1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_bit.h" 21 #include "xfs_log.h" 22 #include "xfs_inum.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_trans.h" 26 #include "xfs_mount.h" 27 #include "xfs_bmap_btree.h" 28 #include "xfs_alloc.h" 29 #include "xfs_dinode.h" 30 #include "xfs_inode.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_error.h" 34 #include "xfs_vnodeops.h" 35 #include "xfs_da_btree.h" 36 #include "xfs_ioctl.h" 37 #include "xfs_trace.h" 38 39 #include <linux/dcache.h> 40 #include <linux/falloc.h> 41 42 static const struct vm_operations_struct xfs_file_vm_ops; 43 44 /* 45 * Locking primitives for read and write IO paths to ensure we consistently use 46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 47 */ 48 static inline void 49 xfs_rw_ilock( 50 struct xfs_inode *ip, 51 int type) 52 { 53 if (type & XFS_IOLOCK_EXCL) 54 mutex_lock(&VFS_I(ip)->i_mutex); 55 xfs_ilock(ip, type); 56 } 57 58 static inline void 59 xfs_rw_iunlock( 60 struct xfs_inode *ip, 61 int type) 62 { 63 xfs_iunlock(ip, type); 64 if (type & XFS_IOLOCK_EXCL) 65 mutex_unlock(&VFS_I(ip)->i_mutex); 66 } 67 68 static inline void 69 xfs_rw_ilock_demote( 70 struct xfs_inode *ip, 71 int type) 72 { 73 xfs_ilock_demote(ip, type); 74 if (type & XFS_IOLOCK_EXCL) 75 mutex_unlock(&VFS_I(ip)->i_mutex); 76 } 77 78 /* 79 * xfs_iozero 80 * 81 * xfs_iozero clears the specified range of buffer supplied, 82 * and marks all the affected blocks as valid and modified. If 83 * an affected block is not allocated, it will be allocated. If 84 * an affected block is not completely overwritten, and is not 85 * valid before the operation, it will be read from disk before 86 * being partially zeroed. 87 */ 88 STATIC int 89 xfs_iozero( 90 struct xfs_inode *ip, /* inode */ 91 loff_t pos, /* offset in file */ 92 size_t count) /* size of data to zero */ 93 { 94 struct page *page; 95 struct address_space *mapping; 96 int status; 97 98 mapping = VFS_I(ip)->i_mapping; 99 do { 100 unsigned offset, bytes; 101 void *fsdata; 102 103 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 104 bytes = PAGE_CACHE_SIZE - offset; 105 if (bytes > count) 106 bytes = count; 107 108 status = pagecache_write_begin(NULL, mapping, pos, bytes, 109 AOP_FLAG_UNINTERRUPTIBLE, 110 &page, &fsdata); 111 if (status) 112 break; 113 114 zero_user(page, offset, bytes); 115 116 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 117 page, fsdata); 118 WARN_ON(status <= 0); /* can't return less than zero! */ 119 pos += bytes; 120 count -= bytes; 121 status = 0; 122 } while (count); 123 124 return (-status); 125 } 126 127 /* 128 * Fsync operations on directories are much simpler than on regular files, 129 * as there is no file data to flush, and thus also no need for explicit 130 * cache flush operations, and there are no non-transaction metadata updates 131 * on directories either. 132 */ 133 STATIC int 134 xfs_dir_fsync( 135 struct file *file, 136 loff_t start, 137 loff_t end, 138 int datasync) 139 { 140 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 141 struct xfs_mount *mp = ip->i_mount; 142 xfs_lsn_t lsn = 0; 143 144 trace_xfs_dir_fsync(ip); 145 146 xfs_ilock(ip, XFS_ILOCK_SHARED); 147 if (xfs_ipincount(ip)) 148 lsn = ip->i_itemp->ili_last_lsn; 149 xfs_iunlock(ip, XFS_ILOCK_SHARED); 150 151 if (!lsn) 152 return 0; 153 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 154 } 155 156 STATIC int 157 xfs_file_fsync( 158 struct file *file, 159 loff_t start, 160 loff_t end, 161 int datasync) 162 { 163 struct inode *inode = file->f_mapping->host; 164 struct xfs_inode *ip = XFS_I(inode); 165 struct xfs_mount *mp = ip->i_mount; 166 int error = 0; 167 int log_flushed = 0; 