1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Clear the specified ranges to zero through either the pagecache or DAX. 52 * Holes and unwritten extents will be left as-is as they already are zeroed. 53 */ 54 int 55 xfs_zero_range( 56 struct xfs_inode *ip, 57 xfs_off_t pos, 58 xfs_off_t count, 59 bool *did_zero) 60 { 61 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops); 62 } 63 64 int 65 xfs_update_prealloc_flags( 66 struct xfs_inode *ip, 67 enum xfs_prealloc_flags flags) 68 { 69 struct xfs_trans *tp; 70 int error; 71 72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 73 0, 0, 0, &tp); 74 if (error) 75 return error; 76 77 xfs_ilock(ip, XFS_ILOCK_EXCL); 78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 79 80 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 81 VFS_I(ip)->i_mode &= ~S_ISUID; 82 if (VFS_I(ip)->i_mode & S_IXGRP) 83 VFS_I(ip)->i_mode &= ~S_ISGID; 84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 85 } 86 87 if (flags & XFS_PREALLOC_SET) 88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 89 if (flags & XFS_PREALLOC_CLEAR) 90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 91 92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 93 if (flags & XFS_PREALLOC_SYNC) 94 xfs_trans_set_sync(tp); 95 return xfs_trans_commit(tp); 96 } 97 98 /* 99 * Fsync operations on directories are much simpler than on regular files, 100 * as there is no file data to flush, and thus also no need for explicit 101 * cache flush operations, and there are no non-transaction metadata updates 102 * on directories either. 103 */ 104 STATIC int 105 xfs_dir_fsync( 106 struct file *file, 107 loff_t start, 108 loff_t end, 109 int datasync) 110 { 111 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 112 struct xfs_mount *mp = ip->i_mount; 113 xfs_lsn_t lsn = 0; 114 115 trace_xfs_dir_fsync(ip); 116 117 xfs_ilock(ip, XFS_ILOCK_SHARED); 118 if (xfs_ipincount(ip)) 119 lsn = ip->i_itemp->ili_last_lsn; 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 122 if (!lsn) 123 return 0; 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 int error = 0; 138 int log_flushed = 0; 139 xfs_lsn_t lsn = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = file_write_and_wait_range(file, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -EIO; 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 /* 153 * If we have an RT and/or log subvolume we need to make sure to flush 154 * the write cache the device used for file data first. This is to 155 * ensure newly written file data make it to disk before logging the new 156 * inode size in case of an extending write. 157 */ 158 if (XFS_IS_REALTIME_INODE(ip)) 159 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 160 else if (mp->m_logdev_targp != mp->m_ddev_targp) 161 xfs_blkdev_issue_flush(mp->m_ddev_targp); 162 163 /* 164 * All metadata updates are logged, which means that we just have to 165 * flush the log up to the latest LSN that touched the inode. If we have 166 * concurrent fsync/fdatasync() calls, we need them to all block on the 167 * log force before we clear the ili_fsync_fields field. This ensures 168 * that we don't get a racing sync operation that does not wait for the 169 * metadata to hit the journal before returning. If we race with 170 * clearing the ili_fsync_fields, then all that will happen is the log 171 * force will do nothing as the lsn will already be on disk. We can't 172 * race with setting ili_fsync_fields because that is done under 173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 174 * until after the ili_fsync_fields is cleared. 175 */ 176 xfs_ilock(ip, XFS_ILOCK_SHARED); 177 if (xfs_ipincount(ip)) { 178 if (!datasync || 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 180 lsn = ip->i_itemp->ili_last_lsn; 181 } 182 183 if (lsn) { 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 185 ip->i_itemp->ili_fsync_fields = 0; 186 } 187 xfs_iunlock(ip, XFS_ILOCK_SHARED); 188 189 /* 190 * If we only have a single device, and the log force about was 191 * a no-op we might have to flush the data device cache here. 192 * This can only happen for fdatasync/O_DSYNC if we were overwriting 193 * an already allocated file and thus do not have any metadata to 194 * commit. 