1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_inode_item.h" 32 #include "xfs_bmap.h" 33 #include "xfs_bmap_util.h" 34 #include "xfs_error.h" 35 #include "xfs_dir2.h" 36 #include "xfs_dir2_priv.h" 37 #include "xfs_ioctl.h" 38 #include "xfs_trace.h" 39 #include "xfs_log.h" 40 #include "xfs_dinode.h" 41 #include "xfs_icache.h" 42 43 #include <linux/aio.h> 44 #include <linux/dcache.h> 45 #include <linux/falloc.h> 46 #include <linux/pagevec.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Locking primitives for read and write IO paths to ensure we consistently use 52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 53 */ 54 static inline void 55 xfs_rw_ilock( 56 struct xfs_inode *ip, 57 int type) 58 { 59 if (type & XFS_IOLOCK_EXCL) 60 mutex_lock(&VFS_I(ip)->i_mutex); 61 xfs_ilock(ip, type); 62 } 63 64 static inline void 65 xfs_rw_iunlock( 66 struct xfs_inode *ip, 67 int type) 68 { 69 xfs_iunlock(ip, type); 70 if (type & XFS_IOLOCK_EXCL) 71 mutex_unlock(&VFS_I(ip)->i_mutex); 72 } 73 74 static inline void 75 xfs_rw_ilock_demote( 76 struct xfs_inode *ip, 77 int type) 78 { 79 xfs_ilock_demote(ip, type); 80 if (type & XFS_IOLOCK_EXCL) 81 mutex_unlock(&VFS_I(ip)->i_mutex); 82 } 83 84 /* 85 * xfs_iozero 86 * 87 * xfs_iozero clears the specified range of buffer supplied, 88 * and marks all the affected blocks as valid and modified. If 89 * an affected block is not allocated, it will be allocated. If 90 * an affected block is not completely overwritten, and is not 91 * valid before the operation, it will be read from disk before 92 * being partially zeroed. 93 */ 94 int 95 xfs_iozero( 96 struct xfs_inode *ip, /* inode */ 97 loff_t pos, /* offset in file */ 98 size_t count) /* size of data to zero */ 99 { 100 struct page *page; 101 struct address_space *mapping; 102 int status; 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 110 bytes = PAGE_CACHE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 status = pagecache_write_begin(NULL, mapping, pos, bytes, 115 AOP_FLAG_UNINTERRUPTIBLE, 116 &page, &fsdata); 117 if (status) 118 break; 119 120 zero_user(page, offset, bytes); 121 122 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 123 page, fsdata); 124 WARN_ON(status <= 0); /* can't return less than zero! */ 125 pos += bytes; 126 count -= bytes; 127 status = 0; 128 } while (count); 129 130 return (-status); 131 } 132 133 /* 134 * Fsync operations on directories are much simpler than on regular files, 135 * as there is no file data to flush, and thus also no need for explicit 136 * cache flush operations, and there are no non-transaction metadata updates 137 * on directories either. 138 */ 139 STATIC int 140 xfs_dir_fsync( 141 struct file *file, 142 loff_t start, 143 loff_t end, 144 int datasync) 145 { 146 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 147 struct xfs_mount *mp = ip->i_mount; 148 xfs_lsn_t lsn = 0; 149 150 trace_xfs_dir_fsync(ip); 151 152 xfs_ilock(ip, XFS_ILOCK_SHARED); 153 if (xfs_ipincount(ip)) 154 lsn = ip->i_itemp->ili_last_lsn; 155 xfs_iunlock(ip, XFS_ILOCK_SHARED); 156 157 if (!lsn) 158 return 0; 159 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 160 } 161 162 STATIC int 163 xfs_file_fsync( 164 struct file *file, 165 loff_t start, 166 loff_t end, 167 int datasync) 168 { 169 struct inode *inode = file->f_mapping->host; 170 struct xfs_inode *ip = XFS_I(inode); 171 struct xfs_mount *mp = ip->i_mount; 172 int error = 0; 173 int log_flushed = 0; 174 xfs_lsn_t lsn = 0; 175 176 trace_xfs_file_fsync(ip); 177 178 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 179 if (error) 180 return error; 181 182 if (XFS_FORCED_SHUTDOWN(mp)) 183 return -EIO; 184 185 xfs_iflags_clear(ip, XFS_ITRUNCATED); 186 187 if (mp->m_flags & XFS_MOUNT_BARRIER) { 188 /* 189 * If we have an RT and/or log subvolume we need to make sure 190 * to flush the write cache the device used for file data 191 * first. This is to ensure newly written file data make 192 * it to disk before logging the new inode size in case of 193 * an extending write. 194 */ 195 if (XFS_IS_REALTIME_INODE(ip)) 196 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 197 else if (mp->m_logdev_targp != mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 } 200 201 /* 202 * All metadata updates are logged, which means that we just have 203 * to flush the log up to the latest LSN that touched the inode. 204 */ 205 xfs_ilock(ip, XFS_ILOCK_SHARED); 206 if (xfs_ipincount(ip)) { 207 if (!datasync || 208 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 209 lsn = ip->i_itemp->ili_last_lsn; 210 } 211 xfs_iunlock(ip, XFS_ILOCK_SHARED); 212 213 if (lsn) 214 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 215 216 /* 217 * If we only have a single device, and the log force about was 218 * a no-op we might have to flush the data device cache here. 219 * This can only happen for fdatasync/O_DSYNC if we were overwriting 220 * an already allocated file and thus do not have any metadata to 221 * commit. 