168 xfs_lsn_t lsn = 0; 169 170 trace_xfs_file_fsync(ip); 171 172 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 173 if (error) 174 return error; 175 176 if (XFS_FORCED_SHUTDOWN(mp)) 177 return -XFS_ERROR(EIO); 178 179 xfs_iflags_clear(ip, XFS_ITRUNCATED); 180 181 if (mp->m_flags & XFS_MOUNT_BARRIER) { 182 /* 183 * If we have an RT and/or log subvolume we need to make sure 184 * to flush the write cache the device used for file data 185 * first. This is to ensure newly written file data make 186 * it to disk before logging the new inode size in case of 187 * an extending write. 188 */ 189 if (XFS_IS_REALTIME_INODE(ip)) 190 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 191 else if (mp->m_logdev_targp != mp->m_ddev_targp) 192 xfs_blkdev_issue_flush(mp->m_ddev_targp); 193 } 194 195 /* 196 * All metadata updates are logged, which means that we just have 197 * to flush the log up to the latest LSN that touched the inode. 198 */ 199 xfs_ilock(ip, XFS_ILOCK_SHARED); 200 if (xfs_ipincount(ip)) { 201 if (!datasync || 202 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 203 lsn = ip->i_itemp->ili_last_lsn; 204 } 205 xfs_iunlock(ip, XFS_ILOCK_SHARED); 206 207 if (lsn) 208 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 209 210 /* 211 * If we only have a single device, and the log force about was 212 * a no-op we might have to flush the data device cache here. 213 * This can only happen for fdatasync/O_DSYNC if we were overwriting 214 * an already allocated file and thus do not have any metadata to 215 * commit. 216 */ 217 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 218 mp->m_logdev_targp == mp->m_ddev_targp && 219 !XFS_IS_REALTIME_INODE(ip) && 220 !log_flushed) 221 xfs_blkdev_issue_flush(mp->m_ddev_targp); 222 223 return -error; 224 } 225 226 STATIC ssize_t 227 xfs_file_aio_read( 228 struct kiocb *iocb, 229 const struct iovec *iovp, 230 unsigned long nr_segs, 231 loff_t pos) 232 { 233 struct file *file = iocb->ki_filp; 234 struct inode *inode = file->f_mapping->host; 235 struct xfs_inode *ip = XFS_I(inode); 236 struct xfs_mount *mp = ip->i_mount; 237 size_t size = 0; 238 ssize_t ret = 0; 239 int ioflags = 0; 240 xfs_fsize_t n; 241 unsigned long seg; 242 243 XFS_STATS_INC(xs_read_calls); 244 245 BUG_ON(iocb->ki_pos != pos); 246 247 if (unlikely(file->f_flags & O_DIRECT)) 248 ioflags |= IO_ISDIRECT; 249 if (file->f_mode & FMODE_NOCMTIME) 250 ioflags |= IO_INVIS; 251 252 /* START copy & waste from filemap.c */ 253 for (seg = 0; seg < nr_segs; seg++) { 254 const struct iovec *iv = &iovp[seg]; 255 256 /* 257 * If any segment has a negative length, or the cumulative 258 * length ever wraps negative then return -EINVAL. 259 */ 260 size += iv->iov_len; 261 if (unlikely((ssize_t)(size|iv->iov_len) < 0)) 262 return XFS_ERROR(-EINVAL); 263 } 264 /* END copy & waste from filemap.c */ 265 266 if (unlikely(ioflags & IO_ISDIRECT)) { 267 xfs_buftarg_t *target = 268 XFS_IS_REALTIME_INODE(ip) ? 269 mp->m_rtdev_targp : mp->m_ddev_targp; 270 if ((iocb->ki_pos & target->bt_smask) || 271 (size & target->bt_smask)) { 272 if (iocb->ki_pos == i_size_read(inode)) 273 return 0; 274 return -XFS_ERROR(EINVAL); 275 } 276 } 277 278 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; 279 if (n <= 0 || size == 0) 280 return 0; 281 282 if (n < size) 283 size = n; 284 285 if (XFS_FORCED_SHUTDOWN(mp)) 286 return -EIO; 287 288 /* 289 * Locking is a bit tricky here. If we take an exclusive lock 290 * for direct IO, we effectively serialise all new concurrent 291 * read IO to this file and block it behind IO that is currently in 292 * progress because IO in progress holds the IO lock shared. We only 293 * need to hold the lock exclusive to blow away the page cache, so 294 * only take lock exclusively if the page cache needs invalidation. 