xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/dax.h>
29 #include <linux/falloc.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mman.h>
32 #include <linux/fadvise.h>
33 #include <linux/mount.h>
34 
35 static const struct vm_operations_struct xfs_file_vm_ops;
36 
37 /*
38  * Decide if the given file range is aligned to the size of the fundamental
39  * allocation unit for the file.
40  */
41 static bool
42 xfs_is_falloc_aligned(
43 	struct xfs_inode	*ip,
44 	loff_t			pos,
45 	long long int		len)
46 {
47 	struct xfs_mount	*mp = ip->i_mount;
48 	uint64_t		mask;
49 
50 	if (XFS_IS_REALTIME_INODE(ip)) {
51 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52 			u64	rextbytes;
53 			u32	mod;
54 
55 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56 			div_u64_rem(pos, rextbytes, &mod);
57 			if (mod)
58 				return false;
59 			div_u64_rem(len, rextbytes, &mod);
60 			return mod == 0;
61 		}
62 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63 	} else {
64 		mask = mp->m_sb.sb_blocksize - 1;
65 	}
66 
67 	return !((pos | len) & mask);
68 }
69 
70 /*
71  * Fsync operations on directories are much simpler than on regular files,
72  * as there is no file data to flush, and thus also no need for explicit
73  * cache flush operations, and there are no non-transaction metadata updates
74  * on directories either.
75  */
76 STATIC int
77 xfs_dir_fsync(
78 	struct file		*file,
79 	loff_t			start,
80 	loff_t			end,
81 	int			datasync)
82 {
83 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
84 
85 	trace_xfs_dir_fsync(ip);
86 	return xfs_log_force_inode(ip);
87 }
88 
89 static xfs_csn_t
90 xfs_fsync_seq(
91 	struct xfs_inode	*ip,
92 	bool			datasync)
93 {
94 	if (!xfs_ipincount(ip))
95 		return 0;
96 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97 		return 0;
98 	return ip->i_itemp->ili_commit_seq;
99 }
100 
101 /*
102  * All metadata updates are logged, which means that we just have to flush the
103  * log up to the latest LSN that touched the inode.
104  *
105  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106  * the log force before we clear the ili_fsync_fields field. This ensures that
107  * we don't get a racing sync operation that does not wait for the metadata to
108  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
109  * then all that will happen is the log force will do nothing as the lsn will
110  * already be on disk.  We can't race with setting ili_fsync_fields because that
111  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112  * shared until after the ili_fsync_fields is cleared.
113  */
114 static  int
115 xfs_fsync_flush_log(
116 	struct xfs_inode	*ip,
117 	bool			datasync,
118 	int			*log_flushed)
119 {
120 	int			error = 0;
121 	xfs_csn_t		seq;
122 
123 	xfs_ilock(ip, XFS_ILOCK_SHARED);
124 	seq = xfs_fsync_seq(ip, datasync);
125 	if (seq) {
126 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
127 					  log_flushed);
128 
129 		spin_lock(&ip->i_itemp->ili_lock);
130 		ip->i_itemp->ili_fsync_fields = 0;
131 		spin_unlock(&ip->i_itemp->ili_lock);
132 	}
133 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
134 	return error;
135 }
136 
137 STATIC int
138 xfs_file_fsync(
139 	struct file		*file,
140 	loff_t			start,
141 	loff_t			end,
142 	int			datasync)
143 {
144 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145 	struct xfs_mount	*mp = ip->i_mount;
146 	int			error, err2;
147 	int			log_flushed = 0;
148 
149 	trace_xfs_file_fsync(ip);
150 
151 	error = file_write_and_wait_range(file, start, end);
152 	if (error)
153 		return error;
154 
155 	if (xfs_is_shutdown(mp))
156 		return -EIO;
157 
158 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
159 
160 	/*
161 	 * If we have an RT and/or log subvolume we need to make sure to flush
162 	 * the write cache the device used for file data first.  This is to
163 	 * ensure newly written file data make it to disk before logging the new
164 	 * inode size in case of an extending write.
165 	 */
166 	if (XFS_IS_REALTIME_INODE(ip))
167 		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
168 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
169 		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
170 
171 	/*
172 	 * Any inode that has dirty modifications in the log is pinned.  The
173 	 * racy check here for a pinned inode will not catch modifications
174 	 * that happen concurrently to the fsync call, but fsync semantics
175 	 * only require to sync previously completed I/O.