195 */ 196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 197 mp->m_logdev_targp == mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 200 return error; 201 } 202 203 STATIC ssize_t 204 xfs_file_dio_aio_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 209 size_t count = iov_iter_count(to); 210 ssize_t ret; 211 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 file_accessed(iocb->ki_filp); 218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 222 223 return ret; 224 } 225 226 static noinline ssize_t 227 xfs_file_dax_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 232 size_t count = iov_iter_count(to); 233 ssize_t ret = 0; 234 235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 236 237 if (!count) 238 return 0; /* skip atime */ 239 240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { 241 if (iocb->ki_flags & IOCB_NOWAIT) 242 return -EAGAIN; 243 xfs_ilock(ip, XFS_IOLOCK_SHARED); 244 } 245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 247 248 file_accessed(iocb->ki_filp); 249 return ret; 250 } 251 252 STATIC ssize_t 253 xfs_file_buffered_aio_read( 254 struct kiocb *iocb, 255 struct iov_iter *to) 256 { 257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 258 ssize_t ret; 259 260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 261 262 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { 263 if (iocb->ki_flags & IOCB_NOWAIT) 264 return -EAGAIN; 265 xfs_ilock(ip, XFS_IOLOCK_SHARED); 266 } 267 ret = generic_file_read_iter(iocb, to); 268 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 269 270 return ret; 271 } 272 273 STATIC ssize_t 274 xfs_file_read_iter( 275 struct kiocb *iocb, 276 struct iov_iter *to) 277 { 278 struct inode *inode = file_inode(iocb->ki_filp); 279 struct xfs_mount *mp = XFS_I(inode)->i_mount; 280 ssize_t ret = 0; 281 282 XFS_STATS_INC(mp, xs_read_calls); 283 284 if (XFS_FORCED_SHUTDOWN(mp)) 285 return -EIO; 286 287 if (IS_DAX(inode)) 288 ret = xfs_file_dax_read(iocb, to); 289 else if (iocb->ki_flags & IOCB_DIRECT) 290 ret = xfs_file_dio_aio_read(iocb, to); 291 else 292 ret = xfs_file_buffered_aio_read(iocb, to); 293 294 if (ret > 0) 295 XFS_STATS_ADD(mp, xs_read_bytes, ret); 296 return ret; 297 } 298 299 /* 300 * Zero any on disk space between the current EOF and the new, larger EOF. 301 * 302 * This handles the normal case of zeroing the remainder of the last block in 303 * the file and the unusual case of zeroing blocks out beyond the size of the 304 * file. This second case only happens with fixed size extents and when the 305 * system crashes before the inode size was updated but after blocks were 306 * allocated. 307 * 308 * Expects the iolock to be held exclusive, and will take the ilock internally. 309 */ 310 int /* error (positive) */ 311 xfs_zero_eof( 312 struct xfs_inode *ip, 313 xfs_off_t offset, /* starting I/O offset */ 314 xfs_fsize_t isize, /* current inode size */ 315 bool *did_zeroing) 316 { 317 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 318 ASSERT(offset > isize); 319 320 trace_xfs_zero_eof(ip, isize, offset - isize); 321 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 322 } 323 324 /* 325 * Common pre-write limit and setup checks. 326 * 327 * Called with the iolocked held either shared and exclusive according to 328 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 329 * if called for a direct write beyond i_size. 330 */ 331 STATIC ssize_t 332 xfs_file_aio_write_checks( 333 struct kiocb *iocb, 334 struct iov_iter *from, 335 int *iolock) 336 { 337 struct file *file = iocb->ki_filp; 338 struct inode *inode = file->f_mapping->host; 339 struct xfs_inode *ip = XFS_I(inode); 340 ssize_t error = 0; 341 size_t count = iov_iter_count(from); 342 bool drained_dio = false; 343 344 restart: 345 error = generic_write_checks(iocb, from); 346 if (error <= 0) 347 return error; 348 349 error = xfs_break_layouts(inode, iolock); 350 if (error) 351 return error; 352 353 /* 354 * For changing security info in file_remove_privs() we need i_rwsem 355 * exclusively. 