295 * This allows the normal direct IO case of no page cache pages to 296 * proceeed concurrently without serialisation. 297 */ 298 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 299 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 300 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 301 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 302 303 if (inode->i_mapping->nrpages) { 304 ret = -xfs_flushinval_pages(ip, 305 (iocb->ki_pos & PAGE_CACHE_MASK), 306 -1, FI_REMAPF_LOCKED); 307 if (ret) { 308 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 309 return ret; 310 } 311 } 312 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 313 } 314 315 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); 316 317 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); 318 if (ret > 0) 319 XFS_STATS_ADD(xs_read_bytes, ret); 320 321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 322 return ret; 323 } 324 325 STATIC ssize_t 326 xfs_file_splice_read( 327 struct file *infilp, 328 loff_t *ppos, 329 struct pipe_inode_info *pipe, 330 size_t count, 331 unsigned int flags) 332 { 333 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 334 int ioflags = 0; 335 ssize_t ret; 336 337 XFS_STATS_INC(xs_read_calls); 338 339 if (infilp->f_mode & FMODE_NOCMTIME) 340 ioflags |= IO_INVIS; 341 342 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 343 return -EIO; 344 345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 346 347 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 348 349 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 350 if (ret > 0) 351 XFS_STATS_ADD(xs_read_bytes, ret); 352 353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 354 return ret; 355 } 356 357 /* 358 * xfs_file_splice_write() does not use xfs_rw_ilock() because 359 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 360 * couuld cause lock inversions between the aio_write path and the splice path 361 * if someone is doing concurrent splice(2) based writes and write(2) based 362 * writes to the same inode. The only real way to fix this is to re-implement 363 * the generic code here with correct locking orders. 364 */ 365 STATIC ssize_t 366 xfs_file_splice_write( 367 struct pipe_inode_info *pipe, 368 struct file *outfilp, 369 loff_t *ppos, 370 size_t count, 371 unsigned int flags) 372 { 373 struct inode *inode = outfilp->f_mapping->host; 374 struct xfs_inode *ip = XFS_I(inode); 375 int ioflags = 0; 376 ssize_t ret; 377 378 XFS_STATS_INC(xs_write_calls); 379 380 if (outfilp->f_mode & FMODE_NOCMTIME) 381 ioflags |= IO_INVIS; 382 383 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 384 return -EIO; 385 386 xfs_ilock(ip, XFS_IOLOCK_EXCL); 387 388 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 389 390 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 391 if (ret > 0) 392 XFS_STATS_ADD(xs_write_bytes, ret); 393 394 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 395 return ret; 396 } 397 398 /* 399 * This routine is called to handle zeroing any space in the last 400 * block of the file that is beyond the EOF. We do this since the 401 * size is being increased without writing anything to that block 402 * and we don't want anyone to read the garbage on the disk. 403 */ 404 STATIC int /* error (positive) */ 405 xfs_zero_last_block( 406 xfs_inode_t *ip, 407 xfs_fsize_t offset, 408 xfs_fsize_t isize) 409 { 410 xfs_fileoff_t last_fsb; 411 xfs_mount_t *mp = ip->i_mount; 412 int nimaps; 413 int zero_offset; 414 int zero_len; 415 int error = 0; 416 xfs_bmbt_irec_t imap; 417 418 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 419 420 zero_offset = XFS_B_FSB_OFFSET(mp, isize); 421 if (zero_offset == 0) { 422 /* 423 * There are no extra bytes in the last block on disk to 424 * zero, so return. 