222 */ 223 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 224 mp->m_logdev_targp == mp->m_ddev_targp && 225 !XFS_IS_REALTIME_INODE(ip) && 226 !log_flushed) 227 xfs_blkdev_issue_flush(mp->m_ddev_targp); 228 229 return error; 230 } 231 232 STATIC ssize_t 233 xfs_file_read_iter( 234 struct kiocb *iocb, 235 struct iov_iter *to) 236 { 237 struct file *file = iocb->ki_filp; 238 struct inode *inode = file->f_mapping->host; 239 struct xfs_inode *ip = XFS_I(inode); 240 struct xfs_mount *mp = ip->i_mount; 241 size_t size = iov_iter_count(to); 242 ssize_t ret = 0; 243 int ioflags = 0; 244 xfs_fsize_t n; 245 loff_t pos = iocb->ki_pos; 246 247 XFS_STATS_INC(xs_read_calls); 248 249 if (unlikely(file->f_flags & O_DIRECT)) 250 ioflags |= XFS_IO_ISDIRECT; 251 if (file->f_mode & FMODE_NOCMTIME) 252 ioflags |= XFS_IO_INVIS; 253 254 if (unlikely(ioflags & XFS_IO_ISDIRECT)) { 255 xfs_buftarg_t *target = 256 XFS_IS_REALTIME_INODE(ip) ? 257 mp->m_rtdev_targp : mp->m_ddev_targp; 258 /* DIO must be aligned to device logical sector size */ 259 if ((pos | size) & target->bt_logical_sectormask) { 260 if (pos == i_size_read(inode)) 261 return 0; 262 return -EINVAL; 263 } 264 } 265 266 n = mp->m_super->s_maxbytes - pos; 267 if (n <= 0 || size == 0) 268 return 0; 269 270 if (n < size) 271 size = n; 272 273 if (XFS_FORCED_SHUTDOWN(mp)) 274 return -EIO; 275 276 /* 277 * Locking is a bit tricky here. If we take an exclusive lock 278 * for direct IO, we effectively serialise all new concurrent 279 * read IO to this file and block it behind IO that is currently in 280 * progress because IO in progress holds the IO lock shared. We only 281 * need to hold the lock exclusive to blow away the page cache, so 282 * only take lock exclusively if the page cache needs invalidation. 283 * This allows the normal direct IO case of no page cache pages to 284 * proceeed concurrently without serialisation. 285 */ 286 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 287 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 288 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 289 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 290 291 if (inode->i_mapping->nrpages) { 292 ret = filemap_write_and_wait_range( 293 VFS_I(ip)->i_mapping, 294 pos, pos + size - 1); 295 if (ret) { 296 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 297 return ret; 298 } 299 300 /* 301 * Invalidate whole pages. This can return an error if 302 * we fail to invalidate a page, but this should never 303 * happen on XFS. Warn if it does fail. 304 */ 305 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 306 pos >> PAGE_CACHE_SHIFT, 307 (pos + size - 1) >> PAGE_CACHE_SHIFT); 308 WARN_ON_ONCE(ret); 309 ret = 0; 310 } 311 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 312 } 313 314 trace_xfs_file_read(ip, size, pos, ioflags); 315 316 ret = generic_file_read_iter(iocb, to); 317 if (ret > 0) 318 XFS_STATS_ADD(xs_read_bytes, ret); 319 320 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 321 return ret; 322 } 323 324 STATIC ssize_t 325 xfs_file_splice_read( 326 struct file *infilp, 327 loff_t *ppos, 328 struct pipe_inode_info *pipe, 329 size_t count, 330 unsigned int flags) 331 { 332 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 333 int ioflags = 0; 334 ssize_t ret; 335 336 XFS_STATS_INC(xs_read_calls); 337 338 if (infilp->f_mode & FMODE_NOCMTIME) 339 ioflags |= XFS_IO_INVIS; 340 341 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 342 return -EIO; 343 344 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 345 346 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 347 348 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 349 if (ret > 0) 350 XFS_STATS_ADD(xs_read_bytes, ret); 351 352 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 353 return ret; 354 } 355 356 /* 357 * This routine is called to handle zeroing any space in the last block of the 358 * file that is beyond the EOF. We do this since the size is being increased 359 * without writing anything to that block and we don't want to read the 360 * garbage on the disk. 361 */ 362 STATIC int /* error (positive) */ 363 xfs_zero_last_block( 364 struct xfs_inode *ip, 365 xfs_fsize_t offset, 366 xfs_fsize_t isize) 367 { 368 struct xfs_mount *mp = ip->i_mount; 369 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 370 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 371 int zero_len; 372 int nimaps = 1; 373 int error = 0; 374 struct xfs_bmbt_irec imap; 375 376 xfs_ilock(ip, XFS_ILOCK_EXCL); 377 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 378 xfs_iunlock(ip, XFS_ILOCK_EXCL); 379 if (error) 380 return error; 381 382 ASSERT(nimaps > 0); 383 384 /* 385 * If the block underlying isize is just a hole, then there 386 * is nothing to zero. 387 */ 388 if (imap.br_startblock == HOLESTARTBLOCK) 389 return 0; 390 391 zero_len = mp->m_sb.sb_blocksize - zero_offset; 392 if (isize + zero_len > offset) 393 zero_len = offset - isize; 394 return xfs_iozero(ip, isize, zero_len); 395 } 396 397 /* 398 * Zero any on disk space between the current EOF and the new, larger EOF. 399 * 400 * This handles the normal case of zeroing the remainder of the last block in 401 * the file and the unusual case of zeroing blocks out beyond the size of the 402 * file. This second case only happens with fixed size extents and when the 403 * system crashes before the inode size was updated but after blocks were 404 * allocated. 