xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 65ca668f)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 
42 #include <linux/dcache.h>
43 #include <linux/falloc.h>
44 #include <linux/pagevec.h>
45 #include <linux/backing-dev.h>
46 
47 static const struct vm_operations_struct xfs_file_vm_ops;
48 
49 /*
50  * Locking primitives for read and write IO paths to ensure we consistently use
51  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52  */
53 static inline void
54 xfs_rw_ilock(
55 	struct xfs_inode	*ip,
56 	int			type)
57 {
58 	if (type & XFS_IOLOCK_EXCL)
59 		inode_lock(VFS_I(ip));
60 	xfs_ilock(ip, type);
61 }
62 
63 static inline void
64 xfs_rw_iunlock(
65 	struct xfs_inode	*ip,
66 	int			type)
67 {
68 	xfs_iunlock(ip, type);
69 	if (type & XFS_IOLOCK_EXCL)
70 		inode_unlock(VFS_I(ip));
71 }
72 
73 static inline void
74 xfs_rw_ilock_demote(
75 	struct xfs_inode	*ip,
76 	int			type)
77 {
78 	xfs_ilock_demote(ip, type);
79 	if (type & XFS_IOLOCK_EXCL)
80 		inode_unlock(VFS_I(ip));
81 }
82 
83 /*
84  * Clear the specified ranges to zero through either the pagecache or DAX.
85  * Holes and unwritten extents will be left as-is as they already are zeroed.
86  */
87 int
88 xfs_zero_range(
89 	struct xfs_inode	*ip,
90 	xfs_off_t		pos,
91 	xfs_off_t		count,
92 	bool			*did_zero)
93 {
94 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
95 }
96 
97 int
98 xfs_update_prealloc_flags(
99 	struct xfs_inode	*ip,
100 	enum xfs_prealloc_flags	flags)
101 {
102 	struct xfs_trans	*tp;
103 	int			error;
104 
105 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
106 			0, 0, 0, &tp);
107 	if (error)
108 		return error;
109 
110 	xfs_ilock(ip, XFS_ILOCK_EXCL);
111 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
112 
113 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
114 		VFS_I(ip)->i_mode &= ~S_ISUID;
115 		if (VFS_I(ip)->i_mode & S_IXGRP)
116 			VFS_I(ip)->i_mode &= ~S_ISGID;
117 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
118 	}
119 
120 	if (flags & XFS_PREALLOC_SET)
121 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 	if (flags & XFS_PREALLOC_CLEAR)
123 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
124 
125 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 	if (flags & XFS_PREALLOC_SYNC)
127 		xfs_trans_set_sync(tp);
128 	return xfs_trans_commit(tp);
129 }
130 
131 /*
132  * Fsync operations on directories are much simpler than on regular files,
133  * as there is no file data to flush, and thus also no need for explicit
134  * cache flush operations, and there are no non-transaction metadata updates
135  * on directories either.
136  */
137 STATIC int
138 xfs_dir_fsync(
139 	struct file		*file,
140 	loff_t			start,
141 	loff_t			end,
142 	int			datasync)
143 {
144 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145 	struct xfs_mount	*mp = ip->i_mount;
146 	xfs_lsn_t		lsn = 0;
147 
148 	trace_xfs_dir_fsync(ip);
149 
150 	xfs_ilock(ip, XFS_ILOCK_SHARED);
151 	if (xfs_ipincount(ip))
152 		lsn = ip->i_itemp->ili_last_lsn;
153 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
154 
155 	if (!lsn)
156 		return 0;
157 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
158 }
159 
160 STATIC int
161 xfs_file_fsync(
162 	struct file		*file,
163 	loff_t			start,
164 	loff_t			end,
165 	int			datasync)
166 {
167 	struct inode		*inode = file->f_mapping->host;
168 	struct xfs_inode	*ip = XFS_I(inode);
169 	struct xfs_mount	*mp = ip->i_mount;
170 	int			error = 0;
171 	int			log_flushed = 0;
172 	xfs_lsn_t		lsn = 0;
173 
174 	trace_xfs_file_fsync(ip);
175 
176 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
177 	if (error)
178 		return error;
179 
180 	if (XFS_FORCED_SHUTDOWN(mp))
181 		return -EIO;
182 
183 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
184 
185 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 		/*
187 		 * If we have an RT and/or log subvolume we need to make sure
188 		 * to flush the write cache the device used for file data
189 		 * first.  This is to ensure newly written file data make
190 		 * it to disk before logging the new inode size in case of
191 		 * an extending write.
192 		 */
193 		if (XFS_IS_REALTIME_INODE(ip))
194 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 	}
198 
199 	/*
200 	 * All metadata updates are logged, which means that we just have to
201 	 * flush the log up to the latest LSN that touched the inode. If we have
202 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 	 * log force before we clear the ili_fsync_fields field. This ensures
204 	 * that we don't get a racing sync operation that does not wait for the
205 	 * metadata to hit the journal before returning. If we race with
206 	 * clearing the ili_fsync_fields, then all that will happen is the log
207 	 * force will do nothing as the lsn will already be on disk. We can't
208 	 * race with setting ili_fsync_fields because that is done under
209 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 	 * until after the ili_fsync_fields is cleared.
211 	 */
212 	xfs_ilock(ip, XFS_ILOCK_SHARED);
213 	if (xfs_ipincount(ip)) {
214 		if (!datasync ||
215 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
216 			lsn = ip->i_itemp->ili_last_lsn;
217 	}
218 
219 	if (lsn) {
220 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
221 		ip->i_itemp->ili_fsync_fields = 0;
222 	}
223 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
224 
225 	/*
226 	 * If we only have a single device, and the log force about was
227 	 * a no-op we might have to flush the data device cache here.
228 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 	 * an already allocated file and thus do not have any metadata to
230 	 * commit.
231 	 */
232 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 	    mp->m_logdev_targp == mp->m_ddev_targp &&
234 	    !XFS_IS_REALTIME_INODE(ip) &&
235 	    !log_flushed)
236 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
237 
238 	return error;
239 }
240 
241 STATIC ssize_t
242 xfs_file_dio_aio_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
247 	struct inode		*inode = mapping->host;
248 	struct xfs_inode	*ip = XFS_I(inode);
249 	loff_t			isize = i_size_read(inode);
250 	size_t			count = iov_iter_count(to);
251 	struct iov_iter		data;
252 	struct xfs_buftarg	*target;
253 	ssize_t			ret = 0;
254 
255 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
256 
257 	if (!count)
258 		return 0; /* skip atime */
259 
260 	if (XFS_IS_REALTIME_INODE(ip))
261 		target = ip->i_mount->m_rtdev_targp;
262 	else
263 		target = ip->i_mount->m_ddev_targp;
264 
265 	/* DIO must be aligned to device logical sector size */
266 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 		if (iocb->ki_pos == isize)
268 			return 0;
269 		return -EINVAL;
270 	}
271 
272 	/*
273 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
274 	 * IO, we effectively serialise all new concurrent read IO to this file
275 	 * and block it behind IO that is currently in progress because IO in
276 	 * progress holds the IO lock shared. We only need to hold the lock
277 	 * exclusive to blow away the page cache, so only take lock exclusively
278 	 * if the page cache needs invalidation. This allows the normal direct
279 	 * IO case of no page cache pages to proceeed concurrently without
280 	 * serialisation.
