xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 615c36f5)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38 
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 
42 static const struct vm_operations_struct xfs_file_vm_ops;
43 
44 /*
45  * Locking primitives for read and write IO paths to ensure we consistently use
46  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
47  */
48 static inline void
49 xfs_rw_ilock(
50 	struct xfs_inode	*ip,
51 	int			type)
52 {
53 	if (type & XFS_IOLOCK_EXCL)
54 		mutex_lock(&VFS_I(ip)->i_mutex);
55 	xfs_ilock(ip, type);
56 }
57 
58 static inline void
59 xfs_rw_iunlock(
60 	struct xfs_inode	*ip,
61 	int			type)
62 {
63 	xfs_iunlock(ip, type);
64 	if (type & XFS_IOLOCK_EXCL)
65 		mutex_unlock(&VFS_I(ip)->i_mutex);
66 }
67 
68 static inline void
69 xfs_rw_ilock_demote(
70 	struct xfs_inode	*ip,
71 	int			type)
72 {
73 	xfs_ilock_demote(ip, type);
74 	if (type & XFS_IOLOCK_EXCL)
75 		mutex_unlock(&VFS_I(ip)->i_mutex);
76 }
77 
78 /*
79  *	xfs_iozero
80  *
81  *	xfs_iozero clears the specified range of buffer supplied,
82  *	and marks all the affected blocks as valid and modified.  If
83  *	an affected block is not allocated, it will be allocated.  If
84  *	an affected block is not completely overwritten, and is not
85  *	valid before the operation, it will be read from disk before
86  *	being partially zeroed.
87  */
88 STATIC int
89 xfs_iozero(
90 	struct xfs_inode	*ip,	/* inode			*/
91 	loff_t			pos,	/* offset in file		*/
92 	size_t			count)	/* size of data to zero		*/
93 {
94 	struct page		*page;
95 	struct address_space	*mapping;
96 	int			status;
97 
98 	mapping = VFS_I(ip)->i_mapping;
99 	do {
100 		unsigned offset, bytes;
101 		void *fsdata;
102 
103 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 		bytes = PAGE_CACHE_SIZE - offset;
105 		if (bytes > count)
106 			bytes = count;
107 
108 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 					AOP_FLAG_UNINTERRUPTIBLE,
110 					&page, &fsdata);
111 		if (status)
112 			break;
113 
114 		zero_user(page, offset, bytes);
115 
116 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 					page, fsdata);
118 		WARN_ON(status <= 0); /* can't return less than zero! */
119 		pos += bytes;
120 		count -= bytes;
121 		status = 0;
122 	} while (count);
123 
124 	return (-status);
125 }
126 
127 /*
128  * Fsync operations on directories are much simpler than on regular files,
129  * as there is no file data to flush, and thus also no need for explicit
130  * cache flush operations, and there are no non-transaction metadata updates
131  * on directories either.
132  */
133 STATIC int
134 xfs_dir_fsync(
135 	struct file		*file,
136 	loff_t			start,
137 	loff_t			end,
138 	int			datasync)
139 {
140 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
141 	struct xfs_mount	*mp = ip->i_mount;
142 	xfs_lsn_t		lsn = 0;
143 
144 	trace_xfs_dir_fsync(ip);
145 
146 	xfs_ilock(ip, XFS_ILOCK_SHARED);
147 	if (xfs_ipincount(ip))
148 		lsn = ip->i_itemp->ili_last_lsn;
149 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
150 
151 	if (!lsn)
152 		return 0;
153 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
154 }
155 
156 STATIC int
157 xfs_file_fsync(
158 	struct file		*file,
159 	loff_t			start,
160 	loff_t			end,
161 	int			datasync)
162 {
163 	struct inode		*inode = file->f_mapping->host;
164 	struct xfs_inode	*ip = XFS_I(inode);
165 	struct xfs_mount	*mp = ip->i_mount;
166 	struct xfs_trans	*tp;
167 	int			error = 0;
168 	int			log_flushed = 0;
169 	xfs_lsn_t		lsn = 0;
170 
171 	trace_xfs_file_fsync(ip);
172 
173 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
174 	if (error)
175 		return error;
176 
177 	if (XFS_FORCED_SHUTDOWN(mp))
178 		return -XFS_ERROR(EIO);
179 
180 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
181 
182 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
183 		/*
184 		 * If we have an RT and/or log subvolume we need to make sure
185 		 * to flush the write cache the device used for file data
186 		 * first.  This is to ensure newly written file data make
187 		 * it to disk before logging the new inode size in case of
188 		 * an extending write.