405 * 406 * Expects the iolock to be held exclusive, and will take the ilock internally. 407 */ 408 int /* error (positive) */ 409 xfs_zero_eof( 410 struct xfs_inode *ip, 411 xfs_off_t offset, /* starting I/O offset */ 412 xfs_fsize_t isize) /* current inode size */ 413 { 414 struct xfs_mount *mp = ip->i_mount; 415 xfs_fileoff_t start_zero_fsb; 416 xfs_fileoff_t end_zero_fsb; 417 xfs_fileoff_t zero_count_fsb; 418 xfs_fileoff_t last_fsb; 419 xfs_fileoff_t zero_off; 420 xfs_fsize_t zero_len; 421 int nimaps; 422 int error = 0; 423 struct xfs_bmbt_irec imap; 424 425 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 426 ASSERT(offset > isize); 427 428 /* 429 * First handle zeroing the block on which isize resides. 430 * 431 * We only zero a part of that block so it is handled specially. 432 */ 433 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 434 error = xfs_zero_last_block(ip, offset, isize); 435 if (error) 436 return error; 437 } 438 439 /* 440 * Calculate the range between the new size and the old where blocks 441 * needing to be zeroed may exist. 442 * 443 * To get the block where the last byte in the file currently resides, 444 * we need to subtract one from the size and truncate back to a block 445 * boundary. We subtract 1 in case the size is exactly on a block 446 * boundary. 447 */ 448 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 449 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 450 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 451 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 452 if (last_fsb == end_zero_fsb) { 453 /* 454 * The size was only incremented on its last block. 455 * We took care of that above, so just return. 456 */ 457 return 0; 458 } 459 460 ASSERT(start_zero_fsb <= end_zero_fsb); 461 while (start_zero_fsb <= end_zero_fsb) { 462 nimaps = 1; 463 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 464 465 xfs_ilock(ip, XFS_ILOCK_EXCL); 466 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 467 &imap, &nimaps, 0); 468 xfs_iunlock(ip, XFS_ILOCK_EXCL); 469 if (error) 470 return error; 471 472 ASSERT(nimaps > 0); 473 474 if (imap.br_state == XFS_EXT_UNWRITTEN || 475 imap.br_startblock == HOLESTARTBLOCK) { 476 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 477 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 478 continue; 479 } 480 481 /* 482 * There are blocks we need to zero. 483 */ 484 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 485 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 486 487 if ((zero_off + zero_len) > offset) 488 zero_len = offset - zero_off; 489 490 error = xfs_iozero(ip, zero_off, zero_len); 491 if (error) 492 return error; 493 494 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 495 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 496 } 497 498 return 0; 499 } 500 501 /* 502 * Common pre-write limit and setup checks. 503 * 504 * Called with the iolocked held either shared and exclusive according to 505 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 506 * if called for a direct write beyond i_size. 507 */ 508 STATIC ssize_t 509 xfs_file_aio_write_checks( 510 struct file *file, 511 loff_t *pos, 512 size_t *count, 513 int *iolock) 514 { 515 struct inode *inode = file->f_mapping->host; 516 struct xfs_inode *ip = XFS_I(inode); 517 int error = 0; 518 519 restart: 520 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 521 if (error) 522 return error; 523 524 /* 525 * If the offset is beyond the size of the file, we need to zero any 526 * blocks that fall between the existing EOF and the start of this 527 * write. If zeroing is needed and we are currently holding the 528 * iolock shared, we need to update it to exclusive which implies 529 * having to redo all checks before. 530 */ 531 if (*pos > i_size_read(inode)) { 532 if (*iolock == XFS_IOLOCK_SHARED) { 533 xfs_rw_iunlock(ip, *iolock); 534 *iolock = XFS_IOLOCK_EXCL; 535 xfs_rw_ilock(ip, *iolock); 536 goto restart; 537 } 538 error = xfs_zero_eof(ip, *pos, i_size_read(inode)); 539 if (error) 540 return error; 541 } 542 543 /* 544 * Updating the timestamps will grab the ilock again from 545 * xfs_fs_dirty_inode, so we have to call it after dropping the 546 * lock above. Eventually we should look into a way to avoid 547 * the pointless lock roundtrip. 