) { 1030 /* 1031 * Punch a hole and prealloc the range. We use a hole 1032 * punch rather than unwritten extent conversion for two 1033 * reasons: 1034 * 1035 * 1.) Hole punch handles partial block zeroing for us. 1036 * 2.) If prealloc returns ENOSPC, the file range is 1037 * still zero-valued by virtue of the hole punch. 1038 */ 1039 unsigned int blksize = i_blocksize(inode); 1040 1041 trace_xfs_zero_file_space(ip); 1042 1043 error = xfs_free_file_space(ip, offset, len); 1044 if (error) 1045 goto out_unlock; 1046 1047 len = round_up(offset + len, blksize) - 1048 round_down(offset, blksize); 1049 offset = round_down(offset, blksize); 1050 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 1051 error = xfs_reflink_unshare(ip, offset, len); 1052 if (error) 1053 goto out_unlock; 1054 } else { 1055 /* 1056 * If always_cow mode we can't use preallocations and 1057 * thus should not create them. 1058 */ 1059 if (xfs_is_always_cow_inode(ip)) { 1060 error = -EOPNOTSUPP; 1061 goto out_unlock; 1062 } 1063 } 1064 1065 if (!xfs_is_always_cow_inode(ip)) { 1066 error = xfs_alloc_file_space(ip, offset, len); 1067 if (error) 1068 goto out_unlock; 1069 } 1070 } 1071 1072 /* Change file size if needed */ 1073 if (new_size) { 1074 struct iattr iattr; 1075 1076 iattr.ia_valid = ATTR_SIZE; 1077 iattr.ia_size = new_size; 1078 error = xfs_vn_setattr_size(file_mnt_idmap(file), 1079 file_dentry(file), &iattr); 1080 if (error) 1081 goto out_unlock; 1082 } 1083 1084 /* 1085 * Perform hole insertion now that the file size has been 1086 * updated so that if we crash during the operation we don't 1087 * leave shifted extents past EOF and hence losing access to 1088 * the data that is contained within them. 1089 */ 1090 if (do_file_insert) { 1091 error = xfs_insert_file_space(ip, offset, len); 1092 if (error) 1093 goto out_unlock; 1094 } 1095 1096 if (xfs_file_sync_writes(file)) 1097 error = xfs_log_force_inode(ip); 1098 1099 out_unlock: 1100 xfs_iunlock(ip, iolock); 1101 return error; 1102 } 1103 1104 STATIC int 1105 xfs_file_fadvise( 1106 struct file *file, 1107 loff_t start, 1108 loff_t end, 1109 int advice) 1110 { 1111 struct xfs_inode *ip = XFS_I(file_inode(file)); 1112 int ret; 1113 int lockflags = 0; 1114 1115 /* 1116 * Operations creating pages in page cache need protection from hole 1117 * punching and similar ops 1118 */ 1119 if (advice == POSIX_FADV_WILLNEED) { 1120 lockflags = XFS_IOLOCK_SHARED; 1121 xfs_ilock(ip, lockflags); 1122 } 1123 ret = generic_fadvise(file, start, end, advice); 1124 if (lockflags) 1125 xfs_iunlock(ip, lockflags); 1126 return ret; 1127 } 1128 1129 STATIC loff_t 1130 xfs_file_remap_range( 1131 struct file *file_in, 1132 loff_t pos_in, 1133 struct file *file_out, 1134 loff_t pos_out, 1135 loff_t len, 1136 unsigned int remap_flags) 1137 { 1138 struct inode *inode_in = file_inode(file_in); 1139 struct xfs_inode *src = XFS_I(inode_in); 1140 struct inode *inode_out = file_inode(file_out); 1141 struct xfs_inode *dest = XFS_I(inode_out); 1142 struct xfs_mount *mp = src->i_mount; 1143 loff_t remapped = 0; 1144 xfs_extlen_t cowextsize; 1145 int ret; 1146 1147 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1148 return -EINVAL; 1149 1150 if (!xfs_has_reflink(mp)) 1151 return -EOPNOTSUPP; 1152 1153 if (xfs_is_shutdown(mp)) 1154 return -EIO; 1155 1156 /* Prepare and then clone file data. */ 1157 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1158 &len, remap_flags); 1159 if (ret || len == 0) 1160 return ret; 1161 1162 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1163 1164 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1165 &remapped); 1166 if (ret) 1167 goto out_unlock; 1168 1169 /* 1170 * Carry the cowextsize hint from src to dest if we're sharing the 1171 * entire source file to the entire destination file, the source file 1172 * has a cowextsize hint, and the destination file does not. 1173 */ 1174 cowextsize = 0; 1175 if (pos_in == 0 && len == i_size_read(inode_in) && 1176 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 1177 pos_out == 0 && len >= i_size_read(inode_out) && 1178 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) 1179 cowextsize = src->i_cowextsize; 1180 1181 