189 		 */
190 		if (XFS_IS_REALTIME_INODE(ip))
191 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
192 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
193 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
194 	}
195 
196 	/*
197 	 * We always need to make sure that the required inode state is safe on
198 	 * disk.  The inode might be clean but we still might need to force the
199 	 * log because of committed transactions that haven't hit the disk yet.
200 	 * Likewise, there could be unflushed non-transactional changes to the
201 	 * inode core that have to go to disk and this requires us to issue
202 	 * a synchronous transaction to capture these changes correctly.
203 	 *
204 	 * This code relies on the assumption that if the i_update_core field
205 	 * of the inode is clear and the inode is unpinned then it is clean
206 	 * and no action is required.
207 	 */
208 	xfs_ilock(ip, XFS_ILOCK_SHARED);
209 
210 	/*
211 	 * First check if the VFS inode is marked dirty.  All the dirtying
212 	 * of non-transactional updates no goes through mark_inode_dirty*,
213 	 * which allows us to distinguish beteeen pure timestamp updates
214 	 * and i_size updates which need to be caught for fdatasync.
215 	 * After that also theck for the dirty state in the XFS inode, which
216 	 * might gets cleared when the inode gets written out via the AIL
217 	 * or xfs_iflush_cluster.
218 	 */
219 	if (((inode->i_state & I_DIRTY_DATASYNC) ||
220 	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
221 	    ip->i_update_core) {
222 		/*
223 		 * Kick off a transaction to log the inode core to get the
224 		 * updates.  The sync transaction will also force the log.
225 		 */
226 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
227 		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
228 		error = xfs_trans_reserve(tp, 0,
229 				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
230 		if (error) {
231 			xfs_trans_cancel(tp, 0);
232 			return -error;
233 		}
234 		xfs_ilock(ip, XFS_ILOCK_EXCL);
235 
236 		/*
237 		 * Note - it's possible that we might have pushed ourselves out
238 		 * of the way during trans_reserve which would flush the inode.
239 		 * But there's no guarantee that the inode buffer has actually
240 		 * gone out yet (it's delwri).	Plus the buffer could be pinned
241 		 * anyway if it's part of an inode in another recent
242 		 * transaction.	 So we play it safe and fire off the
243 		 * transaction anyway.
244 		 */
245 		xfs_trans_ijoin(tp, ip, 0);
246 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
247 		error = xfs_trans_commit(tp, 0);
248 
249 		lsn = ip->i_itemp->ili_last_lsn;
250 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
251 	} else {
252 		/*
253 		 * Timestamps/size haven't changed since last inode flush or
254 		 * inode transaction commit.  That means either nothing got
255 		 * written or a transaction committed which caught the updates.
256 		 * If the latter happened and the transaction hasn't hit the
257 		 * disk yet, the inode will be still be pinned.  If it is,
258 		 * force the log.
259 		 */
260 		if (xfs_ipincount(ip))
261 			lsn = ip->i_itemp->ili_last_lsn;
262 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
263 	}
264 
265 	if (!error && lsn)
266 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
267 
268 	/*
269 	 * If we only have a single device, and the log force about was
270 	 * a no-op we might have to flush the data device cache here.
271 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 	 * an already allocated file and thus do not have any metadata to
273 	 * commit.
274 	 */
275 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 	    mp->m_logdev_targp == mp->m_ddev_targp &&
277 	    !XFS_IS_REALTIME_INODE(ip) &&
278 	    !log_flushed)
279 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280 
281 	return -error;
282 }
283 
284 STATIC ssize_t
285 xfs_file_aio_read(
286 	struct kiocb		*iocb,
287 	const struct iovec	*iovp,
288 	unsigned long		nr_segs,
289 	loff_t			pos)
290 {
291 	struct file		*file = iocb->ki_filp;
292 	struct inode		*inode = file->f_mapping->host;
293 	struct xfs_inode	*ip = XFS_I(inode);
294 	struct xfs_mount	*mp = ip->i_mount;
295 	size_t			size = 0;
296 	ssize_t			ret = 0;
297 	int			ioflags = 0;
298 	xfs_fsize_t		n;
299 	unsigned long		seg;
300 
301 	XFS_STATS_INC(xs_read_calls);
302 
303 	BUG_ON(iocb->ki_pos != pos);
304 
305 	if (unlikely(file->f_flags & O_DIRECT))
306 		ioflags |= IO_ISDIRECT;
307 	if (file->f_mode & FMODE_NOCMTIME)
308 		ioflags |= IO_INVIS;
309 
310 	/* START copy & waste from filemap.c */
311 	for (seg = 0; seg < nr_segs; seg++) {
312 		const struct iovec *iv = &iovp[seg];
313 
314 		/*
315 		 * If any segment has a negative length, or the cumulative
316 		 * length ever wraps negative then return -EINVAL.