356 */ 357 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 358 xfs_iunlock(ip, *iolock); 359 *iolock = XFS_IOLOCK_EXCL; 360 xfs_ilock(ip, *iolock); 361 goto restart; 362 } 363 /* 364 * If the offset is beyond the size of the file, we need to zero any 365 * blocks that fall between the existing EOF and the start of this 366 * write. If zeroing is needed and we are currently holding the 367 * iolock shared, we need to update it to exclusive which implies 368 * having to redo all checks before. 369 * 370 * We need to serialise against EOF updates that occur in IO 371 * completions here. We want to make sure that nobody is changing the 372 * size while we do this check until we have placed an IO barrier (i.e. 373 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 374 * The spinlock effectively forms a memory barrier once we have the 375 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 376 * and hence be able to correctly determine if we need to run zeroing. 377 */ 378 spin_lock(&ip->i_flags_lock); 379 if (iocb->ki_pos > i_size_read(inode)) { 380 spin_unlock(&ip->i_flags_lock); 381 if (!drained_dio) { 382 if (*iolock == XFS_IOLOCK_SHARED) { 383 xfs_iunlock(ip, *iolock); 384 *iolock = XFS_IOLOCK_EXCL; 385 xfs_ilock(ip, *iolock); 386 iov_iter_reexpand(from, count); 387 } 388 /* 389 * We now have an IO submission barrier in place, but 390 * AIO can do EOF updates during IO completion and hence 391 * we now need to wait for all of them to drain. Non-AIO 392 * DIO will have drained before we are given the 393 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 394 * no-op. 395 */ 396 inode_dio_wait(inode); 397 drained_dio = true; 398 goto restart; 399 } 400 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL); 401 if (error) 402 return error; 403 } else 404 spin_unlock(&ip->i_flags_lock); 405 406 /* 407 * Updating the timestamps will grab the ilock again from 408 * xfs_fs_dirty_inode, so we have to call it after dropping the 409 * lock above. Eventually we should look into a way to avoid 410 * the pointless lock roundtrip. 411 */ 412 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 413 error = file_update_time(file); 414 if (error) 415 return error; 416 } 417 418 /* 419 * If we're writing the file then make sure to clear the setuid and 420 * setgid bits if the process is not being run by root. This keeps 421 * people from modifying setuid and setgid binaries. 422 */ 423 if (!IS_NOSEC(inode)) 424 return file_remove_privs(file); 425 return 0; 426 } 427 428 static int 429 xfs_dio_write_end_io( 430 struct kiocb *iocb, 431 ssize_t size, 432 unsigned flags) 433 { 434 struct inode *inode = file_inode(iocb->ki_filp); 435 struct xfs_inode *ip = XFS_I(inode); 436 loff_t offset = iocb->ki_pos; 437 int error = 0; 438 439 trace_xfs_end_io_direct_write(ip, offset, size); 440 441 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 442 return -EIO; 443 444 if (size <= 0) 445 return size; 446 447 if (flags & IOMAP_DIO_COW) { 448 error = xfs_reflink_end_cow(ip, offset, size); 449 if (error) 450 return error; 451 } 452 453 /* 454 * Unwritten conversion updates the in-core isize after extent 455 * conversion but before updating the on-disk size. Updating isize any 456 * earlier allows a racing dio read to find unwritten extents before 457 * they are converted. 458 */ 459 if (flags & IOMAP_DIO_UNWRITTEN) 460 return xfs_iomap_write_unwritten(ip, offset, size, true); 461 462 /* 463 * We need to update the in-core inode size here so that we don't end up 464 * with the on-disk inode size being outside the in-core inode size. We 465 * have no other method of updating EOF for AIO, so always do it here 466 * if necessary. 