425 */ 426 return 0; 427 } 428 429 last_fsb = XFS_B_TO_FSBT(mp, isize); 430 nimaps = 1; 431 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 432 if (error) 433 return error; 434 ASSERT(nimaps > 0); 435 /* 436 * If the block underlying isize is just a hole, then there 437 * is nothing to zero. 438 */ 439 if (imap.br_startblock == HOLESTARTBLOCK) { 440 return 0; 441 } 442 /* 443 * Zero the part of the last block beyond the EOF, and write it 444 * out sync. We need to drop the ilock while we do this so we 445 * don't deadlock when the buffer cache calls back to us. 446 */ 447 xfs_iunlock(ip, XFS_ILOCK_EXCL); 448 449 zero_len = mp->m_sb.sb_blocksize - zero_offset; 450 if (isize + zero_len > offset) 451 zero_len = offset - isize; 452 error = xfs_iozero(ip, isize, zero_len); 453 454 xfs_ilock(ip, XFS_ILOCK_EXCL); 455 ASSERT(error >= 0); 456 return error; 457 } 458 459 /* 460 * Zero any on disk space between the current EOF and the new, 461 * larger EOF. This handles the normal case of zeroing the remainder 462 * of the last block in the file and the unusual case of zeroing blocks 463 * out beyond the size of the file. This second case only happens 464 * with fixed size extents and when the system crashes before the inode 465 * size was updated but after blocks were allocated. If fill is set, 466 * then any holes in the range are filled and zeroed. If not, the holes 467 * are left alone as holes. 468 */ 469 470 int /* error (positive) */ 471 xfs_zero_eof( 472 xfs_inode_t *ip, 473 xfs_off_t offset, /* starting I/O offset */ 474 xfs_fsize_t isize) /* current inode size */ 475 { 476 xfs_mount_t *mp = ip->i_mount; 477 xfs_fileoff_t start_zero_fsb; 478 xfs_fileoff_t end_zero_fsb; 479 xfs_fileoff_t zero_count_fsb; 480 xfs_fileoff_t last_fsb; 481 xfs_fileoff_t zero_off; 482 xfs_fsize_t zero_len; 483 int nimaps; 484 int error = 0; 485 xfs_bmbt_irec_t imap; 486 487 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 488 ASSERT(offset > isize); 489 490 /* 491 * First handle zeroing the block on which isize resides. 492 * We only zero a part of that block so it is handled specially. 493 */ 494 error = xfs_zero_last_block(ip, offset, isize); 495 if (error) { 496 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 497 return error; 498 } 499 500 /* 501 * Calculate the range between the new size and the old 502 * where blocks needing to be zeroed may exist. To get the 503 * block where the last byte in the file currently resides, 504 * we need to subtract one from the size and truncate back 505 * to a block boundary. We subtract 1 in case the size is 506 * exactly on a block boundary. 507 */ 508 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 509 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 510 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 511 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 512 if (last_fsb == end_zero_fsb) { 513 /* 514 * The size was only incremented on its last block. 515 * We took care of that above, so just return. 