317 		 */
318 		size += iv->iov_len;
319 		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
320 			return XFS_ERROR(-EINVAL);
321 	}
322 	/* END copy & waste from filemap.c */
323 
324 	if (unlikely(ioflags & IO_ISDIRECT)) {
325 		xfs_buftarg_t	*target =
326 			XFS_IS_REALTIME_INODE(ip) ?
327 				mp->m_rtdev_targp : mp->m_ddev_targp;
328 		if ((iocb->ki_pos & target->bt_smask) ||
329 		    (size & target->bt_smask)) {
330 			if (iocb->ki_pos == ip->i_size)
331 				return 0;
332 			return -XFS_ERROR(EINVAL);
333 		}
334 	}
335 
336 	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
337 	if (n <= 0 || size == 0)
338 		return 0;
339 
340 	if (n < size)
341 		size = n;
342 
343 	if (XFS_FORCED_SHUTDOWN(mp))
344 		return -EIO;
345 
346 	/*
347 	 * Locking is a bit tricky here. If we take an exclusive lock
348 	 * for direct IO, we effectively serialise all new concurrent
349 	 * read IO to this file and block it behind IO that is currently in
350 	 * progress because IO in progress holds the IO lock shared. We only
351 	 * need to hold the lock exclusive to blow away the page cache, so
352 	 * only take lock exclusively if the page cache needs invalidation.
353 	 * This allows the normal direct IO case of no page cache pages to
354 	 * proceeed concurrently without serialisation.
355 	 */
356 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
357 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
358 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
359 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
360 
361 		if (inode->i_mapping->nrpages) {
362 			ret = -xfs_flushinval_pages(ip,
363 					(iocb->ki_pos & PAGE_CACHE_MASK),
364 					-1, FI_REMAPF_LOCKED);
365 			if (ret) {
366 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
367 				return ret;
368 			}
369 		}
370 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
371 	}
372 
373 	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
374 
375 	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
376 	if (ret > 0)
377 		XFS_STATS_ADD(xs_read_bytes, ret);
378 
379 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
380 	return ret;
381 }
382 
383 STATIC ssize_t
384 xfs_file_splice_read(
385 	struct file		*infilp,
386 	loff_t			*ppos,
387 	struct pipe_inode_info	*pipe,
388 	size_t			count,
389 	unsigned int		flags)
390 {
391 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
392 	int			ioflags = 0;
393 	ssize_t			ret;
394 
395 	XFS_STATS_INC(xs_read_calls);
396 
397 	if (infilp->f_mode & FMODE_NOCMTIME)
398 		ioflags |= IO_INVIS;
399 
400 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
401 		return -EIO;
402 
403 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
404 
405 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
406 
407 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
408 	if (ret > 0)
409 		XFS_STATS_ADD(xs_read_bytes, ret);
410 
411 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
412 	return ret;
413 }
414 
415 STATIC void
416 xfs_aio_write_isize_update(
417 	struct inode	*inode,
418 	loff_t		*ppos,
419 	ssize_t		bytes_written)
420 {
421 	struct xfs_inode	*ip = XFS_I(inode);
422 	xfs_fsize_t		isize = i_size_read(inode);
423 
424 	if (bytes_written > 0)
425 		XFS_STATS_ADD(xs_write_bytes, bytes_written);
426 
427 	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
428 					*ppos > isize))
429 		*ppos = isize;
430 
431 	if (*ppos > ip->i_size) {
432 		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
433 		if (*ppos > ip->i_size)
434 			ip->i_size = *ppos;
435 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
436 	}
437 }
438 
439 /*
440  * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
441  * part of the I/O may have been written to disk before the error occurred.  In
442  * this case the on-disk file size may have been adjusted beyond the in-memory
443  * file size and now needs to be truncated back.
444  */
445 STATIC void
446 xfs_aio_write_newsize_update(
447 	struct xfs_inode	*ip,
448 	xfs_fsize_t		new_size)
449 {
450 	if (new_size == ip->i_new_size) {
451 		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
452 		if (new_size == ip->i_new_size)
453 			ip->i_new_size = 0;
454 		if (ip->i_d.di_size > ip->i_size)
455 			ip->i_d.di_size = ip->i_size;
456 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
457 	}
458 }
459 
460 /*
461  * xfs_file_splice_write() does not use xfs_rw_ilock() because
462  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
463  * couuld cause lock inversions between the aio_write path and the splice path
464  * if someone is doing concurrent splice(2) based writes and write(2) based
465  * writes to the same inode. The only real way to fix this is to re-implement
466  * the generic code here with correct locking orders.