467 * 468 * We need to lock the test/set EOF update as we can be racing with 469 * other IO completions here to update the EOF. Failing to serialise 470 * here can result in EOF moving backwards and Bad Things Happen when 471 * that occurs. 472 */ 473 spin_lock(&ip->i_flags_lock); 474 if (offset + size > i_size_read(inode)) { 475 i_size_write(inode, offset + size); 476 spin_unlock(&ip->i_flags_lock); 477 error = xfs_setfilesize(ip, offset, size); 478 } else { 479 spin_unlock(&ip->i_flags_lock); 480 } 481 482 return error; 483 } 484 485 /* 486 * xfs_file_dio_aio_write - handle direct IO writes 487 * 488 * Lock the inode appropriately to prepare for and issue a direct IO write. 489 * By separating it from the buffered write path we remove all the tricky to 490 * follow locking changes and looping. 491 * 492 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 493 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 494 * pages are flushed out. 495 * 496 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 497 * allowing them to be done in parallel with reads and other direct IO writes. 498 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 499 * needs to do sub-block zeroing and that requires serialisation against other 500 * direct IOs to the same block. In this case we need to serialise the 501 * submission of the unaligned IOs so that we don't get racing block zeroing in 502 * the dio layer. To avoid the problem with aio, we also need to wait for 503 * outstanding IOs to complete so that unwritten extent conversion is completed 504 * before we try to map the overlapping block. This is currently implemented by 505 * hitting it with a big hammer (i.e. inode_dio_wait()). 506 * 507 * Returns with locks held indicated by @iolock and errors indicated by 508 * negative return values. 509 */ 510 STATIC ssize_t 511 xfs_file_dio_aio_write( 512 struct kiocb *iocb, 513 struct iov_iter *from) 514 { 515 struct file *file = iocb->ki_filp; 516 struct address_space *mapping = file->f_mapping; 517 struct inode *inode = mapping->host; 518 struct xfs_inode *ip = XFS_I(inode); 519 struct xfs_mount *mp = ip->i_mount; 520 ssize_t ret = 0; 521 int unaligned_io = 0; 522 int iolock; 523 size_t count = iov_iter_count(from); 524 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 525 mp->m_rtdev_targp : mp->m_ddev_targp; 526 527 /* DIO must be aligned to device logical sector size */ 528 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 529 return -EINVAL; 530 531 /* 532 * Don't take the exclusive iolock here unless the I/O is unaligned to 533 * the file system block size. We don't need to consider the EOF 534 * extension case here because xfs_file_aio_write_checks() will relock 535 * the inode as necessary for EOF zeroing cases and fill out the new 536 * inode size as appropriate. 537 */ 538 if ((iocb->ki_pos & mp->m_blockmask) || 539 ((iocb->ki_pos + count) & mp->m_blockmask)) { 540 unaligned_io = 1; 541 542 /* 543 * We can't properly handle unaligned direct I/O to reflink 544 * files yet, as we can't unshare a partial block. 545 */ 546 if (xfs_is_reflink_inode(ip)) { 547 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 548 return -EREMCHG; 549 } 550 iolock = XFS_IOLOCK_EXCL; 551 } else { 552 iolock = XFS_IOLOCK_SHARED; 553 } 554 555 if (!xfs_ilock_nowait(ip, iolock)) { 556 if (iocb->ki_flags & IOCB_NOWAIT) 557 return -EAGAIN; 558 xfs_ilock(ip, iolock); 559 } 560 561 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 562 if (ret) 563 goto out; 564 count = iov_iter_count(from); 565 566 /* 567 * If we are doing unaligned IO, wait for all other IO to drain, 568 * otherwise demote the lock if we had to take the exclusive lock 569 * for other reasons in xfs_file_aio_write_checks. 