516 */ 517 return 0; 518 } 519 520 ASSERT(start_zero_fsb <= end_zero_fsb); 521 while (start_zero_fsb <= end_zero_fsb) { 522 nimaps = 1; 523 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 524 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 525 &imap, &nimaps, 0); 526 if (error) { 527 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 528 return error; 529 } 530 ASSERT(nimaps > 0); 531 532 if (imap.br_state == XFS_EXT_UNWRITTEN || 533 imap.br_startblock == HOLESTARTBLOCK) { 534 /* 535 * This loop handles initializing pages that were 536 * partially initialized by the code below this 537 * loop. It basically zeroes the part of the page 538 * that sits on a hole and sets the page as P_HOLE 539 * and calls remapf if it is a mapped file. 540 */ 541 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 542 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 543 continue; 544 } 545 546 /* 547 * There are blocks we need to zero. 548 * Drop the inode lock while we're doing the I/O. 549 * We'll still have the iolock to protect us. 550 */ 551 xfs_iunlock(ip, XFS_ILOCK_EXCL); 552 553 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 554 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 555 556 if ((zero_off + zero_len) > offset) 557 zero_len = offset - zero_off; 558 559 error = xfs_iozero(ip, zero_off, zero_len); 560 if (error) { 561 goto out_lock; 562 } 563 564 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 565 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 566 567 xfs_ilock(ip, XFS_ILOCK_EXCL); 568 } 569 570 return 0; 571 572 out_lock: 573 xfs_ilock(ip, XFS_ILOCK_EXCL); 574 ASSERT(error >= 0); 575 return error; 576 } 577 578 /* 579 * Common pre-write limit and setup checks. 580 * 581 * Called with the iolocked held either shared and exclusive according to 582 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 583 * if called for a direct write beyond i_size. 584 */ 585 STATIC ssize_t 586 xfs_file_aio_write_checks( 587 struct file *file, 588 loff_t *pos, 589 size_t *count, 590 int *iolock) 591 { 592 struct inode *inode = file->f_mapping->host; 593 struct xfs_inode *ip = XFS_I(inode); 594 int error = 0; 595 596 xfs_rw_ilock(ip, XFS_ILOCK_EXCL); 597 restart: 598 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 599 if (error) { 600 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); 601 return error; 602 } 603 604 /* 605 * If the offset is beyond the size of the file, we need to zero any 606 * blocks that fall between the existing EOF and the start of this 607 * write. If zeroing is needed and we are currently holding the 608 * iolock shared, we need to update it to exclusive which involves 609 * dropping all locks and relocking to maintain correct locking order. 610 * If we do this, restart the function to ensure all checks and values 611 * are still valid. 612 */ 613 if (*pos > i_size_read(inode)) { 614 if (*iolock == XFS_IOLOCK_SHARED) { 615 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock); 616 *iolock = XFS_IOLOCK_EXCL; 617 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock); 618 goto restart; 619 } 620 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 621 } 622 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); 623 if (error) 624 return error; 625 626 /* 627 * Updating the timestamps will grab the ilock again from 628 * xfs_fs_dirty_inode, so we have to call it after dropping the 629 * lock above. Eventually we should look into a way to avoid 630 * the pointless lock roundtrip. 631 */ 632 if (likely(!(file->f_mode & FMODE_NOCMTIME))) 633 file_update_time(file); 634 635 /* 636 * If we're writing the file then make sure to clear the setuid and 637 * setgid bits if the process is not being run by root. This keeps 638 * people from modifying setuid and setgid binaries. 639 */ 640 return file_remove_suid(file); 641 642 } 643 644 /* 645 * xfs_file_dio_aio_write - handle direct IO writes 646 * 647 * Lock the inode appropriately to prepare for and issue a direct IO write. 648 * By separating it from the buffered write path we remove all the tricky to 649 * follow locking changes and looping. 