281 	 */
282 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
283 	if (mapping->nrpages) {
284 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
285 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
286 
287 		/*
288 		 * The generic dio code only flushes the range of the particular
289 		 * I/O. Because we take an exclusive lock here, this whole
290 		 * sequence is considerably more expensive for us. This has a
291 		 * noticeable performance impact for any file with cached pages,
292 		 * even when outside of the range of the particular I/O.
293 		 *
294 		 * Hence, amortize the cost of the lock against a full file
295 		 * flush and reduce the chances of repeated iolock cycles going
296 		 * forward.
297 		 */
298 		if (mapping->nrpages) {
299 			ret = filemap_write_and_wait(mapping);
300 			if (ret) {
301 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
302 				return ret;
303 			}
304 
305 			/*
306 			 * Invalidate whole pages. This can return an error if
307 			 * we fail to invalidate a page, but this should never
308 			 * happen on XFS. Warn if it does fail.
309 			 */
310 			ret = invalidate_inode_pages2(mapping);
311 			WARN_ON_ONCE(ret);
312 			ret = 0;
313 		}
314 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
315 	}
316 
317 	data = *to;
318 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
319 			xfs_get_blocks_direct, NULL, NULL, 0);
320 	if (ret > 0) {
321 		iocb->ki_pos += ret;
322 		iov_iter_advance(to, ret);
323 	}
324 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
325 
326 	file_accessed(iocb->ki_filp);
327 	return ret;
328 }
329 
330 static noinline ssize_t
331 xfs_file_dax_read(
332 	struct kiocb		*iocb,
333 	struct iov_iter		*to)
334 {
335 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
336 	struct inode		*inode = mapping->host;
337 	struct xfs_inode	*ip = XFS_I(inode);
338 	struct iov_iter		data = *to;
339 	size_t			count = iov_iter_count(to);
340 	ssize_t			ret = 0;
341 
342 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
343 
344 	if (!count)
345 		return 0; /* skip atime */
346 
347 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
348 	ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0);
349 	if (ret > 0) {
350 		iocb->ki_pos += ret;
351 		iov_iter_advance(to, ret);
352 	}
353 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 
355 	file_accessed(iocb->ki_filp);
356 	return ret;
357 }
358 
359 STATIC ssize_t
360 xfs_file_buffered_aio_read(
361 	struct kiocb		*iocb,
362 	struct iov_iter		*to)
363 {
364 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
365 	ssize_t			ret;
366 
367 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
368 
369 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
370 	ret = generic_file_read_iter(iocb, to);
371 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
372 
373 	return ret;
374 }
375 
376 STATIC ssize_t
377 xfs_file_read_iter(
378 	struct kiocb		*iocb,
379 	struct iov_iter		*to)
380 {
381 	struct inode		*inode = file_inode(iocb->ki_filp);
382 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
383 	ssize_t			ret = 0;
384 
385 	XFS_STATS_INC(mp, xs_read_calls);
386 
387 	if (XFS_FORCED_SHUTDOWN(mp))
388 		return -EIO;
389 
390 	if (IS_DAX(inode))
391 		ret = xfs_file_dax_read(iocb, to);
392 	else if (iocb->ki_flags & IOCB_DIRECT)
393 		ret = xfs_file_dio_aio_read(iocb, to);
394 	else
395 		ret = xfs_file_buffered_aio_read(iocb, to);
396 
397 	if (ret > 0)
398 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
399 	return ret;
400 }
401 
402 STATIC ssize_t
403 xfs_file_splice_read(
404 	struct file		*infilp,
405 	loff_t			*ppos,
406 	struct pipe_inode_info	*pipe,
407 	size_t			count,
408 	unsigned int		flags)
409 {
410 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
411 	ssize_t			ret;
412 
413 	XFS_STATS_INC(ip->i_mount, xs_read_calls);
414 
415 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
416 		return -EIO;
417 
418 	trace_xfs_file_splice_read(ip, count, *ppos);
419 
420 	/*
421 	 * DAX inodes cannot ues the page cache for splice, so we have to push
422 	 * them through the VFS IO path. This means it goes through
423 	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
424 	 * cannot lock the splice operation at this level for DAX inodes.
425 	 */
426 	if (IS_DAX(VFS_I(ip))) {
427 		ret = default_file_splice_read(infilp, ppos, pipe, count,
428 					       flags);
429 		goto out;
430 	}
431 
432 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
433 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
434 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
435 out:
436 	if (ret > 0)
437 		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
438 	return ret;
439 }
440 
441 /*
442  * Zero any on disk space between the current EOF and the new, larger EOF.
443  *
444  * This handles the normal case of zeroing the remainder of the last block in
445  * the file and the unusual case of zeroing blocks out beyond the size of the
446  * file.  This second case only happens with fixed size extents and when the
447  * system crashes before the inode size was updated but after blocks were
448  * allocated.
449  *
450  * Expects the iolock to be held exclusive, and will take the ilock internally.
451  */
452 int					/* error (positive) */
453 xfs_zero_eof(
454 	struct xfs_inode	*ip,
455 	xfs_off_t		offset,		/* starting I/O offset */
456 	xfs_fsize_t		isize,		/* current inode size */
457 	bool			*did_zeroing)
458 {
459 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
460 	ASSERT(offset > isize);
461 
462 	trace_xfs_zero_eof(ip, isize, offset - isize);
463 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
464 }
465 
466 /*
467  * Common pre-write limit and setup checks.
468  *
469  * Called with the iolocked held either shared and exclusive according to
470  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
471  * if called for a direct write beyond i_size.