570 */ 571 if (unaligned_io) { 572 /* If we are going to wait for other DIO to finish, bail */ 573 if (iocb->ki_flags & IOCB_NOWAIT) { 574 if (atomic_read(&inode->i_dio_count)) 575 return -EAGAIN; 576 } else { 577 inode_dio_wait(inode); 578 } 579 } else if (iolock == XFS_IOLOCK_EXCL) { 580 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 581 iolock = XFS_IOLOCK_SHARED; 582 } 583 584 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 585 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 586 out: 587 xfs_iunlock(ip, iolock); 588 589 /* 590 * No fallback to buffered IO on errors for XFS, direct IO will either 591 * complete fully or fail. 592 */ 593 ASSERT(ret < 0 || ret == count); 594 return ret; 595 } 596 597 static noinline ssize_t 598 xfs_file_dax_write( 599 struct kiocb *iocb, 600 struct iov_iter *from) 601 { 602 struct inode *inode = iocb->ki_filp->f_mapping->host; 603 struct xfs_inode *ip = XFS_I(inode); 604 int iolock = XFS_IOLOCK_EXCL; 605 ssize_t ret, error = 0; 606 size_t count; 607 loff_t pos; 608 609 if (!xfs_ilock_nowait(ip, iolock)) { 610 if (iocb->ki_flags & IOCB_NOWAIT) 611 return -EAGAIN; 612 xfs_ilock(ip, iolock); 613 } 614 615 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 616 if (ret) 617 goto out; 618 619 pos = iocb->ki_pos; 620 count = iov_iter_count(from); 621 622 trace_xfs_file_dax_write(ip, count, pos); 623 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 624 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 625 i_size_write(inode, iocb->ki_pos); 626 error = xfs_setfilesize(ip, pos, ret); 627 } 628 out: 629 xfs_iunlock(ip, iolock); 630 return error ? error : ret; 631 } 632 633 STATIC ssize_t 634 xfs_file_buffered_aio_write( 635 struct kiocb *iocb, 636 struct iov_iter *from) 637 { 638 struct file *file = iocb->ki_filp; 639 struct address_space *mapping = file->f_mapping; 640 struct inode *inode = mapping->host; 641 struct xfs_inode *ip = XFS_I(inode); 642 ssize_t ret; 643 int enospc = 0; 644 int iolock; 645 646 if (iocb->ki_flags & IOCB_NOWAIT) 647 return -EOPNOTSUPP; 648 649 write_retry: 650 iolock = XFS_IOLOCK_EXCL; 651 xfs_ilock(ip, iolock); 652 653 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 654 if (ret) 655 goto out; 656 657 /* We can write back this queue in page reclaim */ 658 current->backing_dev_info = inode_to_bdi(inode); 659 660 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 661 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 662 if (likely(ret >= 0)) 663 iocb->ki_pos += ret; 664 665 /* 666 * If we hit a space limit, try to free up some lingering preallocated 667 * space before returning an error. In the case of ENOSPC, first try to 668 * write back all dirty inodes to free up some of the excess reserved 669 * metadata space. This reduces the chances that the eofblocks scan 670 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 671 * also behaves as a filter to prevent too many eofblocks scans from 672 * running at the same time. 673 */ 674 if (ret == -EDQUOT && !enospc) { 675 xfs_iunlock(ip, iolock); 676 enospc = xfs_inode_free_quota_eofblocks(ip); 677 if (enospc) 678 goto write_retry; 679 enospc = xfs_inode_free_quota_cowblocks(ip); 680 if (enospc) 681 goto write_retry; 682 iolock = 0; 683 } else if (ret == -ENOSPC && !enospc) { 684 struct xfs_eofblocks eofb = {0}; 685 686 enospc = 1; 687 xfs_flush_inodes(ip->i_mount); 688 689 xfs_iunlock(ip, iolock); 690 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 691 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 692 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 693 goto write_retry; 694 } 695 696 current->backing_dev_info = NULL; 697 out: 698 if (iolock) 699 xfs_iunlock(ip, iolock); 700 return ret; 701 } 702 703 STATIC ssize_t 704 xfs_file_write_iter( 705 struct kiocb *iocb, 706 struct iov_iter *from) 707 { 708 struct file *file = iocb->ki_filp; 709 struct address_space *mapping = file->f_mapping; 710 struct inode *inode = mapping->host; 711 struct xfs_inode *ip = XFS_I(inode); 712 ssize_t ret; 713 size_t ocount = iov_iter_count(from); 714 715 XFS_STATS_INC(ip->i_mount, xs_write_calls); 716 717 if (ocount == 0) 718 return 0; 719 720 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 721 return -EIO; 722 723 if (IS_DAX(inode)) 724 ret = xfs_file_dax_write(iocb, from); 725 else if (iocb->ki_flags & IOCB_DIRECT) { 