650 * 651 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 652 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 653 * pages are flushed out. 654 * 655 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 656 * allowing them to be done in parallel with reads and other direct IO writes. 657 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 658 * needs to do sub-block zeroing and that requires serialisation against other 659 * direct IOs to the same block. In this case we need to serialise the 660 * submission of the unaligned IOs so that we don't get racing block zeroing in 661 * the dio layer. To avoid the problem with aio, we also need to wait for 662 * outstanding IOs to complete so that unwritten extent conversion is completed 663 * before we try to map the overlapping block. This is currently implemented by 664 * hitting it with a big hammer (i.e. inode_dio_wait()). 665 * 666 * Returns with locks held indicated by @iolock and errors indicated by 667 * negative return values. 668 */ 669 STATIC ssize_t 670 xfs_file_dio_aio_write( 671 struct kiocb *iocb, 672 const struct iovec *iovp, 673 unsigned long nr_segs, 674 loff_t pos, 675 size_t ocount) 676 { 677 struct file *file = iocb->ki_filp; 678 struct address_space *mapping = file->f_mapping; 679 struct inode *inode = mapping->host; 680 struct xfs_inode *ip = XFS_I(inode); 681 struct xfs_mount *mp = ip->i_mount; 682 ssize_t ret = 0; 683 size_t count = ocount; 684 int unaligned_io = 0; 685 int iolock; 686 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 687 mp->m_rtdev_targp : mp->m_ddev_targp; 688 689 if ((pos & target->bt_smask) || (count & target->bt_smask)) 690 return -XFS_ERROR(EINVAL); 691 692 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 693 unaligned_io = 1; 694 695 /* 696 * We don't need to take an exclusive lock unless there page cache needs 697 * to be invalidated or unaligned IO is being executed. We don't need to 698 * consider the EOF extension case here because 699 * xfs_file_aio_write_checks() will relock the inode as necessary for 700 * EOF zeroing cases and fill out the new inode size as appropriate. 701 */ 702 if (unaligned_io || mapping->nrpages) 703 iolock = XFS_IOLOCK_EXCL; 704 else 705 iolock = XFS_IOLOCK_SHARED; 706 xfs_rw_ilock(ip, iolock); 707 708 /* 709 * Recheck if there are cached pages that need invalidate after we got 710 * the iolock to protect against other threads adding new pages while 711 * we were waiting for the iolock. 712 */ 713 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 714 xfs_rw_iunlock(ip, iolock); 715 iolock = XFS_IOLOCK_EXCL; 716 xfs_rw_ilock(ip, iolock); 717 } 718 719 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 720 if (ret) 721 goto out; 722 723 if (mapping->nrpages) { 724 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, 725 FI_REMAPF_LOCKED); 726 if (ret) 727 goto out; 728 } 729 730 /* 731 * If we are doing unaligned IO, wait for all other IO to drain, 732 * otherwise demote the lock if we had to flush cached pages 733 */ 734 if (unaligned_io) 735 inode_dio_wait(inode); 736 else if (iolock == XFS_IOLOCK_EXCL) { 737 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 738 iolock = XFS_IOLOCK_SHARED; 739 } 740 741 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 742 ret = generic_file_direct_write(iocb, iovp, 743 &nr_segs, pos, &iocb->ki_pos, count, ocount); 744 745 out: 746 xfs_rw_iunlock(ip, iolock); 747 748 /* No fallback to buffered IO on errors for XFS. */ 749 ASSERT(ret < 0 || ret == count); 750 return ret; 751 } 752 753 STATIC ssize_t 754 xfs_file_buffered_aio_write( 755 struct kiocb *iocb, 756 const struct iovec *iovp, 757 unsigned long nr_segs, 758 loff_t pos, 759 