472  */
473 STATIC ssize_t
474 xfs_file_aio_write_checks(
475 	struct kiocb		*iocb,
476 	struct iov_iter		*from,
477 	int			*iolock)
478 {
479 	struct file		*file = iocb->ki_filp;
480 	struct inode		*inode = file->f_mapping->host;
481 	struct xfs_inode	*ip = XFS_I(inode);
482 	ssize_t			error = 0;
483 	size_t			count = iov_iter_count(from);
484 	bool			drained_dio = false;
485 
486 restart:
487 	error = generic_write_checks(iocb, from);
488 	if (error <= 0)
489 		return error;
490 
491 	error = xfs_break_layouts(inode, iolock, true);
492 	if (error)
493 		return error;
494 
495 	/* For changing security info in file_remove_privs() we need i_mutex */
496 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
497 		xfs_rw_iunlock(ip, *iolock);
498 		*iolock = XFS_IOLOCK_EXCL;
499 		xfs_rw_ilock(ip, *iolock);
500 		goto restart;
501 	}
502 	/*
503 	 * If the offset is beyond the size of the file, we need to zero any
504 	 * blocks that fall between the existing EOF and the start of this
505 	 * write.  If zeroing is needed and we are currently holding the
506 	 * iolock shared, we need to update it to exclusive which implies
507 	 * having to redo all checks before.
508 	 *
509 	 * We need to serialise against EOF updates that occur in IO
510 	 * completions here. We want to make sure that nobody is changing the
511 	 * size while we do this check until we have placed an IO barrier (i.e.
512 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
513 	 * The spinlock effectively forms a memory barrier once we have the
514 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
515 	 * and hence be able to correctly determine if we need to run zeroing.
516 	 */
517 	spin_lock(&ip->i_flags_lock);
518 	if (iocb->ki_pos > i_size_read(inode)) {
519 		bool	zero = false;
520 
521 		spin_unlock(&ip->i_flags_lock);
522 		if (!drained_dio) {
523 			if (*iolock == XFS_IOLOCK_SHARED) {
524 				xfs_rw_iunlock(ip, *iolock);
525 				*iolock = XFS_IOLOCK_EXCL;
526 				xfs_rw_ilock(ip, *iolock);
527 				iov_iter_reexpand(from, count);
528 			}
529 			/*
530 			 * We now have an IO submission barrier in place, but
531 			 * AIO can do EOF updates during IO completion and hence
532 			 * we now need to wait for all of them to drain. Non-AIO
533 			 * DIO will have drained before we are given the
534 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
535 			 * no-op.
536 			 */
537 			inode_dio_wait(inode);
538 			drained_dio = true;
539 			goto restart;
540 		}
541 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
542 		if (error)
543 			return error;
544 	} else
545 		spin_unlock(&ip->i_flags_lock);
546 
547 	/*
548 	 * Updating the timestamps will grab the ilock again from
549 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
550 	 * lock above.  Eventually we should look into a way to avoid
551 	 * the pointless lock roundtrip.
552 	 */
553 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
554 		error = file_update_time(file);
555 		if (error)
556 			return error;
557 	}
558 
559 	/*
560 	 * If we're writing the file then make sure to clear the setuid and
561 	 * setgid bits if the process is not being run by root.  This keeps
562 	 * people from modifying setuid and setgid binaries.
563 	 */
564 	if (!IS_NOSEC(inode))
565 		return file_remove_privs(file);
566 	return 0;
567 }
568 
569 /*
570  * xfs_file_dio_aio_write - handle direct IO writes
571  *
572  * Lock the inode appropriately to prepare for and issue a direct IO write.
573  * By separating it from the buffered write path we remove all the tricky to
574  * follow locking changes and looping.
575  *
576  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
577  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
578  * pages are flushed out.
579  *
580  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
581  * allowing them to be done in parallel with reads and other direct IO writes.
582  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
583  * needs to do sub-block zeroing and that requires serialisation against other
584  * direct IOs to the same block. In this case we need to serialise the
585  * submission of the unaligned IOs so that we don't get racing block zeroing in
586  * the dio layer.  To avoid the problem with aio, we also need to wait for
587  * outstanding IOs to complete so that unwritten extent conversion is completed
588  * before we try to map the overlapping block. This is currently implemented by
589  * hitting it with a big hammer (i.e. inode_dio_wait()).
590  *
591  * Returns with locks held indicated by @iolock and errors indicated by
592  * negative return values.
593  */
594 STATIC ssize_t
595 xfs_file_dio_aio_write(
596 	struct kiocb		*iocb,
597 	struct iov_iter		*from)
598 {
599 	struct file		*file = iocb->ki_filp;
600 	struct address_space	*mapping = file->f_mapping;
601 	struct inode		*inode = mapping->host;
602 	struct xfs_inode	*ip = XFS_I(inode);
603 	struct xfs_mount	*mp = ip->i_mount;
604 	ssize_t			ret = 0;
605 	int			unaligned_io = 0;
606 	int			iolock;
607 	size_t			count = iov_iter_count(from);
608 	loff_t			end;
609 	struct iov_iter		data;
610 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
611 					mp->m_rtdev_targp : mp->m_ddev_targp;
612 
613 	/* DIO must be aligned to device logical sector size */
614 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
615 		return -EINVAL;
616 
617 	/* "unaligned" here means not aligned to a filesystem block */
618 	if ((iocb->ki_pos & mp->m_blockmask) ||
619 	    ((iocb->ki_pos + count) & mp->m_blockmask))
620 		unaligned_io = 1;
621 
622 	/*
623 	 * We don't need to take an exclusive lock unless there page cache needs
624 	 * to be invalidated or unaligned IO is being executed. We don't need to
625 	 * consider the EOF extension case here because
626 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
627 	 * EOF zeroing cases and fill out the new inode size as appropriate.
628 	 */
629 	if (unaligned_io || mapping->nrpages)
630 		iolock = XFS_IOLOCK_EXCL;
631 	else
632 		iolock = XFS_IOLOCK_SHARED;
633 	xfs_rw_ilock(ip, iolock);
634 
635 	/*
636 	 * Recheck if there are cached pages that need invalidate after we got
637 	 * the iolock to protect against other threads adding new pages while
638 	 * we were waiting for the iolock.
639 	 */
640 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
641 		xfs_rw_iunlock(ip, iolock);
642 		iolock = XFS_IOLOCK_EXCL;
643 		xfs_rw_ilock(ip, iolock);
644 	}
645 
646 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
647 	if (ret)
648 		goto out;
649 	count = iov_iter_count(from);
650 	end = iocb->ki_pos + count - 1;
651 
652 	/*
653 	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
654 	 */
655 	if (mapping->nrpages) {
656 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
657 		if (ret)
658 			goto out;
659 		/*
660 		 * Invalidate whole pages. This can return an error if we fail
661 		 * to invalidate a page, but this should never happen on XFS.
662 		 * Warn if it does fail.