726 /* 727 * Allow a directio write to fall back to a buffered 728 * write *only* in the case that we're doing a reflink 729 * CoW. In all other directio scenarios we do not 730 * allow an operation to fall back to buffered mode. 731 */ 732 ret = xfs_file_dio_aio_write(iocb, from); 733 if (ret == -EREMCHG) 734 goto buffered; 735 } else { 736 buffered: 737 ret = xfs_file_buffered_aio_write(iocb, from); 738 } 739 740 if (ret > 0) { 741 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 742 743 /* Handle various SYNC-type writes */ 744 ret = generic_write_sync(iocb, ret); 745 } 746 return ret; 747 } 748 749 #define XFS_FALLOC_FL_SUPPORTED \ 750 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 751 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 752 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 753 754 STATIC long 755 xfs_file_fallocate( 756 struct file *file, 757 int mode, 758 loff_t offset, 759 loff_t len) 760 { 761 struct inode *inode = file_inode(file); 762 struct xfs_inode *ip = XFS_I(inode); 763 long error; 764 enum xfs_prealloc_flags flags = 0; 765 uint iolock = XFS_IOLOCK_EXCL; 766 loff_t new_size = 0; 767 bool do_file_insert = false; 768 769 if (!S_ISREG(inode->i_mode)) 770 return -EINVAL; 771 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 772 return -EOPNOTSUPP; 773 774 xfs_ilock(ip, iolock); 775 error = xfs_break_layouts(inode, &iolock); 776 if (error) 777 goto out_unlock; 778 779 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 780 iolock |= XFS_MMAPLOCK_EXCL; 781 782 if (mode & FALLOC_FL_PUNCH_HOLE) { 783 error = xfs_free_file_space(ip, offset, len); 784 if (error) 785 goto out_unlock; 786 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 787 unsigned int blksize_mask = i_blocksize(inode) - 1; 788 789 if (offset & blksize_mask || len & blksize_mask) { 790 error = -EINVAL; 791 goto out_unlock; 792 } 793 794 /* 795 * There is no need to overlap collapse range with EOF, 796 * in which case it is effectively a truncate operation 797 */ 798 if (offset + len >= i_size_read(inode)) { 799 error = -EINVAL; 800 goto out_unlock; 801 } 802 803 new_size = i_size_read(inode) - len; 804 805 error = xfs_collapse_file_space(ip, offset, len); 806 if (error) 807 goto out_unlock; 808 } else if (mode & FALLOC_FL_INSERT_RANGE) { 809 unsigned int blksize_mask = i_blocksize(inode) - 1; 810 811 new_size = i_size_read(inode) + len; 812 if (offset & blksize_mask || len & blksize_mask) { 813 error = -EINVAL; 814 goto out_unlock; 815 } 816 817 /* check the new inode size does not wrap through zero */ 818 if (new_size > inode->i_sb->s_maxbytes) { 819 error = -EFBIG; 820 goto out_unlock; 821 } 822 823 /* Offset should be less than i_size */ 824 if (offset >= i_size_read(inode)) { 825 error = -EINVAL; 826 goto out_unlock; 827 } 828 do_file_insert = true; 829 } else { 830 flags |= XFS_PREALLOC_SET; 831 832 if (!(mode & FALLOC_FL_KEEP_SIZE) && 833 offset + len > i_size_read(inode)) { 834 new_size = offset + len; 835 error = inode_newsize_ok(inode, new_size); 836 if (error) 837 goto out_unlock; 838 } 839 840 if (mode & FALLOC_FL_ZERO_RANGE) 841 error = xfs_zero_file_space(ip, offset, len); 842 else { 843 if (mode & FALLOC_FL_UNSHARE_RANGE) { 844 error = xfs_reflink_unshare(ip, offset, len); 845 if (error) 846 goto out_unlock; 847 } 848 error = xfs_alloc_file_space(ip, offset, len, 849 XFS_BMAPI_PREALLOC); 850 } 851 if (error) 852 goto out_unlock; 853 } 854 855 if (file->f_flags & O_DSYNC) 856 flags |= XFS_PREALLOC_SYNC; 857 858 error = xfs_update_prealloc_flags(ip, flags); 859 if (error) 860 goto out_unlock; 861 862 /* Change file size if needed */ 863 if (new_size) { 864 struct iattr iattr; 865 866 iattr.ia_valid = ATTR_SIZE; 867 iattr.ia_size = new_size; 868 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 869 if (error) 870 goto out_unlock; 871 } 872 873 /* 874 * Perform hole insertion now that the file size has been 875 * updated so that if we crash during the operation we don't 876 * leave shifted extents past