467  */
468 STATIC ssize_t
469 xfs_file_splice_write(
470 	struct pipe_inode_info	*pipe,
471 	struct file		*outfilp,
472 	loff_t			*ppos,
473 	size_t			count,
474 	unsigned int		flags)
475 {
476 	struct inode		*inode = outfilp->f_mapping->host;
477 	struct xfs_inode	*ip = XFS_I(inode);
478 	xfs_fsize_t		new_size;
479 	int			ioflags = 0;
480 	ssize_t			ret;
481 
482 	XFS_STATS_INC(xs_write_calls);
483 
484 	if (outfilp->f_mode & FMODE_NOCMTIME)
485 		ioflags |= IO_INVIS;
486 
487 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
488 		return -EIO;
489 
490 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
491 
492 	new_size = *ppos + count;
493 
494 	xfs_ilock(ip, XFS_ILOCK_EXCL);
495 	if (new_size > ip->i_size)
496 		ip->i_new_size = new_size;
497 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
498 
499 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
500 
501 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
502 
503 	xfs_aio_write_isize_update(inode, ppos, ret);
504 	xfs_aio_write_newsize_update(ip, new_size);
505 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
506 	return ret;
507 }
508 
509 /*
510  * This routine is called to handle zeroing any space in the last
511  * block of the file that is beyond the EOF.  We do this since the
512  * size is being increased without writing anything to that block
513  * and we don't want anyone to read the garbage on the disk.
514  */
515 STATIC int				/* error (positive) */
516 xfs_zero_last_block(
517 	xfs_inode_t	*ip,
518 	xfs_fsize_t	offset,
519 	xfs_fsize_t	isize)
520 {
521 	xfs_fileoff_t	last_fsb;
522 	xfs_mount_t	*mp = ip->i_mount;
523 	int		nimaps;
524 	int		zero_offset;
525 	int		zero_len;
526 	int		error = 0;
527 	xfs_bmbt_irec_t	imap;
528 
529 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
530 
531 	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
532 	if (zero_offset == 0) {
533 		/*
534 		 * There are no extra bytes in the last block on disk to
535 		 * zero, so return.
536 		 */
537 		return 0;
538 	}
539 
540 	last_fsb = XFS_B_TO_FSBT(mp, isize);
541 	nimaps = 1;
542 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
543 	if (error)
544 		return error;
545 	ASSERT(nimaps > 0);
546 	/*
547 	 * If the block underlying isize is just a hole, then there
548 	 * is nothing to zero.
549 	 */
550 	if (imap.br_startblock == HOLESTARTBLOCK) {
551 		return 0;
552 	}
553 	/*
554 	 * Zero the part of the last block beyond the EOF, and write it
555 	 * out sync.  We need to drop the ilock while we do this so we
556 	 * don't deadlock when the buffer cache calls back to us.
557 	 */
558 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
559 
560 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
561 	if (isize + zero_len > offset)
562 		zero_len = offset - isize;
563 	error = xfs_iozero(ip, isize, zero_len);
564 
565 	xfs_ilock(ip, XFS_ILOCK_EXCL);
566 	ASSERT(error >= 0);
567 	return error;
568 }
569 
570 /*
571  * Zero any on disk space between the current EOF and the new,
572  * larger EOF.  This handles the normal case of zeroing the remainder
573  * of the last block in the file and the unusual case of zeroing blocks
574  * out beyond the size of the file.  This second case only happens
575  * with fixed size extents and when the system crashes before the inode
576  * size was updated but after blocks were allocated.  If fill is set,
577  * then any holes in the range are filled and zeroed.  If not, the holes
578  * are left alone as holes.
579  */
580 
581 int					/* error (positive) */
582 xfs_zero_eof(
583 	xfs_inode_t	*ip,
584 	xfs_off_t	offset,		/* starting I/O offset */
585 	xfs_fsize_t	isize)		/* current inode size */
586 {
587 	xfs_mount_t	*mp = ip->i_mount;
588 	xfs_fileoff_t	start_zero_fsb;
589 	xfs_fileoff_t	end_zero_fsb;
590 	xfs_fileoff_t	zero_count_fsb;
591 	xfs_fileoff_t	last_fsb;
592 	xfs_fileoff_t	zero_off;
593 	xfs_fsize_t	zero_len;
594 	int		nimaps;
595 	int		error = 0;
596 	xfs_bmbt_irec_t	imap;
597 
598 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
599 	ASSERT(offset > isize);
600 
601 	/*
602 	 * First handle zeroing the block on which isize resides.
603 	 * We only zero a part of that block so it is handled specially.