663 		 */
664 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
665 		WARN_ON_ONCE(ret);
666 		ret = 0;
667 	}
668 
669 	/*
670 	 * If we are doing unaligned IO, wait for all other IO to drain,
671 	 * otherwise demote the lock if we had to flush cached pages
672 	 */
673 	if (unaligned_io)
674 		inode_dio_wait(inode);
675 	else if (iolock == XFS_IOLOCK_EXCL) {
676 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
677 		iolock = XFS_IOLOCK_SHARED;
678 	}
679 
680 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
681 
682 	data = *from;
683 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
684 			xfs_get_blocks_direct, xfs_end_io_direct_write,
685 			NULL, DIO_ASYNC_EXTEND);
686 
687 	/* see generic_file_direct_write() for why this is necessary */
688 	if (mapping->nrpages) {
689 		invalidate_inode_pages2_range(mapping,
690 					      iocb->ki_pos >> PAGE_SHIFT,
691 					      end >> PAGE_SHIFT);
692 	}
693 
694 	if (ret > 0) {
695 		iocb->ki_pos += ret;
696 		iov_iter_advance(from, ret);
697 	}
698 out:
699 	xfs_rw_iunlock(ip, iolock);
700 
701 	/*
702 	 * No fallback to buffered IO on errors for XFS, direct IO will either
703 	 * complete fully or fail.
704 	 */
705 	ASSERT(ret < 0 || ret == count);
706 	return ret;
707 }
708 
709 static noinline ssize_t
710 xfs_file_dax_write(
711 	struct kiocb		*iocb,
712 	struct iov_iter		*from)
713 {
714 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
715 	struct inode		*inode = mapping->host;
716 	struct xfs_inode	*ip = XFS_I(inode);
717 	struct xfs_mount	*mp = ip->i_mount;
718 	ssize_t			ret = 0;
719 	int			unaligned_io = 0;
720 	int			iolock;
721 	struct iov_iter		data;
722 
723 	/* "unaligned" here means not aligned to a filesystem block */
724 	if ((iocb->ki_pos & mp->m_blockmask) ||
725 	    ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) {
726 		unaligned_io = 1;
727 		iolock = XFS_IOLOCK_EXCL;
728 	} else if (mapping->nrpages) {
729 		iolock = XFS_IOLOCK_EXCL;
730 	} else {
731 		iolock = XFS_IOLOCK_SHARED;
732 	}
733 	xfs_rw_ilock(ip, iolock);
734 
735 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
736 	if (ret)
737 		goto out;
738 
739 	/*
740 	 * Yes, even DAX files can have page cache attached to them:  A zeroed
741 	 * page is inserted into the pagecache when we have to serve a write
742 	 * fault on a hole.  It should never be dirtied and can simply be
743 	 * dropped from the pagecache once we get real data for the page.
744 	 *
745 	 * XXX: This is racy against mmap, and there's nothing we can do about
746 	 * it. dax_do_io() should really do this invalidation internally as
747 	 * it will know if we've allocated over a holei for this specific IO and
748 	 * if so it needs to update the mapping tree and invalidate existing
749 	 * PTEs over the newly allocated range. Remove this invalidation when
750 	 * dax_do_io() is fixed up.
751 	 */
752 	if (mapping->nrpages) {
753 		loff_t end = iocb->ki_pos + iov_iter_count(from) - 1;
754 
755 		ret = invalidate_inode_pages2_range(mapping,
756 						    iocb->ki_pos >> PAGE_SHIFT,
757 						    end >> PAGE_SHIFT);
758 		WARN_ON_ONCE(ret);
759 	}
760 
761 	if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) {
762 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
763 		iolock = XFS_IOLOCK_SHARED;
764 	}
765 
766 	trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos);
767 
768 	data = *from;
769 	ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
770 			xfs_end_io_direct_write, 0);
771 	if (ret > 0) {
772 		iocb->ki_pos += ret;
773 		iov_iter_advance(from, ret);
774 	}
775 out:
776 	xfs_rw_iunlock(ip, iolock);
777 	return ret;
778 }
779 
780 STATIC ssize_t
781 xfs_file_buffered_aio_write(
782 	struct kiocb		*iocb,
783 	struct iov_iter		*from)
784 {
785 	struct file		*file = iocb->ki_filp;
786 	struct address_space	*mapping = file->f_mapping;
787 	struct inode		*inode = mapping->host;
788 	struct xfs_inode	*ip = XFS_I(inode);
789 	ssize_t			ret;
790 	int			enospc = 0;
791 	int			iolock = XFS_IOLOCK_EXCL;
792 
793 	xfs_rw_ilock(ip, iolock);
794 
795 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
796 	if (ret)
797 		goto out;
798 
799 	/* We can write back this queue in page reclaim */
800 	current->backing_dev_info = inode_to_bdi(inode);
801 
802 write_retry:
803 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
804 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
805 	if (likely(ret >= 0))
806 		iocb->ki_pos += ret;
807 
808 	/*
809 	 * If we hit a space limit, try to free up some lingering preallocated
810 	 * space before returning an error. In the case of ENOSPC, first try to
811 	 * write back all dirty inodes to free up some of the excess reserved
812 	 * metadata space. This reduces the chances that the eofblocks scan
813 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
814 	 * also behaves as a filter to prevent too many eofblocks scans from
815 	 * running at the same time.