EOF and hence losing access to 877 * the data that is contained within them. 878 */ 879 if (do_file_insert) 880 error = xfs_insert_file_space(ip, offset, len); 881 882 out_unlock: 883 xfs_iunlock(ip, iolock); 884 return error; 885 } 886 887 STATIC int 888 xfs_file_clone_range( 889 struct file *file_in, 890 loff_t pos_in, 891 struct file *file_out, 892 loff_t pos_out, 893 u64 len) 894 { 895 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 896 len, false); 897 } 898 899 STATIC ssize_t 900 xfs_file_dedupe_range( 901 struct file *src_file, 902 u64 loff, 903 u64 len, 904 struct file *dst_file, 905 u64 dst_loff) 906 { 907 int error; 908 909 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 910 len, true); 911 if (error) 912 return error; 913 return len; 914 } 915 916 STATIC int 917 xfs_file_open( 918 struct inode *inode, 919 struct file *file) 920 { 921 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 922 return -EFBIG; 923 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 924 return -EIO; 925 file->f_mode |= FMODE_NOWAIT; 926 return 0; 927 } 928 929 STATIC int 930 xfs_dir_open( 931 struct inode *inode, 932 struct file *file) 933 { 934 struct xfs_inode *ip = XFS_I(inode); 935 int mode; 936 int error; 937 938 error = xfs_file_open(inode, file); 939 if (error) 940 return error; 941 942 /* 943 * If there are any blocks, read-ahead block 0 as we're almost 944 * certain to have the next operation be a read there. 945 */ 946 mode = xfs_ilock_data_map_shared(ip); 947 if (ip->i_d.di_nextents > 0) 948 error = xfs_dir3_data_readahead(ip, 0, -1); 949 xfs_iunlock(ip, mode); 950 return error; 951 } 952 953 STATIC int 954 xfs_file_release( 955 struct inode *inode, 956 struct file *filp) 957 { 958 return xfs_release(XFS_I(inode)); 959 } 960 961 STATIC int 962 xfs_file_readdir( 963 struct file *file, 964 struct dir_context *ctx) 965 { 966 struct inode *inode = file_inode(file); 967 xfs_inode_t *ip = XFS_I(inode); 968 size_t bufsize; 969 970 /* 971 * The Linux API doesn't pass down the total size of the buffer 972 * we read into down to the filesystem. With the filldir concept 973 * it's not needed for correct information, but the XFS dir2 leaf 974 * code wants an estimate of the buffer size to calculate it's 975 * readahead window and size the buffers used for mapping to 976 * physical blocks. 977 * 978 * Try to give it an estimate that's good enough, maybe at some 979 * point we can change the ->readdir prototype to include the 980 * buffer size. For now we use the current glibc buffer size. 981 */ 982 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 983 984 return xfs_readdir(NULL, ip, ctx, bufsize); 985 } 986 987 STATIC loff_t 988 xfs_file_llseek( 989 struct file *file, 990 loff_t offset, 991 int whence) 992 { 993 struct inode *inode = file->f_mapping->host; 994 995 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 996 return -EIO; 997 998 switch (whence) { 999 default: 1000 return generic_file_llseek(file, offset, whence); 1001 case SEEK_HOLE: 1002 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 1003 break; 1004 case SEEK_DATA: 1005 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 1006 break; 1007 } 1008 1009 if (offset < 0) 1010 return offset; 1011 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1012 } 1013 1014 /* 1015 * Locking for serialisation of IO during page faults. This results in a lock 1016 * ordering of: 1017 * 1018 * mmap_sem (MM) 1019 * sb_start_pagefault(vfs, freeze) 1020 * i_mmaplock (XFS - truncate serialisation) 1021 * page_lock (MM) 1022 * i_lock (XFS - extent map serialisation) 1023 */ 1024 static int 1025 __xfs_filemap_fault( 1026 struct vm_fault *vmf, 1027 enum page_entry_size pe_size, 1028 bool write_fault) 1029 { 1030 struct inode *inode = file_inode(vmf->vma->vm_file); 1031 struct xfs_inode *ip = XFS_I(inode); 1032 int ret; 1033 1034 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1035 1036 if (write_fault) { 1037 sb_start_pagefault(inode->i_sb); 1038 file_update_time(vmf->vma->vm_file); 