548 */ 549 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 550 error = file_update_time(file); 551 if (error) 552 return error; 553 } 554 555 /* 556 * If we're writing the file then make sure to clear the setuid and 557 * setgid bits if the process is not being run by root. This keeps 558 * people from modifying setuid and setgid binaries. 559 */ 560 return file_remove_suid(file); 561 } 562 563 /* 564 * xfs_file_dio_aio_write - handle direct IO writes 565 * 566 * Lock the inode appropriately to prepare for and issue a direct IO write. 567 * By separating it from the buffered write path we remove all the tricky to 568 * follow locking changes and looping. 569 * 570 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 571 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 572 * pages are flushed out. 573 * 574 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 575 * allowing them to be done in parallel with reads and other direct IO writes. 576 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 577 * needs to do sub-block zeroing and that requires serialisation against other 578 * direct IOs to the same block. In this case we need to serialise the 579 * submission of the unaligned IOs so that we don't get racing block zeroing in 580 * the dio layer. To avoid the problem with aio, we also need to wait for 581 * outstanding IOs to complete so that unwritten extent conversion is completed 582 * before we try to map the overlapping block. This is currently implemented by 583 * hitting it with a big hammer (i.e. inode_dio_wait()). 584 * 585 * Returns with locks held indicated by @iolock and errors indicated by 586 * negative return values. 587 */ 588 STATIC ssize_t 589 xfs_file_dio_aio_write( 590 struct kiocb *iocb, 591 struct iov_iter *from) 592 { 593 struct file *file = iocb->ki_filp; 594 struct address_space *mapping = file->f_mapping; 595 struct inode *inode = mapping->host; 596 struct xfs_inode *ip = XFS_I(inode); 597 struct xfs_mount *mp = ip->i_mount; 598 ssize_t ret = 0; 599 int unaligned_io = 0; 600 int iolock; 601 size_t count = iov_iter_count(from); 602 loff_t pos = iocb->ki_pos; 603 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 604 mp->m_rtdev_targp : mp->m_ddev_targp; 605 606 /* DIO must be aligned to device logical sector size */ 607 if ((pos | count) & target->bt_logical_sectormask) 608 return -EINVAL; 609 610 /* "unaligned" here means not aligned to a filesystem block */ 611 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 612 unaligned_io = 1; 613 614 /* 615 * We don't need to take an exclusive lock unless there page cache needs 616 * to be invalidated or unaligned IO is being executed. We don't need to 617 * consider the EOF extension case here because 618 * xfs_file_aio_write_checks() will relock the inode as necessary for 619 * EOF zeroing cases and fill out the new inode size as appropriate. 620 */ 621 if (unaligned_io || mapping->nrpages) 622 iolock = XFS_IOLOCK_EXCL; 623 else 624 iolock = XFS_IOLOCK_SHARED; 625 xfs_rw_ilock(ip, iolock); 626 627 /* 628 * Recheck if there are cached pages that need invalidate after we got 629 * the iolock to protect against other threads adding new pages while 630 * we were waiting for the iolock. 631 */ 632 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 633 xfs_rw_iunlock(ip, iolock); 634 iolock = XFS_IOLOCK_EXCL; 635 xfs_rw_ilock(ip, iolock); 636 } 637 638 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 639 if (ret) 640 goto out; 641 iov_iter_truncate(from, count); 642 643 if (mapping->nrpages) { 644 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 645 pos, pos + count - 1); 646 if (ret) 647 goto out; 648 /* 649 * Invalidate whole pages. This can return an error if 650 * we fail to invalidate a page, but this should never 651 * happen on XFS. Warn if it does fail. 652 */ 653 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 654 pos >> PAGE_CACHE_SHIFT, 655 (pos + count - 1) >> PAGE_CACHE_SHIFT); 656 WARN_ON_ONCE(ret); 657 ret = 0; 658 } 659 660 /* 661 * If we are doing unaligned IO, wait for all other IO to drain, 662 * otherwise demote the lock if we had to flush cached pages 663 */ 664 if (unaligned_io) 665 inode_dio_wait(inode); 666 else if (iolock == XFS_IOLOCK_EXCL) { 667 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 668 iolock = XFS_IOLOCK_SHARED; 669 } 670 671 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 672 ret = generic_file_direct_write(iocb, from, pos); 673 674 out: 675 xfs_rw_iunlock(ip, iolock); 676 677 /* No fallback to buffered IO on errors for XFS. */ 678 ASSERT(ret < 0 || ret == count); 679 return ret; 680 } 681 682 STATIC ssize_t 683 xfs_file_buffered_aio_write( 