816 	 */
817 	if (ret == -EDQUOT && !enospc) {
818 		enospc = xfs_inode_free_quota_eofblocks(ip);
819 		if (enospc)
820 			goto write_retry;
821 	} else if (ret == -ENOSPC && !enospc) {
822 		struct xfs_eofblocks eofb = {0};
823 
824 		enospc = 1;
825 		xfs_flush_inodes(ip->i_mount);
826 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
827 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
828 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
829 		goto write_retry;
830 	}
831 
832 	current->backing_dev_info = NULL;
833 out:
834 	xfs_rw_iunlock(ip, iolock);
835 	return ret;
836 }
837 
838 STATIC ssize_t
839 xfs_file_write_iter(
840 	struct kiocb		*iocb,
841 	struct iov_iter		*from)
842 {
843 	struct file		*file = iocb->ki_filp;
844 	struct address_space	*mapping = file->f_mapping;
845 	struct inode		*inode = mapping->host;
846 	struct xfs_inode	*ip = XFS_I(inode);
847 	ssize_t			ret;
848 	size_t			ocount = iov_iter_count(from);
849 
850 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
851 
852 	if (ocount == 0)
853 		return 0;
854 
855 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
856 		return -EIO;
857 
858 	if (IS_DAX(inode))
859 		ret = xfs_file_dax_write(iocb, from);
860 	else if (iocb->ki_flags & IOCB_DIRECT)
861 		ret = xfs_file_dio_aio_write(iocb, from);
862 	else
863 		ret = xfs_file_buffered_aio_write(iocb, from);
864 
865 	if (ret > 0) {
866 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
867 
868 		/* Handle various SYNC-type writes */
869 		ret = generic_write_sync(iocb, ret);
870 	}
871 	return ret;
872 }
873 
874 #define	XFS_FALLOC_FL_SUPPORTED						\
875 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
876 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
877 		 FALLOC_FL_INSERT_RANGE)
878 
879 STATIC long
880 xfs_file_fallocate(
881 	struct file		*file,
882 	int			mode,
883 	loff_t			offset,
884 	loff_t			len)
885 {
886 	struct inode		*inode = file_inode(file);
887 	struct xfs_inode	*ip = XFS_I(inode);
888 	long			error;
889 	enum xfs_prealloc_flags	flags = 0;
890 	uint			iolock = XFS_IOLOCK_EXCL;
891 	loff_t			new_size = 0;
892 	bool			do_file_insert = 0;
893 
894 	if (!S_ISREG(inode->i_mode))
895 		return -EINVAL;
896 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
897 		return -EOPNOTSUPP;
898 
899 	xfs_ilock(ip, iolock);
900 	error = xfs_break_layouts(inode, &iolock, false);
901 	if (error)
902 		goto out_unlock;
903 
904 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
905 	iolock |= XFS_MMAPLOCK_EXCL;
906 
907 	if (mode & FALLOC_FL_PUNCH_HOLE) {
908 		error = xfs_free_file_space(ip, offset, len);
909 		if (error)
910 			goto out_unlock;
911 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
912 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
913 
914 		if (offset & blksize_mask || len & blksize_mask) {
915 			error = -EINVAL;
916 			goto out_unlock;
917 		}
918 
919 		/*
920 		 * There is no need to overlap collapse range with EOF,
921 		 * in which case it is effectively a truncate operation
922 		 */
923 		if (offset + len >= i_size_read(inode)) {
924 			error = -EINVAL;
925 			goto out_unlock;
926 		}
927 
928 		new_size = i_size_read(inode) - len;
929 
930 		error = xfs_collapse_file_space(ip, offset, len);
931 		if (error)
932 			goto out_unlock;
933 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
934 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
935 
936 		new_size = i_size_read(inode) + len;
937 		if (offset & blksize_mask || len & blksize_mask) {
938 			error = -EINVAL;
939 			goto out_unlock;
940 		}
941 
942 		/* check the new inode size does not wrap through zero */
943 		if (new_size > inode->i_sb->s_maxbytes) {
944 			error = -EFBIG;
945 			goto out_unlock;
946 		}
947 
948 		/* Offset should be less than i_size */
949 		if (offset >= i_size_read(inode)) {
950 			error = -EINVAL;
951 			goto out_unlock;
952 		}
953 		do_file_insert = 1;
954 	} else {
955 		flags |= XFS_PREALLOC_SET;
956 
957 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
958 		    offset + len > i_size_read(inode)) {
959 			new_size = offset + len;
960 			error = inode_newsize_ok(inode, new_size);
961 			if (error)
962 				goto out_unlock;
963 		}
964 
965 		if (mode & FALLOC_FL_ZERO_RANGE)
966 			error = xfs_zero_file_space(ip, offset, len);
967 		else
968 			error = xfs_alloc_file_space(ip, offset, len,
969 						     XFS_BMAPI_PREALLOC);
970 		if (error)
971 			goto out_unlock;
972 	}
973 
974 	if (file->f_flags & O_DSYNC)
975 		flags |= XFS_PREALLOC_SYNC;
976 
977 	error = xfs_update_prealloc_flags(ip, flags);
978 	if (error)
979 		goto out_unlock;
980 
981 	/* Change file size if needed */
982 	if (new_size) {
983 		struct iattr iattr;
984 
985 		iattr.ia_valid = ATTR_SIZE;
986 		iattr.ia_size = new_size;
987 		error = xfs_setattr_size(ip, &iattr);
988 		if (error)
989 			goto out_unlock;
990 	}
991 
992 	/*
993 	 * Perform hole insertion now that the file size has been
994 	 * updated so that if we crash during the operation we don't
995 	 * leave shifted extents past EOF and hence losing access to
996 	 * the data that is contained within them.
997 	 */
998 	if (do_file_insert)
999 		error = xfs_insert_file_space(ip, offset, len);
1000 
1001 out_unlock:
1002 	xfs_iunlock(ip, iolock);
1003 	return error;
1004 }
1005 
1006 
1007 STATIC int
1008 xfs_file_open(
1009 	struct inode	*inode,
1010 	struct file	*file)
1011 {
1012 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1013 		return -EFBIG;
1014 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1015 		return -EIO;
1016 	return 0;
1017 }
1018 
1019 STATIC int
1020 xfs_dir_open(
1021 	struct inode	*inode,
1022 	struct file	*file)
1023 {
1024 	struct xfs_inode *ip = XFS_I(inode);
1025 	int		mode;
1026 	int		error;
1027 
1028 	error = xfs_file_open(inode, file);
1029 	if (error)
1030 		return error;
1031 
1032 	/*
1033 	 * If there are any blocks, read-ahead block 0 as we're almost
1034 	 * certain to have the next operation be a read there.
1035 	 */
1036 	mode = xfs_ilock_data_map_shared(ip);
1037 	if (ip->i_d.di_nextents > 0)
1038 		xfs_dir3_data_readahead(ip, 0, -1);
1039 	xfs_iunlock(ip, mode);
1040 	return 0;
1041 }
1042 
1043 STATIC int
1044 xfs_file_release(
1045 	struct inode	*inode,
1046 	struct file	*filp)
1047 {
1048 	return xfs_release(XFS_I(inode));
1049 }
1050 
1051 STATIC int
1052 xfs_file_readdir(
1053 	struct file	*file,
1054 	struct dir_context *ctx)
1055 {
1056 	struct inode	*inode = file_inode(file);
1057 	xfs_inode_t	*ip = XFS_I(inode);
1058 	size_t		bufsize;
1059 
1060 	/*
1061 	 * The Linux API doesn't pass down the total size of the buffer
1062 	 * we read into down to the filesystem.  With the filldir concept
1063 	 * it's not needed for correct information, but the XFS dir2 leaf
1064 	 * code wants an estimate of the buffer size to calculate it's
1065 	 * readahead window and size the buffers used for mapping to
1066 	 * physical blocks.
1067 	 *
1068 	 * Try to give it an estimate that's good enough, maybe at some
1069 	 * point we can change the ->readdir prototype to include the
1070 	 * buffer size.  For now we use the current glibc buffer size.