604 	 */
605 	error = xfs_zero_last_block(ip, offset, isize);
606 	if (error) {
607 		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
608 		return error;
609 	}
610 
611 	/*
612 	 * Calculate the range between the new size and the old
613 	 * where blocks needing to be zeroed may exist.  To get the
614 	 * block where the last byte in the file currently resides,
615 	 * we need to subtract one from the size and truncate back
616 	 * to a block boundary.  We subtract 1 in case the size is
617 	 * exactly on a block boundary.
618 	 */
619 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
620 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
621 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
622 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
623 	if (last_fsb == end_zero_fsb) {
624 		/*
625 		 * The size was only incremented on its last block.
626 		 * We took care of that above, so just return.
627 		 */
628 		return 0;
629 	}
630 
631 	ASSERT(start_zero_fsb <= end_zero_fsb);
632 	while (start_zero_fsb <= end_zero_fsb) {
633 		nimaps = 1;
634 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
635 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
636 					  &imap, &nimaps, 0);
637 		if (error) {
638 			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
639 			return error;
640 		}
641 		ASSERT(nimaps > 0);
642 
643 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
644 		    imap.br_startblock == HOLESTARTBLOCK) {
645 			/*
646 			 * This loop handles initializing pages that were
647 			 * partially initialized by the code below this
648 			 * loop. It basically zeroes the part of the page
649 			 * that sits on a hole and sets the page as P_HOLE
650 			 * and calls remapf if it is a mapped file.
651 			 */
652 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
653 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
654 			continue;
655 		}
656 
657 		/*
658 		 * There are blocks we need to zero.
659 		 * Drop the inode lock while we're doing the I/O.
660 		 * We'll still have the iolock to protect us.
661 		 */
662 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
663 
664 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
665 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
666 
667 		if ((zero_off + zero_len) > offset)
668 			zero_len = offset - zero_off;
669 
670 		error = xfs_iozero(ip, zero_off, zero_len);
671 		if (error) {
672 			goto out_lock;
673 		}
674 
675 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
676 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
677 
678 		xfs_ilock(ip, XFS_ILOCK_EXCL);
679 	}
680 
681 	return 0;
682 
683 out_lock:
684 	xfs_ilock(ip, XFS_ILOCK_EXCL);
685 	ASSERT(error >= 0);
686 	return error;
687 }
688 
689 /*
690  * Common pre-write limit and setup checks.
691  *
692  * Returns with iolock held according to @iolock.
693  */
694 STATIC ssize_t
695 xfs_file_aio_write_checks(
696 	struct file		*file,
697 	loff_t			*pos,
698 	size_t			*count,
699 	xfs_fsize_t		*new_sizep,
700 	int			*iolock)
701 {
702 	struct inode		*inode = file->f_mapping->host;
703 	struct xfs_inode	*ip = XFS_I(inode);
704 	xfs_fsize_t		new_size;
705 	int			error = 0;
706 
707 	xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
708 	*new_sizep = 0;
709 restart:
710 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
711 	if (error) {
712 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
713 		*iolock = 0;
714 		return error;
715 	}
716 
717 	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
718 		file_update_time(file);
719 
720 	/*
721 	 * If the offset is beyond the size of the file, we need to zero any
722 	 * blocks that fall between the existing EOF and the start of this
723 	 * write. There is no need to issue zeroing if another in-flght IO ends
724 	 * at or before this one If zeronig is needed and we are currently
725 	 * holding the iolock shared, we need to update it to exclusive which
726 	 * involves dropping all locks and relocking to maintain correct locking
727 	 * order. If we do this, restart the function to ensure all checks and
728 	 * values are still valid.
729 	 */
730 	if ((ip->i_new_size && *pos > ip->i_new_size) ||
731 	    (!ip->i_new_size && *pos > ip->i_size)) {
732 		if (*iolock == XFS_IOLOCK_SHARED) {
733 			xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
734 			*iolock = XFS_IOLOCK_EXCL;
735 			xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
736 			goto restart;
737 		}
738 		error = -xfs_zero_eof(ip, *pos, ip->i_size);
739 	}
740 
741 	/*
742 	 * If this IO extends beyond EOF, we may need to update ip->i_new_size.
743 	 * We have already zeroed space beyond EOF (if necessary).  Only update
744 	 * ip->i_new_size if this IO ends beyond any other in-flight writes.
745 	 */
746 	new_size = *pos + *count;
747 	if (new_size > ip->i_size) {
748 		if (new_size > ip->i_new_size)
749 			ip->i_new_size = new_size;
750 		*new_sizep = new_size;
751 	}
752 
753 	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
754 	if (error)
755 		return error;
756 
757 	/*
758 	 * If we're writing the file then make sure to clear the setuid and
759 	 * setgid bits if the process is not being run by root.  This keeps
760 	 * people from modifying setuid and setgid binaries.