size_t ocount) 760 { 761 struct file *file = iocb->ki_filp; 762 struct address_space *mapping = file->f_mapping; 763 struct inode *inode = mapping->host; 764 struct xfs_inode *ip = XFS_I(inode); 765 ssize_t ret; 766 int enospc = 0; 767 int iolock = XFS_IOLOCK_EXCL; 768 size_t count = ocount; 769 770 xfs_rw_ilock(ip, iolock); 771 772 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 773 if (ret) 774 goto out; 775 776 /* We can write back this queue in page reclaim */ 777 current->backing_dev_info = mapping->backing_dev_info; 778 779 write_retry: 780 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 781 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 782 pos, &iocb->ki_pos, count, ret); 783 /* 784 * if we just got an ENOSPC, flush the inode now we aren't holding any 785 * page locks and retry *once* 786 */ 787 if (ret == -ENOSPC && !enospc) { 788 enospc = 1; 789 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); 790 if (!ret) 791 goto write_retry; 792 } 793 794 current->backing_dev_info = NULL; 795 out: 796 xfs_rw_iunlock(ip, iolock); 797 return ret; 798 } 799 800 STATIC ssize_t 801 xfs_file_aio_write( 802 struct kiocb *iocb, 803 const struct iovec *iovp, 804 unsigned long nr_segs, 805 loff_t pos) 806 { 807 struct file *file = iocb->ki_filp; 808 struct address_space *mapping = file->f_mapping; 809 struct inode *inode = mapping->host; 810 struct xfs_inode *ip = XFS_I(inode); 811 ssize_t ret; 812 size_t ocount = 0; 813 814 XFS_STATS_INC(xs_write_calls); 815 816 BUG_ON(iocb->ki_pos != pos); 817 818 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 819 if (ret) 820 return ret; 821 822 if (ocount == 0) 823 return 0; 824 825 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE); 826 827 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 828 return -EIO; 829 830 if (unlikely(file->f_flags & O_DIRECT)) 831 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 832 else 833 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 834 ocount); 835 836 if (ret > 0) { 837 ssize_t err; 838 839 XFS_STATS_ADD(xs_write_bytes, ret); 840 841 /* Handle various SYNC-type writes */ 842 err = generic_write_sync(file, pos, ret); 843 if (err < 0) 844 ret = err; 845 } 846 847 return ret; 848 } 849 850 STATIC long 851 xfs_file_fallocate( 852 struct file *file, 853 int mode, 854 loff_t offset, 855 loff_t len) 856 { 857 struct inode *inode = file->f_path.dentry->d_inode; 858 long error; 859 loff_t new_size = 0; 860 xfs_flock64_t bf; 861 xfs_inode_t *ip = XFS_I(inode); 862 int cmd = XFS_IOC_RESVSP; 863 int attr_flags = XFS_ATTR_NOLOCK; 864 865 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 866 return -EOPNOTSUPP; 867 868 bf.l_whence = 0; 869 bf.l_start = offset; 870 bf.l_len = len; 871 872 xfs_ilock(ip, XFS_IOLOCK_EXCL); 873 874 if (mode & FALLOC_FL_PUNCH_HOLE) 875 cmd = XFS_IOC_UNRESVSP; 876 877 /* check the new inode size is valid before allocating */ 878 if (!(mode & FALLOC_FL_KEEP_SIZE) && 879 offset + len > i_size_read(inode)) { 880 new_size = offset + len; 881 error = inode_newsize_ok(inode, new_size); 882 if (error) 883 goto out_unlock; 884 } 885 886 if (file->f_flags & O_DSYNC) 887 attr_flags |= XFS_ATTR_SYNC; 888 889 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 890 if (error) 891 goto out_unlock; 892 893 /* Change file size if needed */ 894 if (new_size) { 895 struct iattr iattr; 896 897 iattr.ia_valid = ATTR_SIZE; 898 iattr.ia_size = new_size; 899 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 900 } 901 902 out_unlock: 903 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 904 return error; 905 } 906 907 908 STATIC int 909 xfs_file_open( 910 struct inode *inode, 911 struct file *file) 