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1182 remap_flags); 1183 if (ret) 1184 goto out_unlock; 1185 1186 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1187 xfs_log_force_inode(dest); 1188 out_unlock: 1189 xfs_iunlock2_io_mmap(src, dest); 1190 if (ret) 1191 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1192 return remapped > 0 ? remapped : ret; 1193 } 1194 1195 STATIC int 1196 xfs_file_open( 1197 struct inode *inode, 1198 struct file *file) 1199 { 1200 if (xfs_is_shutdown(XFS_M(inode->i_sb))) 1201 return -EIO; 1202 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 1203 FMODE_DIO_PARALLEL_WRITE; 1204 return generic_file_open(inode, file); 1205 } 1206 1207 STATIC int 1208 xfs_dir_open( 1209 struct inode *inode, 1210 struct file *file) 1211 { 1212 struct xfs_inode *ip = XFS_I(inode); 1213 unsigned int mode; 1214 int error; 1215 1216 error = xfs_file_open(inode, file); 1217 if (error) 1218 return error; 1219 1220 /* 1221 * If there are any blocks, read-ahead block 0 as we're almost 1222 * certain to have the next operation be a read there. 1223 */ 1224 mode = xfs_ilock_data_map_shared(ip); 1225 if (ip->i_df.if_nextents > 0) 1226 error = xfs_dir3_data_readahead(ip, 0, 0); 1227 xfs_iunlock(ip, mode); 1228 return error; 1229 } 1230 1231 STATIC int 1232 xfs_file_release( 1233 struct inode *inode, 1234 struct file *filp) 1235 { 1236 return xfs_release(XFS_I(inode)); 1237 } 1238 1239 STATIC int 1240 xfs_file_readdir( 1241 struct file *file, 1242 struct dir_context *ctx) 1243 { 1244 struct inode *inode = file_inode(file); 1245 xfs_inode_t *ip = XFS_I(inode); 1246 size_t bufsize; 1247 1248 /* 1249 * The Linux API doesn't pass down the total size of the buffer 1250 * we read into down to the filesystem. With the filldir concept 1251 * it's not needed for correct information, but the XFS dir2 leaf 1252 * code wants an estimate of the buffer size to calculate it's 1253 * readahead window and size the buffers used for mapping to 1254 * physical blocks. 1255 * 1256 * Try to give it an estimate that's good enough, maybe at some 1257 * point we can change the ->readdir prototype to include the 1258 * buffer size. For now we use the current glibc buffer size. 1259 */ 1260 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); 1261 1262 return xfs_readdir(NULL, ip, ctx, bufsize); 1263 } 1264 1265 STATIC loff_t 1266 xfs_file_llseek( 1267 struct file *file, 1268 loff_t offset, 1269 int whence) 1270 { 1271 struct inode *inode = file->f_mapping->host; 1272 1273 if (xfs_is_shutdown(XFS_I(inode)->i_mount)) 1274 return -EIO; 1275 1276 switch (whence) { 1277 default: 1278 return generic_file_llseek(file, offset, whence); 1279 case SEEK_HOLE: 1280 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1281 break; 1282 case SEEK_DATA: 1283 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1284 break; 1285 } 1286 1287 if (offset < 0) 1288 return offset; 1289 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1290 } 1291 1292 #ifdef CONFIG_FS_DAX 1293 static inline vm_fault_t 1294 xfs_dax_fault( 1295 struct vm_fault *vmf, 1296 enum page_entry_size pe_size, 1297 bool write_fault, 1298 pfn_t *pfn) 1299 { 1300 return dax_iomap_fault(vmf, pe_size, pfn, NULL, 1301 (write_fault && !vmf->cow_page) ? 1302 &xfs_dax_write_iomap_ops : 1303 &xfs_read_iomap_ops); 1304 } 1305 #else 1306 static inline vm_fault_t 1307 xfs_dax_fault( 1308 struct vm_fault *vmf, 1309 enum page_entry_size pe_size, 1310 bool write_fault, 1311 pfn_t *pfn) 1312 { 1313 ASSERT(0); 1314 return VM_FAULT_SIGBUS; 1315 } 1316 #endif 1317 1318 /* 1319 * Locking for serialisation of IO during page faults. This results in a lock 1320 * ordering of: 1321 * 1322 * mmap_lock (MM) 1323 * sb_start_pagefault(vfs, freeze) 1324 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) 1325 * page_lock (MM) 1326 * i_lock (XFS - extent map serialisation) 1327 */ 1328 static vm_fault_t 1329 __xfs_filemap_fault( 1330 struct vm_fault *vmf, 1331 enum page_entry_size pe_size, 1332 bool write_fault) 1333 { 1334 struct inode *inode = file_inode(vmf->vma->vm_file); 1335 struct xfs_inode *ip = XFS_I(inode); 1336 vm_fault_t ret; 1337 1338 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1339 1340 