761 	 */
762 	return file_remove_suid(file);
763 
764 }
765 
766 /*
767  * xfs_file_dio_aio_write - handle direct IO writes
768  *
769  * Lock the inode appropriately to prepare for and issue a direct IO write.
770  * By separating it from the buffered write path we remove all the tricky to
771  * follow locking changes and looping.
772  *
773  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
774  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
775  * pages are flushed out.
776  *
777  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
778  * allowing them to be done in parallel with reads and other direct IO writes.
779  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
780  * needs to do sub-block zeroing and that requires serialisation against other
781  * direct IOs to the same block. In this case we need to serialise the
782  * submission of the unaligned IOs so that we don't get racing block zeroing in
783  * the dio layer.  To avoid the problem with aio, we also need to wait for
784  * outstanding IOs to complete so that unwritten extent conversion is completed
785  * before we try to map the overlapping block. This is currently implemented by
786  * hitting it with a big hammer (i.e. inode_dio_wait()).
787  *
788  * Returns with locks held indicated by @iolock and errors indicated by
789  * negative return values.
790  */
791 STATIC ssize_t
792 xfs_file_dio_aio_write(
793 	struct kiocb		*iocb,
794 	const struct iovec	*iovp,
795 	unsigned long		nr_segs,
796 	loff_t			pos,
797 	size_t			ocount,
798 	xfs_fsize_t		*new_size,
799 	int			*iolock)
800 {
801 	struct file		*file = iocb->ki_filp;
802 	struct address_space	*mapping = file->f_mapping;
803 	struct inode		*inode = mapping->host;
804 	struct xfs_inode	*ip = XFS_I(inode);
805 	struct xfs_mount	*mp = ip->i_mount;
806 	ssize_t			ret = 0;
807 	size_t			count = ocount;
808 	int			unaligned_io = 0;
809 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
810 					mp->m_rtdev_targp : mp->m_ddev_targp;
811 
812 	*iolock = 0;
813 	if ((pos & target->bt_smask) || (count & target->bt_smask))
814 		return -XFS_ERROR(EINVAL);
815 
816 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
817 		unaligned_io = 1;
818 
819 	/*
820 	 * We don't need to take an exclusive lock unless there page cache needs
821 	 * to be invalidated or unaligned IO is being executed. We don't need to
822 	 * consider the EOF extension case here because
823 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
824 	 * EOF zeroing cases and fill out the new inode size as appropriate.
825 	 */
826 	if (unaligned_io || mapping->nrpages)
827 		*iolock = XFS_IOLOCK_EXCL;
828 	else
829 		*iolock = XFS_IOLOCK_SHARED;
830 	xfs_rw_ilock(ip, *iolock);
831 
832 	/*
833 	 * Recheck if there are cached pages that need invalidate after we got
834 	 * the iolock to protect against other threads adding new pages while
835 	 * we were waiting for the iolock.
836 	 */
837 	if (mapping->nrpages && *iolock == XFS_IOLOCK_SHARED) {
838 		xfs_rw_iunlock(ip, *iolock);
839 		*iolock = XFS_IOLOCK_EXCL;
840 		xfs_rw_ilock(ip, *iolock);
841 	}
842 
843 	ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
844 	if (ret)
845 		return ret;
846 
847 	if (mapping->nrpages) {
848 		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
849 							FI_REMAPF_LOCKED);
850 		if (ret)
851 			return ret;
852 	}
853 
854 	/*
855 	 * If we are doing unaligned IO, wait for all other IO to drain,
856 	 * otherwise demote the lock if we had to flush cached pages
857 	 */
858 	if (unaligned_io)
859 		inode_dio_wait(inode);
860 	else if (*iolock == XFS_IOLOCK_EXCL) {
861 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
862 		*iolock = XFS_IOLOCK_SHARED;
863 	}
864 
865 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
866 	ret = generic_file_direct_write(iocb, iovp,
867 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
868 
869 	/* No fallback to buffered IO on errors for XFS. */
870 	ASSERT(ret < 0 || ret == count);
871 	return ret;
872 }
873 
874 STATIC ssize_t
875 xfs_file_buffered_aio_write(
876 	struct kiocb		*iocb,
877 	const struct iovec	*iovp,
878 	unsigned long		nr_segs,
879 	loff_t			pos,
880 	size_t			ocount,
881 	xfs_fsize_t		*new_size,
882 	int			*iolock)
883 {
884 	struct file		*file = iocb->ki_filp;
885 	struct address_space	*mapping = file->f_mapping;
886 	struct inode		*inode = mapping->host;
887 	struct xfs_inode	*ip = XFS_I(inode);
888 	ssize_t			ret;
889 	int			enospc = 0;
890 	size_t			count = ocount;
891 
892 	*iolock = XFS_IOLOCK_EXCL;
893 	xfs_rw_ilock(ip, *iolock);
894 