176 	 */
177 	if (xfs_ipincount(ip)) {
178 		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179 		if (err2 && !error)
180 			error = err2;
181 	}
182 
183 	/*
184 	 * If we only have a single device, and the log force about was
185 	 * a no-op we might have to flush the data device cache here.
186 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187 	 * an already allocated file and thus do not have any metadata to
188 	 * commit.
189 	 */
190 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
191 	    mp->m_logdev_targp == mp->m_ddev_targp) {
192 		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193 		if (err2 && !error)
194 			error = err2;
195 	}
196 
197 	return error;
198 }
199 
200 static int
201 xfs_ilock_iocb(
202 	struct kiocb		*iocb,
203 	unsigned int		lock_mode)
204 {
205 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
206 
207 	if (iocb->ki_flags & IOCB_NOWAIT) {
208 		if (!xfs_ilock_nowait(ip, lock_mode))
209 			return -EAGAIN;
210 	} else {
211 		xfs_ilock(ip, lock_mode);
212 	}
213 
214 	return 0;
215 }
216 
217 STATIC ssize_t
218 xfs_file_dio_read(
219 	struct kiocb		*iocb,
220 	struct iov_iter		*to)
221 {
222 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
223 	ssize_t			ret;
224 
225 	trace_xfs_file_direct_read(iocb, to);
226 
227 	if (!iov_iter_count(to))
228 		return 0; /* skip atime */
229 
230 	file_accessed(iocb->ki_filp);
231 
232 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
233 	if (ret)
234 		return ret;
235 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
236 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
237 
238 	return ret;
239 }
240 
241 static noinline ssize_t
242 xfs_file_dax_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
247 	ssize_t			ret = 0;
248 
249 	trace_xfs_file_dax_read(iocb, to);
250 
251 	if (!iov_iter_count(to))
252 		return 0; /* skip atime */
253 
254 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
255 	if (ret)
256 		return ret;
257 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
258 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
259 
260 	file_accessed(iocb->ki_filp);
261 	return ret;
262 }
263 
264 STATIC ssize_t
265 xfs_file_buffered_read(
266 	struct kiocb		*iocb,
267 	struct iov_iter		*to)
268 {
269 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
270 	ssize_t			ret;
271 
272 	trace_xfs_file_buffered_read(iocb, to);
273 
274 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
275 	if (ret)
276 		return ret;
277 	ret = generic_file_read_iter(iocb, to);
278 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
279 
280 	return ret;
281 }
282 
283 STATIC ssize_t
284 xfs_file_read_iter(
285 	struct kiocb		*iocb,
286 	struct iov_iter		*to)
287 {
288 	struct inode		*inode = file_inode(iocb->ki_filp);
289 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
290 	ssize_t			ret = 0;
291 
292 	XFS_STATS_INC(mp, xs_read_calls);
293 
294 	if (xfs_is_shutdown(mp))
295 		return -EIO;
296 
297 	if (IS_DAX(inode))
298 		ret = xfs_file_dax_read(iocb, to);
299 	else if (iocb->ki_flags & IOCB_DIRECT)
300 		ret = xfs_file_dio_read(iocb, to);
301 	else
302 		ret = xfs_file_buffered_read(iocb, to);
303 
304 	if (ret > 0)
305 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
306 	return ret;
307 }
308 
309 STATIC ssize_t
310 xfs_file_splice_read(
311 	struct file		*in,
312 	loff_t			*ppos,
313 	struct pipe_inode_info	*pipe,
314 	size_t			len,
315 	unsigned int		flags)
316 {
317 	struct inode		*inode = file_inode(in);
318 	struct xfs_inode	*ip = XFS_I(inode);
319 	struct xfs_mount	*mp = ip->i_mount;
320 	ssize_t			ret = 0;
321 
322 	XFS_STATS_INC(mp, xs_read_calls);
323 
324 	if (xfs_is_shutdown(mp))
325 		return -EIO;
326 
327 	trace_xfs_file_splice_read(ip, *ppos, len);
328 
329 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
330 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
331 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
332 	if (ret > 0)
333 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
334 	return ret;
335 }
336 
337 /*
338  * Common pre-write limit and setup checks.
339  *
340  * Called with the iolocked held either shared and exclusive according to
341  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
342  * if called for a direct write beyond i_size.