if (write_fault) { 1341 sb_start_pagefault(inode->i_sb); 1342 file_update_time(vmf->vma->vm_file); 1343 } 1344 1345 if (IS_DAX(inode)) { 1346 pfn_t pfn; 1347 1348 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1349 ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn); 1350 if (ret & VM_FAULT_NEEDDSYNC) 1351 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1352 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1353 } else { 1354 if (write_fault) { 1355 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1356 ret = iomap_page_mkwrite(vmf, 1357 &xfs_page_mkwrite_iomap_ops); 1358 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1359 } else { 1360 ret = filemap_fault(vmf); 1361 } 1362 } 1363 1364 if (write_fault) 1365 sb_end_pagefault(inode->i_sb); 1366 return ret; 1367 } 1368 1369 static inline bool 1370 xfs_is_write_fault( 1371 struct vm_fault *vmf) 1372 { 1373 return (vmf->flags & FAULT_FLAG_WRITE) && 1374 (vmf->vma->vm_flags & VM_SHARED); 1375 } 1376 1377 static vm_fault_t 1378 xfs_filemap_fault( 1379 struct vm_fault *vmf) 1380 { 1381 /* DAX can shortcut the normal fault path on write faults! */ 1382 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1383 IS_DAX(file_inode(vmf->vma->vm_file)) && 1384 xfs_is_write_fault(vmf)); 1385 } 1386 1387 static vm_fault_t 1388 xfs_filemap_huge_fault( 1389 struct vm_fault *vmf, 1390 enum page_entry_size pe_size) 1391 { 1392 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1393 return VM_FAULT_FALLBACK; 1394 1395 /* DAX can shortcut the normal fault path on write faults! */ 1396 return __xfs_filemap_fault(vmf, pe_size, 1397 xfs_is_write_fault(vmf)); 1398 } 1399 1400 static vm_fault_t 1401 xfs_filemap_page_mkwrite( 1402 struct vm_fault *vmf) 1403 { 1404 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1405 } 1406 1407 /* 1408 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1409 * on write faults. In reality, it needs to serialise against truncate and 1410 * prepare memory for writing so handle is as standard write fault. 1411 */ 1412 static vm_fault_t 1413 xfs_filemap_pfn_mkwrite( 1414 struct vm_fault *vmf) 1415 { 1416 1417 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1418 } 1419 1420 static const struct vm_operations_struct xfs_file_vm_ops = { 1421 .fault = xfs_filemap_fault, 1422 .huge_fault = xfs_filemap_huge_fault, 1423 .map_pages = filemap_map_pages, 1424 .page_mkwrite = xfs_filemap_page_mkwrite, 1425 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1426 }; 1427 1428 STATIC int 1429 xfs_file_mmap( 1430 struct file *file, 1431 struct vm_area_struct *vma) 1432 { 1433 struct inode *inode = file_inode(file); 1434 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1435 1436 /* 1437 * We don't support synchronous mappings for non-DAX files and 1438 * for DAX files if underneath dax_device is not synchronous. 1439 */ 1440 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1441 return -EOPNOTSUPP; 1442 1443 file_accessed(file); 1444 vma->vm_ops = &xfs_file_vm_ops; 1445 if (IS_DAX(inode)) 1446 vm_flags_set(vma, VM_HUGEPAGE); 1447 return 0; 1448 } 1449 1450 const struct file_operations xfs_file_operations = { 1451 .llseek = xfs_file_llseek, 1452 .read_iter = xfs_file_read_iter, 1453 .write_iter = xfs_file_write_iter, 1454 .splice_read = xfs_file_splice_read, 1455 .splice_write = iter_file_splice_write, 1456 .iopoll = iocb_bio_iopoll, 1457 .unlocked_ioctl = xfs_file_ioctl, 1458 #ifdef CONFIG_COMPAT 1459 .compat_ioctl = xfs_file_compat_ioctl, 1460 #endif 1461 .mmap = xfs_file_mmap, 1462 .mmap_supported_flags = MAP_SYNC, 1463 .open = xfs_file_open, 1464 .release = xfs_file_release, 1465 .fsync = xfs_file_fsync, 1466 .get_unmapped_area = thp_get_unmapped_area, 1467 .fallocate = xfs_file_fallocate, 1468 .fadvise = xfs_file_fadvise, 1469 .remap_file_range = xfs_file_remap_range, 1470 }; 1471 1472 const struct file_operations xfs_dir_file_operations = { 1473 .open = xfs_dir_open, 1474 .read = generic_read_dir, 1475 .iterate_shared = xfs_file_readdir, 1476 .llseek = generic_file_llseek, 1477 .unlocked_ioctl = xfs_file_ioctl, 1478 #ifdef CONFIG_COMPAT 1479 .compat_ioctl = xfs_file_compat_ioctl, 1480 #endif 1481 .fsync = xfs_dir_fsync, 1482 }; 1483