895 	ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
896 	if (ret)
897 		return ret;
898 
899 	/* We can write back this queue in page reclaim */
900 	current->backing_dev_info = mapping->backing_dev_info;
901 
902 write_retry:
903 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
904 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
905 			pos, &iocb->ki_pos, count, ret);
906 	/*
907 	 * if we just got an ENOSPC, flush the inode now we aren't holding any
908 	 * page locks and retry *once*
909 	 */
910 	if (ret == -ENOSPC && !enospc) {
911 		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
912 		if (ret)
913 			return ret;
914 		enospc = 1;
915 		goto write_retry;
916 	}
917 	current->backing_dev_info = NULL;
918 	return ret;
919 }
920 
921 STATIC ssize_t
922 xfs_file_aio_write(
923 	struct kiocb		*iocb,
924 	const struct iovec	*iovp,
925 	unsigned long		nr_segs,
926 	loff_t			pos)
927 {
928 	struct file		*file = iocb->ki_filp;
929 	struct address_space	*mapping = file->f_mapping;
930 	struct inode		*inode = mapping->host;
931 	struct xfs_inode	*ip = XFS_I(inode);
932 	ssize_t			ret;
933 	int			iolock;
934 	size_t			ocount = 0;
935 	xfs_fsize_t		new_size = 0;
936 
937 	XFS_STATS_INC(xs_write_calls);
938 
939 	BUG_ON(iocb->ki_pos != pos);
940 
941 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
942 	if (ret)
943 		return ret;
944 
945 	if (ocount == 0)
946 		return 0;
947 
948 	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
949 
950 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
951 		return -EIO;
952 
953 	if (unlikely(file->f_flags & O_DIRECT))
954 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
955 						ocount, &new_size, &iolock);
956 	else
957 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
958 						ocount, &new_size, &iolock);
959 
960 	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
961 
962 	if (ret <= 0)
963 		goto out_unlock;
964 
965 	/* Handle various SYNC-type writes */
966 	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
967 		loff_t end = pos + ret - 1;
968 		int error;
969 
970 		xfs_rw_iunlock(ip, iolock);
971 		error = xfs_file_fsync(file, pos, end,
972 				      (file->f_flags & __O_SYNC) ? 0 : 1);
973 		xfs_rw_ilock(ip, iolock);
974 		if (error)
975 			ret = error;
976 	}
977 
978 out_unlock:
979 	xfs_aio_write_newsize_update(ip, new_size);
980 	xfs_rw_iunlock(ip, iolock);
981 	return ret;
982 }
983 
984 STATIC long
985 xfs_file_fallocate(
986 	struct file	*file,
987 	int		mode,
988 	loff_t		offset,
989 	loff_t		len)
990 {
991 	struct inode	*inode = file->f_path.dentry->d_inode;
992 	long		error;
993 	loff_t		new_size = 0;
994 	xfs_flock64_t	bf;
995 	xfs_inode_t	*ip = XFS_I(inode);
996 	int		cmd = XFS_IOC_RESVSP;
997 	int		attr_flags = XFS_ATTR_NOLOCK;
998 
999 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1000 		return -EOPNOTSUPP;
1001 
1002 	bf.l_whence = 0;
1003 	bf.l_start = offset;
1004 	bf.l_len = len;
1005 
1006 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1007 
1008 	if (mode & FALLOC_FL_PUNCH_HOLE)
1009 		cmd = XFS_IOC_UNRESVSP;
1010 
1011 	/* check the new inode size is valid before allocating */
1012 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1013 	    offset + len > i_size_read(inode)) {
1014 		new_size = offset + len;
1015 		error = inode_newsize_ok(inode, new_size);
1016 		if (error)
1017 			goto out_unlock;
1018 	}
1019 
1020 	if (file->f_flags & O_DSYNC)
1021 		attr_flags |= XFS_ATTR_SYNC;
1022 
1023 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
1024 	if (error)
1025 		goto out_unlock;
1026 
1027 	/* Change file size if needed */
1028 	if (new_size) {
1029 		struct iattr iattr;
1030 
1031 		iattr.ia_valid = ATTR_SIZE;
1032 		iattr.ia_size = new_size;
1033 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
1034 	}
1035 
1036 out_unlock:
1037 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1038 	return error;
1039 }
1040 
1041 
1042 STATIC int
1043 xfs_file_open(
1044 	struct inode	*inode,
1045 	struct file	*file)
1046 {
1047 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1048 		return -EFBIG;
1049 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1050 		return -EIO;
1051 	return 0;
1052 }
1053 
1054 STATIC int
1055 xfs_dir_open(
1056 	struct inode	*inode,
1057 	struct file	*file)
1058 {
1059 	struct xfs_inode *ip = XFS_I(inode);
1060 	int		mode;
1061 	int		error;
1062 
1063 	error = xfs_file_open(inode, file);
1064 	if (error)
1065 		return error;
1066 
1067 	/*
1068 	 * If there are any blocks, read-ahead block 0 as we're almost
1069 	 * certain to have the next operation be a read there.