684 struct kiocb *iocb, 685 struct iov_iter *from) 686 { 687 struct file *file = iocb->ki_filp; 688 struct address_space *mapping = file->f_mapping; 689 struct inode *inode = mapping->host; 690 struct xfs_inode *ip = XFS_I(inode); 691 ssize_t ret; 692 int enospc = 0; 693 int iolock = XFS_IOLOCK_EXCL; 694 loff_t pos = iocb->ki_pos; 695 size_t count = iov_iter_count(from); 696 697 xfs_rw_ilock(ip, iolock); 698 699 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 700 if (ret) 701 goto out; 702 703 iov_iter_truncate(from, count); 704 /* We can write back this queue in page reclaim */ 705 current->backing_dev_info = mapping->backing_dev_info; 706 707 write_retry: 708 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 709 ret = generic_perform_write(file, from, pos); 710 if (likely(ret >= 0)) 711 iocb->ki_pos = pos + ret; 712 713 /* 714 * If we hit a space limit, try to free up some lingering preallocated 715 * space before returning an error. In the case of ENOSPC, first try to 716 * write back all dirty inodes to free up some of the excess reserved 717 * metadata space. This reduces the chances that the eofblocks scan 718 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 719 * also behaves as a filter to prevent too many eofblocks scans from 720 * running at the same time. 721 */ 722 if (ret == -EDQUOT && !enospc) { 723 enospc = xfs_inode_free_quota_eofblocks(ip); 724 if (enospc) 725 goto write_retry; 726 } else if (ret == -ENOSPC && !enospc) { 727 struct xfs_eofblocks eofb = {0}; 728 729 enospc = 1; 730 xfs_flush_inodes(ip->i_mount); 731 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 732 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 733 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 734 goto write_retry; 735 } 736 737 current->backing_dev_info = NULL; 738 out: 739 xfs_rw_iunlock(ip, iolock); 740 return ret; 741 } 742 743 STATIC ssize_t 744 xfs_file_write_iter( 745 struct kiocb *iocb, 746 struct iov_iter *from) 747 { 748 struct file *file = iocb->ki_filp; 749 struct address_space *mapping = file->f_mapping; 750 struct inode *inode = mapping->host; 751 struct xfs_inode *ip = XFS_I(inode); 752 ssize_t ret; 753 size_t ocount = iov_iter_count(from); 754 755 XFS_STATS_INC(xs_write_calls); 756 757 if (ocount == 0) 758 return 0; 759 760 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 761 return -EIO; 762 763 if (unlikely(file->f_flags & O_DIRECT)) 764 ret = xfs_file_dio_aio_write(iocb, from); 765 else 766 ret = xfs_file_buffered_aio_write(iocb, from); 767 768 if (ret > 0) { 769 ssize_t err; 770 771 XFS_STATS_ADD(xs_write_bytes, ret); 772 773 /* Handle various SYNC-type writes */ 774 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 775 if (err < 0) 776 ret = err; 777 } 778 return ret; 779 } 780 781 STATIC long 782 xfs_file_fallocate( 783 struct file *file, 784 int mode, 785 loff_t offset, 786 loff_t len) 787 { 788 struct inode *inode = file_inode(file); 789 struct xfs_inode *ip = XFS_I(inode); 790 struct xfs_trans *tp; 791 long error; 792 loff_t new_size = 0; 793 794 if (!S_ISREG(inode->i_mode)) 795 return -EINVAL; 796 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 797 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE)) 798 return -EOPNOTSUPP; 799 800 xfs_ilock(ip, XFS_IOLOCK_EXCL); 801 if (mode & FALLOC_FL_PUNCH_HOLE) { 802 error = xfs_free_file_space(ip, offset, len); 803 if (error) 804 goto out_unlock; 805 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 806 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 807 808 if (offset & blksize_mask || len & blksize_mask) { 809 error = -EINVAL; 810 goto out_unlock; 811 } 812 813 /* 814 * There is no need to overlap collapse range with EOF, 815 * in which case it is effectively a truncate operation 816 */ 817 if (offset + len >= i_size_read(inode)) { 818 error = -EINVAL; 819 goto out_unlock; 820 } 821 822 new_size = i_size_read(inode) - len; 823 824 error = xfs_collapse_file_space(ip, offset, len); 825 if (error) 826 goto out_unlock; 827 } else { 828 if (!(mode & FALLOC_FL_KEEP_SIZE) && 829 offset + len > i_size_read(inode)) { 830 new_size = offset + len; 831 error = inode_newsize_ok(inode, new_size); 832 if (error) 833 goto out_unlock; 834 } 835 836 if (mode & FALLOC_FL_ZERO_RANGE) 837 error = xfs_zero_file_space(ip, offset, len); 838 else 839 error = xfs_alloc_file_space(ip, offset, len, 840 XFS_BMAPI_PREALLOC); 841 if (error) 842 goto out_unlock; 843 } 844 845 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 846 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 847 if (error) { 848 xfs_trans_cancel(tp, 0); 849 goto out_unlock; 850 } 851 852 xfs_ilock(ip, XFS_ILOCK_EXCL); 853 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 854 ip->i_d.di_mode &= ~S_ISUID; 855 if (ip->i_d.di_mode & S_IXGRP) 856 ip->i_d.di_mode &= ~S_ISGID; 857 858 