1071 	 */
1072 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1073 
1074 	return xfs_readdir(ip, ctx, bufsize);
1075 }
1076 
1077 /*
1078  * This type is designed to indicate the type of offset we would like
1079  * to search from page cache for xfs_seek_hole_data().
1080  */
1081 enum {
1082 	HOLE_OFF = 0,
1083 	DATA_OFF,
1084 };
1085 
1086 /*
1087  * Lookup the desired type of offset from the given page.
1088  *
1089  * On success, return true and the offset argument will point to the
1090  * start of the region that was found.  Otherwise this function will
1091  * return false and keep the offset argument unchanged.
1092  */
1093 STATIC bool
1094 xfs_lookup_buffer_offset(
1095 	struct page		*page,
1096 	loff_t			*offset,
1097 	unsigned int		type)
1098 {
1099 	loff_t			lastoff = page_offset(page);
1100 	bool			found = false;
1101 	struct buffer_head	*bh, *head;
1102 
1103 	bh = head = page_buffers(page);
1104 	do {
1105 		/*
1106 		 * Unwritten extents that have data in the page
1107 		 * cache covering them can be identified by the
1108 		 * BH_Unwritten state flag.  Pages with multiple
1109 		 * buffers might have a mix of holes, data and
1110 		 * unwritten extents - any buffer with valid
1111 		 * data in it should have BH_Uptodate flag set
1112 		 * on it.
1113 		 */
1114 		if (buffer_unwritten(bh) ||
1115 		    buffer_uptodate(bh)) {
1116 			if (type == DATA_OFF)
1117 				found = true;
1118 		} else {
1119 			if (type == HOLE_OFF)
1120 				found = true;
1121 		}
1122 
1123 		if (found) {
1124 			*offset = lastoff;
1125 			break;
1126 		}
1127 		lastoff += bh->b_size;
1128 	} while ((bh = bh->b_this_page) != head);
1129 
1130 	return found;
1131 }
1132 
1133 /*
1134  * This routine is called to find out and return a data or hole offset
1135  * from the page cache for unwritten extents according to the desired
1136  * type for xfs_seek_hole_data().
1137  *
1138  * The argument offset is used to tell where we start to search from the
1139  * page cache.  Map is used to figure out the end points of the range to
1140  * lookup pages.
1141  *
1142  * Return true if the desired type of offset was found, and the argument
1143  * offset is filled with that address.  Otherwise, return false and keep
1144  * offset unchanged.
1145  */
1146 STATIC bool
1147 xfs_find_get_desired_pgoff(
1148 	struct inode		*inode,
1149 	struct xfs_bmbt_irec	*map,
1150 	unsigned int		type,
1151 	loff_t			*offset)
1152 {
1153 	struct xfs_inode	*ip = XFS_I(inode);
1154 	struct xfs_mount	*mp = ip->i_mount;
1155 	struct pagevec		pvec;
1156 	pgoff_t			index;
1157 	pgoff_t			end;
1158 	loff_t			endoff;
1159 	loff_t			startoff = *offset;
1160 	loff_t			lastoff = startoff;
1161 	bool			found = false;
1162 
1163 	pagevec_init(&pvec, 0);
1164 
1165 	index = startoff >> PAGE_SHIFT;
1166 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1167 	end = endoff >> PAGE_SHIFT;
1168 	do {
1169 		int		want;
1170 		unsigned	nr_pages;
1171 		unsigned int	i;
1172 
1173 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1174 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1175 					  want);
1176 		/*
1177 		 * No page mapped into given range.  If we are searching holes
1178 		 * and if this is the first time we got into the loop, it means
1179 		 * that the given offset is landed in a hole, return it.
1180 		 *
1181 		 * If we have already stepped through some block buffers to find
1182 		 * holes but they all contains data.  In this case, the last
1183 		 * offset is already updated and pointed to the end of the last
1184 		 * mapped page, if it does not reach the endpoint to search,
1185 		 * that means there should be a hole between them.
1186 		 */
1187 		if (nr_pages == 0) {
1188 			/* Data search found nothing */
1189 			if (type == DATA_OFF)
1190 				break;
1191 
1192 			ASSERT(type == HOLE_OFF);
1193 			if (lastoff == startoff || lastoff < endoff) {
1194 				found = true;
1195 				*offset = lastoff;
1196 			}
1197 			break;
1198 		}
1199 
1200 		/*
1201 		 * At lease we found one page.  If this is the first time we
1202 		 * step into the loop, and if the first page index offset is
1203 		 * greater than the given search offset, a hole was found.
1204 		 */
1205 		if (type == HOLE_OFF && lastoff == startoff &&
1206 		    lastoff < page_offset(pvec.pages[0])) {
1207 			found = true;
1208 			break;
1209 		}
1210 
1211 		for (i = 0; i < nr_pages; i++) {
1212 			struct page	*page = pvec.pages[i];
1213 			loff_t		b_offset;
1214 
1215 			/*
1216 			 * At this point, the page may be truncated or
1217 			 * invalidated (changing page->mapping to NULL),
1218 			 * or even swizzled back from swapper_space to tmpfs
1219 			 * file mapping. However, page->index will not change
1220 			 * because we have a reference on the page.
1221 			 *
1222 			 * Searching done if the page index is out of range.
1223 			 * If the current offset is not reaches the end of
1224 			 * the specified search range, there should be a hole
1225 			 * between them.
1226 			 */
1227 			if (page->index > end) {
1228 				if (type == HOLE_OFF && lastoff < endoff) {
1229 					*offset = lastoff;
1230 					found = true;
1231 				}
1232 				goto out;
1233 			}
1234 
1235 			lock_page(page);
1236 			/*
1237 			 * Page truncated or invalidated(page->mapping == NULL).
1238 			 * We can freely skip it and proceed to check the next
1239 			 * page.
1240 			 */
1241 			if (unlikely(page->mapping != inode->i_mapping)) {
1242 				unlock_page(page);
1243 				continue;
1244 			}
1245 
1246 			if (!page_has_buffers(page)) {
1247 				unlock_page(page);
1248 				continue;
1249 			}
1250 
1251 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1252 			if (found) {
1253 				/*
1254 				 * The found offset may be less than the start
1255 				 * point to search if this is the first time to
1256 				 * come here.
1257 				 */
1258 				*offset = max_t(loff_t, startoff, b_offset);
1259 				unlock_page(page);
1260 				goto out;
1261 			}
1262 
1263 			/*
1264 			 * We either searching data but nothing was found, or
1265 			 * searching hole but found a data buffer.  In either
1266 			 * case, probably the next page contains the desired
1267 			 * things, update the last offset to it so.