343  */
344 STATIC ssize_t
345 xfs_file_write_checks(
346 	struct kiocb		*iocb,
347 	struct iov_iter		*from,
348 	unsigned int		*iolock)
349 {
350 	struct file		*file = iocb->ki_filp;
351 	struct inode		*inode = file->f_mapping->host;
352 	struct xfs_inode	*ip = XFS_I(inode);
353 	ssize_t			error = 0;
354 	size_t			count = iov_iter_count(from);
355 	bool			drained_dio = false;
356 	loff_t			isize;
357 
358 restart:
359 	error = generic_write_checks(iocb, from);
360 	if (error <= 0)
361 		return error;
362 
363 	if (iocb->ki_flags & IOCB_NOWAIT) {
364 		error = break_layout(inode, false);
365 		if (error == -EWOULDBLOCK)
366 			error = -EAGAIN;
367 	} else {
368 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
369 	}
370 
371 	if (error)
372 		return error;
373 
374 	/*
375 	 * For changing security info in file_remove_privs() we need i_rwsem
376 	 * exclusively.
377 	 */
378 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
379 		xfs_iunlock(ip, *iolock);
380 		*iolock = XFS_IOLOCK_EXCL;
381 		error = xfs_ilock_iocb(iocb, *iolock);
382 		if (error) {
383 			*iolock = 0;
384 			return error;
385 		}
386 		goto restart;
387 	}
388 
389 	/*
390 	 * If the offset is beyond the size of the file, we need to zero any
391 	 * blocks that fall between the existing EOF and the start of this
392 	 * write.  If zeroing is needed and we are currently holding the iolock
393 	 * shared, we need to update it to exclusive which implies having to
394 	 * redo all checks before.
395 	 *
396 	 * We need to serialise against EOF updates that occur in IO completions
397 	 * here. We want to make sure that nobody is changing the size while we
398 	 * do this check until we have placed an IO barrier (i.e.  hold the
399 	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
400 	 * spinlock effectively forms a memory barrier once we have the
401 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
402 	 * hence be able to correctly determine if we need to run zeroing.
403 	 *
404 	 * We can do an unlocked check here safely as IO completion can only
405 	 * extend EOF. Truncate is locked out at this point, so the EOF can
406 	 * not move backwards, only forwards. Hence we only need to take the
407 	 * slow path and spin locks when we are at or beyond the current EOF.
408 	 */
409 	if (iocb->ki_pos <= i_size_read(inode))
410 		goto out;
411 
412 	spin_lock(&ip->i_flags_lock);
413 	isize = i_size_read(inode);
414 	if (iocb->ki_pos > isize) {
415 		spin_unlock(&ip->i_flags_lock);
416 
417 		if (iocb->ki_flags & IOCB_NOWAIT)
418 			return -EAGAIN;
419 
420 		if (!drained_dio) {
421 			if (*iolock == XFS_IOLOCK_SHARED) {
422 				xfs_iunlock(ip, *iolock);
423 				*iolock = XFS_IOLOCK_EXCL;
424 				xfs_ilock(ip, *iolock);
425 				iov_iter_reexpand(from, count);
426 			}
427 			/*
428 			 * We now have an IO submission barrier in place, but
429 			 * AIO can do EOF updates during IO completion and hence
430 			 * we now need to wait for all of them to drain. Non-AIO
431 			 * DIO will have drained before we are given the
432 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
433 			 * no-op.
434 			 */
435 			inode_dio_wait(inode);
436 			drained_dio = true;
437 			goto restart;
438 		}
439 
440 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
441 		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
442 		if (error)
443 			return error;
444 	} else
445 		spin_unlock(&ip->i_flags_lock);
446 
447 out:
448 	return kiocb_modified(iocb);
449 }
450 
451 static int
452 xfs_dio_write_end_io(
453 	struct kiocb		*iocb,
454 	ssize_t			size,
455 	int			error,
456 	unsigned		flags)
457 {
458 	struct inode		*inode = file_inode(iocb->ki_filp);
459 	struct xfs_inode	*ip = XFS_I(inode);
460 	loff_t			offset = iocb->ki_pos;
461 	unsigned int		nofs_flag;
462 
463 	trace_xfs_end_io_direct_write(ip, offset, size);
464 
465 	if (xfs_is_shutdown(ip->i_mount))
466 		return -EIO;
467 
468 	if (error)
469 		return error;
470 	if (!size)
471 		return 0;
472 
473 	/*
474 	 * Capture amount written on completion as we can't reliably account
475 	 * for it on submission.