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE))) 859 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 860 861 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 862 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 863 864 if (file->f_flags & O_DSYNC) 865 xfs_trans_set_sync(tp); 866 error = xfs_trans_commit(tp, 0); 867 if (error) 868 goto out_unlock; 869 870 /* Change file size if needed */ 871 if (new_size) { 872 struct iattr iattr; 873 874 iattr.ia_valid = ATTR_SIZE; 875 iattr.ia_size = new_size; 876 error = xfs_setattr_size(ip, &iattr); 877 } 878 879 out_unlock: 880 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 881 return error; 882 } 883 884 885 STATIC int 886 xfs_file_open( 887 struct inode *inode, 888 struct file *file) 889 { 890 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 891 return -EFBIG; 892 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 893 return -EIO; 894 return 0; 895 } 896 897 STATIC int 898 xfs_dir_open( 899 struct inode *inode, 900 struct file *file) 901 { 902 struct xfs_inode *ip = XFS_I(inode); 903 int mode; 904 int error; 905 906 error = xfs_file_open(inode, file); 907 if (error) 908 return error; 909 910 /* 911 * If there are any blocks, read-ahead block 0 as we're almost 912 * certain to have the next operation be a read there. 913 */ 914 mode = xfs_ilock_data_map_shared(ip); 915 if (ip->i_d.di_nextents > 0) 916 xfs_dir3_data_readahead(ip, 0, -1); 917 xfs_iunlock(ip, mode); 918 return 0; 919 } 920 921 STATIC int 922 xfs_file_release( 923 struct inode *inode, 924 struct file *filp) 925 { 926 return xfs_release(XFS_I(inode)); 927 } 928 929 STATIC int 930 xfs_file_readdir( 931 struct file *file, 932 struct dir_context *ctx) 933 { 934 struct inode *inode = file_inode(file); 935 xfs_inode_t *ip = XFS_I(inode); 936 int error; 937 size_t bufsize; 938 939 /* 940 * The Linux API doesn't pass down the total size of the buffer 941 * we read into down to the filesystem. With the filldir concept 942 * it's not needed for correct information, but the XFS dir2 leaf 943 * code wants an estimate of the buffer size to calculate it's 944 * readahead window and size the buffers used for mapping to 945 * physical blocks. 946 * 947 * Try to give it an estimate that's good enough, maybe at some 948 * point we can change the ->readdir prototype to include the 949 * buffer size. For now we use the current glibc buffer size. 950 */ 951 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 952 953 error = xfs_readdir(ip, ctx, bufsize); 954 if (error) 955 return error; 956 return 0; 957 } 958 959 STATIC int 960 xfs_file_mmap( 961 struct file *filp, 962 struct vm_area_struct *vma) 963 { 964 vma->vm_ops = &xfs_file_vm_ops; 965 966 file_accessed(filp); 967 return 0; 968 } 969 970 /* 971 * mmap()d file has taken write protection fault and is being made 972 * writable. We can set the page state up correctly for a writable 973 * page, which means we can do correct delalloc accounting (ENOSPC 974 * checking!) and unwritten extent mapping. 975 */ 976 STATIC int 977 xfs_vm_page_mkwrite( 978 struct vm_area_struct *vma, 979 struct vm_fault *vmf) 980 { 981 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 982 } 983 984 /* 985 * This type is designed to indicate the type of offset we would like 986 * to search from page cache for xfs_seek_hole_data(). 987 */ 988 enum { 989 HOLE_OFF = 0, 990 DATA_OFF, 991 }; 992 993 /* 994 * Lookup the desired type of offset from the given page. 995 * 996 * On success, return true and the offset argument will point to the 997 * start of the region that was found. Otherwise this function will 998 * return false and keep the offset argument unchanged. 999 */ 1000 STATIC bool 1001 xfs_lookup_buffer_offset( 1002 struct page *page, 1003 loff_t *offset, 1004 unsigned int type) 1005 { 1006 loff_t lastoff = page_offset(page); 1007 bool found = false; 1008 struct buffer_head *bh, *head; 1009 1010 bh = head = page_buffers(page); 1011 do { 1012 /* 1013 * Unwritten extents that have data in the page 1014 * cache covering them can be identified by the 1015 * BH_Unwritten state flag. Pages with multiple 1016 * buffers might have a mix of holes, data and 1017 * unwritten extents - any buffer with valid 1018 * data in it should have BH_Uptodate flag set 1019 * on it. 1020 */ 1021 if (buffer_unwritten(bh) || 1022 buffer_uptodate(bh)) { 1023 if (type == DATA_OFF) 1024 found = true; 1025 } else { 1026 if (type == HOLE_OFF) 1027 found = true; 1028 } 1029 1030 if (found) { 1031 *offset = lastoff; 1032 break; 1033 } 1034 lastoff += bh->b_size; 1035 } while ((bh = bh->b_this_page) != head); 1036 1037 return found; 1038 } 1039 1040 /* 1041 * This routine is called to find out and return a data or hole offset 1042 * from the page cache for unwritten extents according to the desired 1043 * type for xfs_seek_hole_data(). 