1268 			 */
1269 			lastoff = page_offset(page) + PAGE_SIZE;
1270 			unlock_page(page);
1271 		}
1272 
1273 		/*
1274 		 * The number of returned pages less than our desired, search
1275 		 * done.  In this case, nothing was found for searching data,
1276 		 * but we found a hole behind the last offset.
1277 		 */
1278 		if (nr_pages < want) {
1279 			if (type == HOLE_OFF) {
1280 				*offset = lastoff;
1281 				found = true;
1282 			}
1283 			break;
1284 		}
1285 
1286 		index = pvec.pages[i - 1]->index + 1;
1287 		pagevec_release(&pvec);
1288 	} while (index <= end);
1289 
1290 out:
1291 	pagevec_release(&pvec);
1292 	return found;
1293 }
1294 
1295 /*
1296  * caller must lock inode with xfs_ilock_data_map_shared,
1297  * can we craft an appropriate ASSERT?
1298  *
1299  * end is because the VFS-level lseek interface is defined such that any
1300  * offset past i_size shall return -ENXIO, but we use this for quota code
1301  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1302  */
1303 loff_t
1304 __xfs_seek_hole_data(
1305 	struct inode		*inode,
1306 	loff_t			start,
1307 	loff_t			end,
1308 	int			whence)
1309 {
1310 	struct xfs_inode	*ip = XFS_I(inode);
1311 	struct xfs_mount	*mp = ip->i_mount;
1312 	loff_t			uninitialized_var(offset);
1313 	xfs_fileoff_t		fsbno;
1314 	xfs_filblks_t		lastbno;
1315 	int			error;
1316 
1317 	if (start >= end) {
1318 		error = -ENXIO;
1319 		goto out_error;
1320 	}
1321 
1322 	/*
1323 	 * Try to read extents from the first block indicated
1324 	 * by fsbno to the end block of the file.
1325 	 */
1326 	fsbno = XFS_B_TO_FSBT(mp, start);
1327 	lastbno = XFS_B_TO_FSB(mp, end);
1328 
1329 	for (;;) {
1330 		struct xfs_bmbt_irec	map[2];
1331 		int			nmap = 2;
1332 		unsigned int		i;
1333 
1334 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1335 				       XFS_BMAPI_ENTIRE);
1336 		if (error)
1337 			goto out_error;
1338 
1339 		/* No extents at given offset, must be beyond EOF */
1340 		if (nmap == 0) {
1341 			error = -ENXIO;
1342 			goto out_error;
1343 		}
1344 
1345 		for (i = 0; i < nmap; i++) {
1346 			offset = max_t(loff_t, start,
1347 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1348 
1349 			/* Landed in the hole we wanted? */
1350 			if (whence == SEEK_HOLE &&
1351 			    map[i].br_startblock == HOLESTARTBLOCK)
1352 				goto out;
1353 
1354 			/* Landed in the data extent we wanted? */
1355 			if (whence == SEEK_DATA &&
1356 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1357 			     (map[i].br_state == XFS_EXT_NORM &&
1358 			      !isnullstartblock(map[i].br_startblock))))
1359 				goto out;
1360 
1361 			/*
1362 			 * Landed in an unwritten extent, try to search
1363 			 * for hole or data from page cache.
1364 			 */
1365 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1366 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1367 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1368 							&offset))
1369 					goto out;
1370 			}
1371 		}
1372 
1373 		/*
1374 		 * We only received one extent out of the two requested. This
1375 		 * means we've hit EOF and didn't find what we are looking for.
1376 		 */
1377 		if (nmap == 1) {
1378 			/*
1379 			 * If we were looking for a hole, set offset to
1380 			 * the end of the file (i.e., there is an implicit
1381 			 * hole at the end of any file).
1382 		 	 */
1383 			if (whence == SEEK_HOLE) {
1384 				offset = end;
1385 				break;
1386 			}
1387 			/*
1388 			 * If we were looking for data, it's nowhere to be found
1389 			 */
1390 			ASSERT(whence == SEEK_DATA);
1391 			error = -ENXIO;
1392 			goto out_error;
1393 		}
1394 
1395 		ASSERT(i > 1);
1396 
1397 		/*
1398 		 * Nothing was found, proceed to the next round of search
1399 		 * if the next reading offset is not at or beyond EOF.
1400 		 */
1401 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1402 		start = XFS_FSB_TO_B(mp, fsbno);
1403 		if (start >= end) {
1404 			if (whence == SEEK_HOLE) {
1405 				offset = end;
1406 				break;
1407 			}
1408 			ASSERT(whence == SEEK_DATA);
1409 			error = -ENXIO;
1410 			goto out_error;
1411 		}
1412 	}
1413 
1414 out:
1415 	/*
1416 	 * If at this point we have found the hole we wanted, the returned
1417 	 * offset may be bigger than the file size as it may be aligned to
1418 	 * page boundary for unwritten extents.  We need to deal with this
1419 	 * situation in particular.
1420 	 */
1421 	if (whence == SEEK_HOLE)
1422 		offset = min_t(loff_t, offset, end);
1423 
1424 	return offset;
1425 
1426 out_error:
1427 	return error;
1428 }
1429 
1430 STATIC loff_t
1431 xfs_seek_hole_data(
1432 	struct file		*file,
1433 	loff_t			start,
1434 	int			whence)
1435 {
1436 	struct inode		*inode = file->f_mapping->host;
1437 	struct xfs_inode	*ip = XFS_I(inode);
1438 	struct xfs_mount	*mp = ip->i_mount;
1439 	uint			lock;
1440 	loff_t			offset, end;
1441 	int			error = 0;
1442 
1443 	if (XFS_FORCED_SHUTDOWN(mp))
1444 		return -EIO;
1445 
1446 	lock = xfs_ilock_data_map_shared(ip);
1447 
1448 	end = i_size_read(inode);
1449 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1450 	if (offset < 0) {
1451 		error = offset;
1452 		goto out_unlock;
1453 	}
1454 
1455 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1456 
1457 out_unlock:
1458 	xfs_iunlock(ip, lock);
1459 
1460 	if (error)
1461 		return error;
1462 	return offset;
1463 }
1464 
1465 STATIC loff_t
1466 xfs_file_llseek(
1467 	struct file	*file,
1468 	loff_t		offset,
1469 	int		whence)
1470 {
1471 	switch (whence) {
1472 	case SEEK_END:
1473 	case SEEK_CUR:
1474 	case SEEK_SET:
1475 		return generic_file_llseek(file, offset, whence);
1476 	case SEEK_HOLE:
1477 	case SEEK_DATA:
1478 		return xfs_seek_hole_data(file, offset, whence);
1479 	default:
1480 		return -EINVAL;
1481 	}
1482 }
1483 
1484 /*
1485  * Locking for serialisation of IO during page faults. This results in a lock
1486  * ordering of:
1487  *
1488  * mmap_sem (MM)
1489  *   sb_start_pagefault(vfs, freeze)
1490  *     i_mmaplock (XFS - truncate serialisation)
1491  *       page_lock (MM)
1492  *         i_lock (XFS - extent map serialisation)
1493  */
1494 
1495 /*
1496  * mmap()d file has taken write protection fault and is being made writable. We
1497  * can set the page state up correctly for a writable page, which means we can
1498  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1499  * mapping.