1070 	 */
1071 	mode = xfs_ilock_map_shared(ip);
1072 	if (ip->i_d.di_nextents > 0)
1073 		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
1074 	xfs_iunlock(ip, mode);
1075 	return 0;
1076 }
1077 
1078 STATIC int
1079 xfs_file_release(
1080 	struct inode	*inode,
1081 	struct file	*filp)
1082 {
1083 	return -xfs_release(XFS_I(inode));
1084 }
1085 
1086 STATIC int
1087 xfs_file_readdir(
1088 	struct file	*filp,
1089 	void		*dirent,
1090 	filldir_t	filldir)
1091 {
1092 	struct inode	*inode = filp->f_path.dentry->d_inode;
1093 	xfs_inode_t	*ip = XFS_I(inode);
1094 	int		error;
1095 	size_t		bufsize;
1096 
1097 	/*
1098 	 * The Linux API doesn't pass down the total size of the buffer
1099 	 * we read into down to the filesystem.  With the filldir concept
1100 	 * it's not needed for correct information, but the XFS dir2 leaf
1101 	 * code wants an estimate of the buffer size to calculate it's
1102 	 * readahead window and size the buffers used for mapping to
1103 	 * physical blocks.
1104 	 *
1105 	 * Try to give it an estimate that's good enough, maybe at some
1106 	 * point we can change the ->readdir prototype to include the
1107 	 * buffer size.  For now we use the current glibc buffer size.
1108 	 */
1109 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1110 
1111 	error = xfs_readdir(ip, dirent, bufsize,
1112 				(xfs_off_t *)&filp->f_pos, filldir);
1113 	if (error)
1114 		return -error;
1115 	return 0;
1116 }
1117 
1118 STATIC int
1119 xfs_file_mmap(
1120 	struct file	*filp,
1121 	struct vm_area_struct *vma)
1122 {
1123 	vma->vm_ops = &xfs_file_vm_ops;
1124 	vma->vm_flags |= VM_CAN_NONLINEAR;
1125 
1126 	file_accessed(filp);
1127 	return 0;
1128 }
1129 
1130 /*
1131  * mmap()d file has taken write protection fault and is being made
1132  * writable. We can set the page state up correctly for a writable
1133  * page, which means we can do correct delalloc accounting (ENOSPC
1134  * checking!) and unwritten extent mapping.
1135  */
1136 STATIC int
1137 xfs_vm_page_mkwrite(
1138 	struct vm_area_struct	*vma,
1139 	struct vm_fault		*vmf)
1140 {
1141 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1142 }
1143 
1144 const struct file_operations xfs_file_operations = {
1145 	.llseek		= generic_file_llseek,
1146 	.read		= do_sync_read,
1147 	.write		= do_sync_write,
1148 	.aio_read	= xfs_file_aio_read,
1149 	.aio_write	= xfs_file_aio_write,
1150 	.splice_read	= xfs_file_splice_read,
1151 	.splice_write	= xfs_file_splice_write,
1152 	.unlocked_ioctl	= xfs_file_ioctl,
1153 #ifdef CONFIG_COMPAT
1154 	.compat_ioctl	= xfs_file_compat_ioctl,
1155 #endif
1156 	.mmap		= xfs_file_mmap,
1157 	.open		= xfs_file_open,
1158 	.release	= xfs_file_release,
1159 	.fsync		= xfs_file_fsync,
1160 	.fallocate	= xfs_file_fallocate,
1161 };
1162 
1163 const struct file_operations xfs_dir_file_operations = {
1164 	.open		= xfs_dir_open,
1165 	.read		= generic_read_dir,
1166 	.readdir	= xfs_file_readdir,
1167 	.llseek		= generic_file_llseek,
1168 	.unlocked_ioctl	= xfs_file_ioctl,
1169 #ifdef CONFIG_COMPAT
1170 	.compat_ioctl	= xfs_file_compat_ioctl,
1171 #endif
1172 	.fsync		= xfs_dir_fsync,
1173 };
1174 
1175 static const struct vm_operations_struct xfs_file_vm_ops = {
1176 	.fault		= filemap_fault,
1177 	.page_mkwrite	= xfs_vm_page_mkwrite,
1178 };
1179