1044 * 1045 * The argument offset is used to tell where we start to search from the 1046 * page cache. Map is used to figure out the end points of the range to 1047 * lookup pages. 1048 * 1049 * Return true if the desired type of offset was found, and the argument 1050 * offset is filled with that address. Otherwise, return false and keep 1051 * offset unchanged. 1052 */ 1053 STATIC bool 1054 xfs_find_get_desired_pgoff( 1055 struct inode *inode, 1056 struct xfs_bmbt_irec *map, 1057 unsigned int type, 1058 loff_t *offset) 1059 { 1060 struct xfs_inode *ip = XFS_I(inode); 1061 struct xfs_mount *mp = ip->i_mount; 1062 struct pagevec pvec; 1063 pgoff_t index; 1064 pgoff_t end; 1065 loff_t endoff; 1066 loff_t startoff = *offset; 1067 loff_t lastoff = startoff; 1068 bool found = false; 1069 1070 pagevec_init(&pvec, 0); 1071 1072 index = startoff >> PAGE_CACHE_SHIFT; 1073 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1074 end = endoff >> PAGE_CACHE_SHIFT; 1075 do { 1076 int want; 1077 unsigned nr_pages; 1078 unsigned int i; 1079 1080 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1081 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1082 want); 1083 /* 1084 * No page mapped into given range. If we are searching holes 1085 * and if this is the first time we got into the loop, it means 1086 * that the given offset is landed in a hole, return it. 1087 * 1088 * If we have already stepped through some block buffers to find 1089 * holes but they all contains data. In this case, the last 1090 * offset is already updated and pointed to the end of the last 1091 * mapped page, if it does not reach the endpoint to search, 1092 * that means there should be a hole between them. 1093 */ 1094 if (nr_pages == 0) { 1095 /* Data search found nothing */ 1096 if (type == DATA_OFF) 1097 break; 1098 1099 ASSERT(type == HOLE_OFF); 1100 if (lastoff == startoff || lastoff < endoff) { 1101 found = true; 1102 *offset = lastoff; 1103 } 1104 break; 1105 } 1106 1107 /* 1108 * At lease we found one page. If this is the first time we 1109 * step into the loop, and if the first page index offset is 1110 * greater than the given search offset, a hole was found. 1111 */ 1112 if (type == HOLE_OFF && lastoff == startoff && 1113 lastoff < page_offset(pvec.pages[0])) { 1114 found = true; 1115 break; 1116 } 1117 1118 for (i = 0; i < nr_pages; i++) { 1119 struct page *page = pvec.pages[i]; 1120 loff_t b_offset; 1121 1122 /* 1123 * At this point, the page may be truncated or 1124 * invalidated (changing page->mapping to NULL), 1125 * or even swizzled back from swapper_space to tmpfs 1126 * file mapping. However, page->index will not change 1127 * because we have a reference on the page. 1128 * 1129 * Searching done if the page index is out of range. 1130 * If the current offset is not reaches the end of 1131 * the specified search range, there should be a hole 1132 * between them. 1133 */ 1134 if (page->index > end) { 1135 if (type == HOLE_OFF && lastoff < endoff) { 1136 *offset = lastoff; 1137 found = true; 1138 } 1139 goto out; 1140 } 1141 1142 lock_page(page); 1143 /* 1144 * Page truncated or invalidated(page->mapping == NULL). 1145 * We can freely skip it and proceed to check the next 1146 * page. 1147 */ 1148 if (unlikely(page->mapping != inode->i_mapping)) { 1149 unlock_page(page); 1150 continue; 1151 } 1152 1153 if (!page_has_buffers(page)) { 1154 unlock_page(page); 1155 continue; 1156 } 1157 1158 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1159 if (found) { 1160 /* 1161 * The found offset may be less than the start 1162 * point to search if this is the first time to 1163 * come here. 1164 */ 1165 *offset = max_t(loff_t, startoff, b_offset); 1166 unlock_page(page); 1167 goto out; 1168 } 1169 1170 /* 1171 * We either searching data but nothing was found, or 1172 * searching hole but found a data buffer. In either 1173 * case, probably the next page contains the desired 1174 * things, update the last offset to it so. 1175 */ 1176 lastoff = page_offset(page) + PAGE_SIZE; 1177 unlock_page(page); 1178 } 1179 1180 /* 1181 * The number of returned pages less than our desired, search 1182 * done. In this case, nothing was found for searching data, 1183 * but we found a hole behind the last offset. 