1500  */
1501 STATIC int
1502 xfs_filemap_page_mkwrite(
1503 	struct vm_area_struct	*vma,
1504 	struct vm_fault		*vmf)
1505 {
1506 	struct inode		*inode = file_inode(vma->vm_file);
1507 	int			ret;
1508 
1509 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1510 
1511 	sb_start_pagefault(inode->i_sb);
1512 	file_update_time(vma->vm_file);
1513 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1514 
1515 	if (IS_DAX(inode)) {
1516 		ret = dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1517 	} else {
1518 		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1519 		ret = block_page_mkwrite_return(ret);
1520 	}
1521 
1522 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1523 	sb_end_pagefault(inode->i_sb);
1524 
1525 	return ret;
1526 }
1527 
1528 STATIC int
1529 xfs_filemap_fault(
1530 	struct vm_area_struct	*vma,
1531 	struct vm_fault		*vmf)
1532 {
1533 	struct inode		*inode = file_inode(vma->vm_file);
1534 	int			ret;
1535 
1536 	trace_xfs_filemap_fault(XFS_I(inode));
1537 
1538 	/* DAX can shortcut the normal fault path on write faults! */
1539 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1540 		return xfs_filemap_page_mkwrite(vma, vmf);
1541 
1542 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1543 	if (IS_DAX(inode)) {
1544 		/*
1545 		 * we do not want to trigger unwritten extent conversion on read
1546 		 * faults - that is unnecessary overhead and would also require
1547 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1548 		 * ioend for conversion on read-only mappings.
1549 		 */
1550 		ret = dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1551 	} else
1552 		ret = filemap_fault(vma, vmf);
1553 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1554 
1555 	return ret;
1556 }
1557 
1558 /*
1559  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1560  * both read and write faults. Hence we need to handle both cases. There is no
1561  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1562  * handle both cases here. @flags carries the information on the type of fault
1563  * occuring.
1564  */
1565 STATIC int
1566 xfs_filemap_pmd_fault(
1567 	struct vm_area_struct	*vma,
1568 	unsigned long		addr,
1569 	pmd_t			*pmd,
1570 	unsigned int		flags)
1571 {
1572 	struct inode		*inode = file_inode(vma->vm_file);
1573 	struct xfs_inode	*ip = XFS_I(inode);
1574 	int			ret;
1575 
1576 	if (!IS_DAX(inode))
1577 		return VM_FAULT_FALLBACK;
1578 
1579 	trace_xfs_filemap_pmd_fault(ip);
1580 
1581 	if (flags & FAULT_FLAG_WRITE) {
1582 		sb_start_pagefault(inode->i_sb);
1583 		file_update_time(vma->vm_file);
1584 	}
1585 
1586 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1587 	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1588 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1589 
1590 	if (flags & FAULT_FLAG_WRITE)
1591 		sb_end_pagefault(inode->i_sb);
1592 
1593 	return ret;
1594 }
1595 
1596 /*
1597  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1598  * updates on write faults. In reality, it's need to serialise against
1599  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1600  * to ensure we serialise the fault barrier in place.
1601  */
1602 static int
1603 xfs_filemap_pfn_mkwrite(
1604 	struct vm_area_struct	*vma,
1605 	struct vm_fault		*vmf)
1606 {
1607 
1608 	struct inode		*inode = file_inode(vma->vm_file);
1609 	struct xfs_inode	*ip = XFS_I(inode);
1610 	int			ret = VM_FAULT_NOPAGE;
1611 	loff_t			size;
1612 
1613 	trace_xfs_filemap_pfn_mkwrite(ip);
1614 
1615 	sb_start_pagefault(inode->i_sb);
1616 	file_update_time(vma->vm_file);
1617 
1618 	/* check if the faulting page hasn't raced with truncate */
1619 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1620 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1621 	if (vmf->pgoff >= size)
1622 		ret = VM_FAULT_SIGBUS;
1623 	else if (IS_DAX(inode))
1624 		ret = dax_pfn_mkwrite(vma, vmf);
1625 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1626 	sb_end_pagefault(inode->i_sb);
1627 	return ret;
1628 
1629 }
1630 
1631 static const struct vm_operations_struct xfs_file_vm_ops = {
1632 	.fault		= xfs_filemap_fault,
1633 	.pmd_fault	= xfs_filemap_pmd_fault,
1634 	.map_pages	= filemap_map_pages,
1635 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1636 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1637 };
1638 
1639 STATIC int
1640 xfs_file_mmap(
1641 	struct file	*filp,
1642 	struct vm_area_struct *vma)
1643 {
1644 	file_accessed(filp);
1645 	vma->vm_ops = &xfs_file_vm_ops;
1646 	if (IS_DAX(file_inode(filp)))
1647 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1648 	return 0;
1649 }
1650 
1651 const struct file_operations xfs_file_operations = {
1652 	.llseek		= xfs_file_llseek,
1653 	.read_iter	= xfs_file_read_iter,
1654 	.write_iter	= xfs_file_write_iter,
1655 	.splice_read	= xfs_file_splice_read,
1656 	.splice_write	= iter_file_splice_write,
1657 	.unlocked_ioctl	= xfs_file_ioctl,
1658 #ifdef CONFIG_COMPAT
1659 	.compat_ioctl	= xfs_file_compat_ioctl,
1660 #endif
1661 	.mmap		= xfs_file_mmap,
1662 	.open		= xfs_file_open,
1663 	.release	= xfs_file_release,
1664 	.fsync		= xfs_file_fsync,
1665 	.fallocate	= xfs_file_fallocate,
1666 };
1667 
1668 const struct file_operations xfs_dir_file_operations = {
1669 	.open		= xfs_dir_open,
1670 	.read		= generic_read_dir,
1671 	.iterate_shared	= xfs_file_readdir,
1672 	.llseek		= generic_file_llseek,
1673 	.unlocked_ioctl	= xfs_file_ioctl,
1674 #ifdef CONFIG_COMPAT
1675 	.compat_ioctl	= xfs_file_compat_ioctl,
1676 #endif
1677 	.fsync		= xfs_dir_fsync,
1678 };
1679