1039 } 1040 1041 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1042 if (IS_DAX(inode)) { 1043 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops); 1044 } else { 1045 if (write_fault) 1046 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1047 else 1048 ret = filemap_fault(vmf); 1049 } 1050 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1051 1052 if (write_fault) 1053 sb_end_pagefault(inode->i_sb); 1054 return ret; 1055 } 1056 1057 static int 1058 xfs_filemap_fault( 1059 struct vm_fault *vmf) 1060 { 1061 /* DAX can shortcut the normal fault path on write faults! */ 1062 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1063 IS_DAX(file_inode(vmf->vma->vm_file)) && 1064 (vmf->flags & FAULT_FLAG_WRITE)); 1065 } 1066 1067 static int 1068 xfs_filemap_huge_fault( 1069 struct vm_fault *vmf, 1070 enum page_entry_size pe_size) 1071 { 1072 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1073 return VM_FAULT_FALLBACK; 1074 1075 /* DAX can shortcut the normal fault path on write faults! */ 1076 return __xfs_filemap_fault(vmf, pe_size, 1077 (vmf->flags & FAULT_FLAG_WRITE)); 1078 } 1079 1080 static int 1081 xfs_filemap_page_mkwrite( 1082 struct vm_fault *vmf) 1083 { 1084 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1085 } 1086 1087 /* 1088 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1089 * updates on write faults. In reality, it's need to serialise against 1090 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1091 * to ensure we serialise the fault barrier in place. 1092 */ 1093 static int 1094 xfs_filemap_pfn_mkwrite( 1095 struct vm_fault *vmf) 1096 { 1097 1098 struct inode *inode = file_inode(vmf->vma->vm_file); 1099 struct xfs_inode *ip = XFS_I(inode); 1100 int ret = VM_FAULT_NOPAGE; 1101 loff_t size; 1102 1103 trace_xfs_filemap_pfn_mkwrite(ip); 1104 1105 sb_start_pagefault(inode->i_sb); 1106 file_update_time(vmf->vma->vm_file); 1107 1108 /* check if the faulting page hasn't raced with truncate */ 1109 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1110 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1111 if (vmf->pgoff >= size) 1112 ret = VM_FAULT_SIGBUS; 1113 else if (IS_DAX(inode)) 1114 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1115 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1116 sb_end_pagefault(inode->i_sb); 1117 return ret; 1118 1119 } 1120 1121 static const struct vm_operations_struct xfs_file_vm_ops = { 1122 .fault = xfs_filemap_fault, 1123 .huge_fault = xfs_filemap_huge_fault, 1124 .map_pages = filemap_map_pages, 1125 .page_mkwrite = xfs_filemap_page_mkwrite, 1126 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1127 }; 1128 1129 STATIC int 1130 xfs_file_mmap( 1131 struct file *filp, 1132 struct vm_area_struct *vma) 1133 { 1134 file_accessed(filp); 1135 vma->vm_ops = &xfs_file_vm_ops; 1136 if (IS_DAX(file_inode(filp))) 1137 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1138 return 0; 1139 } 1140 1141 const struct file_operations xfs_file_operations = { 1142 .llseek = xfs_file_llseek, 1143 .read_iter = xfs_file_read_iter, 1144 .write_iter = xfs_file_write_iter, 1145 .splice_read = generic_file_splice_read, 1146 .splice_write = iter_file_splice_write, 1147 .unlocked_ioctl = xfs_file_ioctl, 1148 #ifdef CONFIG_COMPAT 1149 .compat_ioctl = xfs_file_compat_ioctl, 1150 #endif 1151 .mmap = xfs_file_mmap, 1152 .open = xfs_file_open, 1153 .release = xfs_file_release, 1154 .fsync = xfs_file_fsync, 1155 .get_unmapped_area = thp_get_unmapped_area, 1156 .fallocate = xfs_file_fallocate, 1157 .clone_file_range = xfs_file_clone_range, 1158 .dedupe_file_range = xfs_file_dedupe_range, 1159 }; 1160 1161 const struct file_operations xfs_dir_file_operations = { 1162 .open = xfs_dir_open, 1163 .read = generic_read_dir, 1164 .iterate_shared = xfs_file_readdir, 1165 .llseek = generic_file_llseek, 1166 .unlocked_ioctl = xfs_file_ioctl, 1167 #ifdef CONFIG_COMPAT 1168 .compat_ioctl = xfs_file_compat_ioctl, 1169 #endif 1170 .fsync = xfs_dir_fsync, 1171 }; 1172