912 { 913 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 914 return -EFBIG; 915 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 916 return -EIO; 917 return 0; 918 } 919 920 STATIC int 921 xfs_dir_open( 922 struct inode *inode, 923 struct file *file) 924 { 925 struct xfs_inode *ip = XFS_I(inode); 926 int mode; 927 int error; 928 929 error = xfs_file_open(inode, file); 930 if (error) 931 return error; 932 933 /* 934 * If there are any blocks, read-ahead block 0 as we're almost 935 * certain to have the next operation be a read there. 936 */ 937 mode = xfs_ilock_map_shared(ip); 938 if (ip->i_d.di_nextents > 0) 939 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); 940 xfs_iunlock(ip, mode); 941 return 0; 942 } 943 944 STATIC int 945 xfs_file_release( 946 struct inode *inode, 947 struct file *filp) 948 { 949 return -xfs_release(XFS_I(inode)); 950 } 951 952 STATIC int 953 xfs_file_readdir( 954 struct file *filp, 955 void *dirent, 956 filldir_t filldir) 957 { 958 struct inode *inode = filp->f_path.dentry->d_inode; 959 xfs_inode_t *ip = XFS_I(inode); 960 int error; 961 size_t bufsize; 962 963 /* 964 * The Linux API doesn't pass down the total size of the buffer 965 * we read into down to the filesystem. With the filldir concept 966 * it's not needed for correct information, but the XFS dir2 leaf 967 * code wants an estimate of the buffer size to calculate it's 968 * readahead window and size the buffers used for mapping to 969 * physical blocks. 970 * 971 * Try to give it an estimate that's good enough, maybe at some 972 * point we can change the ->readdir prototype to include the 973 * buffer size. For now we use the current glibc buffer size. 974 */ 975 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 976 977 error = xfs_readdir(ip, dirent, bufsize, 978 (xfs_off_t *)&filp->f_pos, filldir); 979 if (error) 980 return -error; 981 return 0; 982 } 983 984 STATIC int 985 xfs_file_mmap( 986 struct file *filp, 987 struct vm_area_struct *vma) 988 { 989 vma->vm_ops = &xfs_file_vm_ops; 990 vma->vm_flags |= VM_CAN_NONLINEAR; 991 992 file_accessed(filp); 993 return 0; 994 } 995 996 /* 997 * mmap()d file has taken write protection fault and is being made 998 * writable. We can set the page state up correctly for a writable 999 * page, which means we can do correct delalloc accounting (ENOSPC 1000 * checking!) and unwritten extent mapping. 1001 */ 1002 STATIC int 1003 xfs_vm_page_mkwrite( 1004 struct vm_area_struct *vma, 1005 struct vm_fault *vmf) 1006 { 1007 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 1008 } 1009 1010 const struct file_operations xfs_file_operations = { 1011 .llseek = generic_file_llseek, 1012 .read = do_sync_read, 1013 .write = do_sync_write, 1014 .aio_read = xfs_file_aio_read, 1015 .aio_write = xfs_file_aio_write, 1016 .splice_read = xfs_file_splice_read, 1017 .splice_write = xfs_file_splice_write, 1018 .unlocked_ioctl = xfs_file_ioctl, 1019 #ifdef CONFIG_COMPAT 1020 .compat_ioctl = xfs_file_compat_ioctl, 1021 #endif 1022 .mmap = xfs_file_mmap, 1023 .open = xfs_file_open, 1024 .release = xfs_file_release, 1025 .fsync = xfs_file_fsync, 1026 .fallocate = xfs_file_fallocate, 1027 }; 1028 1029 const struct file_operations xfs_dir_file_operations = { 1030 .open = xfs_dir_open, 1031 .read = generic_read_dir, 1032 .readdir = xfs_file_readdir, 1033 .llseek = generic_file_llseek, 1034 .unlocked_ioctl = xfs_file_ioctl, 1035 #ifdef CONFIG_COMPAT 1036 .compat_ioctl = xfs_file_compat_ioctl, 1037 #endif 1038 .fsync = xfs_dir_fsync, 1039 }; 1040 1041 static const struct vm_operations_struct xfs_file_vm_ops = { 1042 .fault = filemap_fault, 1043 .page_mkwrite = xfs_vm_page_mkwrite, 1044 }; 1045