1184 */ 1185 if (nr_pages < want) { 1186 if (type == HOLE_OFF) { 1187 *offset = lastoff; 1188 found = true; 1189 } 1190 break; 1191 } 1192 1193 index = pvec.pages[i - 1]->index + 1; 1194 pagevec_release(&pvec); 1195 } while (index <= end); 1196 1197 out: 1198 pagevec_release(&pvec); 1199 return found; 1200 } 1201 1202 STATIC loff_t 1203 xfs_seek_hole_data( 1204 struct file *file, 1205 loff_t start, 1206 int whence) 1207 { 1208 struct inode *inode = file->f_mapping->host; 1209 struct xfs_inode *ip = XFS_I(inode); 1210 struct xfs_mount *mp = ip->i_mount; 1211 loff_t uninitialized_var(offset); 1212 xfs_fsize_t isize; 1213 xfs_fileoff_t fsbno; 1214 xfs_filblks_t end; 1215 uint lock; 1216 int error; 1217 1218 if (XFS_FORCED_SHUTDOWN(mp)) 1219 return -EIO; 1220 1221 lock = xfs_ilock_data_map_shared(ip); 1222 1223 isize = i_size_read(inode); 1224 if (start >= isize) { 1225 error = -ENXIO; 1226 goto out_unlock; 1227 } 1228 1229 /* 1230 * Try to read extents from the first block indicated 1231 * by fsbno to the end block of the file. 1232 */ 1233 fsbno = XFS_B_TO_FSBT(mp, start); 1234 end = XFS_B_TO_FSB(mp, isize); 1235 1236 for (;;) { 1237 struct xfs_bmbt_irec map[2]; 1238 int nmap = 2; 1239 unsigned int i; 1240 1241 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1242 XFS_BMAPI_ENTIRE); 1243 if (error) 1244 goto out_unlock; 1245 1246 /* No extents at given offset, must be beyond EOF */ 1247 if (nmap == 0) { 1248 error = -ENXIO; 1249 goto out_unlock; 1250 } 1251 1252 for (i = 0; i < nmap; i++) { 1253 offset = max_t(loff_t, start, 1254 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1255 1256 /* Landed in the hole we wanted? */ 1257 if (whence == SEEK_HOLE && 1258 map[i].br_startblock == HOLESTARTBLOCK) 1259 goto out; 1260 1261 /* Landed in the data extent we wanted? */ 1262 if (whence == SEEK_DATA && 1263 (map[i].br_startblock == DELAYSTARTBLOCK || 1264 (map[i].br_state == XFS_EXT_NORM && 1265 !isnullstartblock(map[i].br_startblock)))) 1266 goto out; 1267 1268 /* 1269 * Landed in an unwritten extent, try to search 1270 * for hole or data from page cache. 1271 */ 1272 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1273 if (xfs_find_get_desired_pgoff(inode, &map[i], 1274 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1275 &offset)) 1276 goto out; 1277 } 1278 } 1279 1280 /* 1281 * We only received one extent out of the two requested. This 1282 * means we've hit EOF and didn't find what we are looking for. 1283 */ 1284 if (nmap == 1) { 1285 /* 1286 * If we were looking for a hole, set offset to 1287 * the end of the file (i.e., there is an implicit 1288 * hole at the end of any file). 1289 */ 1290 if (whence == SEEK_HOLE) { 1291 offset = isize; 1292 break; 1293 } 1294 /* 1295 * If we were looking for data, it's nowhere to be found 1296 */ 1297 ASSERT(whence == SEEK_DATA); 1298 error = -ENXIO; 1299 goto out_unlock; 1300 } 1301 1302 ASSERT(i > 1); 1303 1304 /* 1305 * Nothing was found, proceed to the next round of search 1306 * if the next reading offset is not at or beyond EOF. 1307 */ 1308 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1309 start = XFS_FSB_TO_B(mp, fsbno); 1310 if (start >= isize) { 1311 if (whence == SEEK_HOLE) { 1312 offset = isize; 1313 break; 1314 } 1315 ASSERT(whence == SEEK_DATA); 1316 error = -ENXIO; 1317 goto out_unlock; 1318 } 1319 } 1320 1321 out: 1322 /* 1323 * If at this point we have found the hole we wanted, the returned 1324 * offset may be bigger than the file size as it may be aligned to 1325 * page boundary for unwritten extents. We need to deal with this 1326 * situation in particular. 1327 */ 1328 if (whence == SEEK_HOLE) 1329 offset = min_t(loff_t, offset, isize); 1330 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1331 1332 out_unlock: 1333 xfs_iunlock(ip, lock); 1334 1335 if (error) 1336 return error; 1337 return offset; 1338 } 1339 1340 STATIC loff_t 1341 xfs_file_llseek( 1342 struct file *file, 1343 loff_t offset, 1344 int whence) 1345 { 1346 switch (whence) { 1347 case SEEK_END: 1348 case SEEK_CUR: 1349 case SEEK_SET: 1350 return generic_file_llseek(file, offset, whence); 1351 case SEEK_HOLE: 1352 case SEEK_DATA: 1353 return xfs_seek_hole_data(file, offset, whence); 1354 default: 1355 return -EINVAL; 1356 } 1357 } 1358 1359 const struct file_operations xfs_file_operations = { 1360 .llseek = xfs_file_llseek, 1361 .read = new_sync_read, 1362 .write = new_sync_write, 1363 .read_iter = xfs_file_read_iter, 1364 .write_iter = xfs_file_write_iter, 1365 .splice_read = xfs_file_splice_read, 1366 .splice_write = iter_file_splice_write, 1367 .unlocked_ioctl = xfs_file_ioctl, 1368 #ifdef CONFIG_COMPAT 1369 .compat_ioctl = xfs_file_compat_ioctl, 1370 #endif 1371 .mmap = xfs_file_mmap, 1372 .open = xfs_file_open, 1373 .release = xfs_file_release, 1374 .fsync = xfs_file_fsync, 1375 .fallocate = xfs_file_fallocate, 1376 }; 1377 1378 const struct file_operations xfs_dir_file_operations = { 1379 .open = xfs_dir_open, 1380 .read = generic_read_dir, 1381 .iterate = xfs_file_readdir, 1382 .llseek = generic_file_llseek, 1383 .unlocked_ioctl = xfs_file_ioctl, 1384 #ifdef CONFIG_COMPAT 1385 .compat_ioctl = xfs_file_compat_ioctl, 1386 #endif 1387 .fsync = xfs_dir_fsync, 1388 }; 1389 1390 static const struct vm_operations_struct xfs_file_vm_ops = { 1391 .fault = filemap_fault, 1392 .map_pages = filemap_map_pages, 1393 .page_mkwrite = xfs_vm_page_mkwrite, 1394 .remap_pages = generic_file_remap_pages, 1395 }; 1396