476 	 */
477 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
478 
479 	/*
480 	 * We can allocate memory here while doing writeback on behalf of
481 	 * memory reclaim.  To avoid memory allocation deadlocks set the
482 	 * task-wide nofs context for the following operations.
483 	 */
484 	nofs_flag = memalloc_nofs_save();
485 
486 	if (flags & IOMAP_DIO_COW) {
487 		error = xfs_reflink_end_cow(ip, offset, size);
488 		if (error)
489 			goto out;
490 	}
491 
492 	/*
493 	 * Unwritten conversion updates the in-core isize after extent
494 	 * conversion but before updating the on-disk size. Updating isize any
495 	 * earlier allows a racing dio read to find unwritten extents before
496 	 * they are converted.
497 	 */
498 	if (flags & IOMAP_DIO_UNWRITTEN) {
499 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
500 		goto out;
501 	}
502 
503 	/*
504 	 * We need to update the in-core inode size here so that we don't end up
505 	 * with the on-disk inode size being outside the in-core inode size. We
506 	 * have no other method of updating EOF for AIO, so always do it here
507 	 * if necessary.
508 	 *
509 	 * We need to lock the test/set EOF update as we can be racing with
510 	 * other IO completions here to update the EOF. Failing to serialise
511 	 * here can result in EOF moving backwards and Bad Things Happen when
512 	 * that occurs.
513 	 *
514 	 * As IO completion only ever extends EOF, we can do an unlocked check
515 	 * here to avoid taking the spinlock. If we land within the current EOF,
516 	 * then we do not need to do an extending update at all, and we don't
517 	 * need to take the lock to check this. If we race with an update moving
518 	 * EOF, then we'll either still be beyond EOF and need to take the lock,
519 	 * or we'll be within EOF and we don't need to take it at all.
520 	 */
521 	if (offset + size <= i_size_read(inode))
522 		goto out;
523 
524 	spin_lock(&ip->i_flags_lock);
525 	if (offset + size > i_size_read(inode)) {
526 		i_size_write(inode, offset + size);
527 		spin_unlock(&ip->i_flags_lock);
528 		error = xfs_setfilesize(ip, offset, size);
529 	} else {
530 		spin_unlock(&ip->i_flags_lock);
531 	}
532 
533 out:
534 	memalloc_nofs_restore(nofs_flag);
535 	return error;
536 }
537 
538 static const struct iomap_dio_ops xfs_dio_write_ops = {
539 	.end_io		= xfs_dio_write_end_io,
540 };
541 
542 /*
543  * Handle block aligned direct I/O writes
544  */
545 static noinline ssize_t
546 xfs_file_dio_write_aligned(
547 	struct xfs_inode	*ip,
548 	struct kiocb		*iocb,
549 	struct iov_iter		*from)
550 {
551 	unsigned int		iolock = XFS_IOLOCK_SHARED;
552 	ssize_t			ret;
553 
554 	ret = xfs_ilock_iocb(iocb, iolock);
555 	if (ret)
556 		return ret;
557 	ret = xfs_file_write_checks(iocb, from, &iolock);
558 	if (ret)
559 		goto out_unlock;
560 
561 	/*
562 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
563 	 * the iolock back to shared if we had to take the exclusive lock in
564 	 * xfs_file_write_checks() for other reasons.
565 	 */
566 	if (iolock == XFS_IOLOCK_EXCL) {
567 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
568 		iolock = XFS_IOLOCK_SHARED;
569 	}
570 	trace_xfs_file_direct_write(iocb, from);
571 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
572 			   &xfs_dio_write_ops, 0, NULL, 0);
573 out_unlock:
574 	if (iolock)
575 		xfs_iunlock(ip, iolock);
576 	return ret;
577 }
578 
579 /*
580  * Handle block unaligned direct I/O writes
581  *
582  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
583  * them to be done in parallel with reads and other direct I/O writes.  However,
584  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
585  * to do sub-block zeroing and that requires serialisation against other direct
586  * I/O to the same block.  In this case we need to serialise the submission of
587  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
588  * In the case where sub-block zeroing is not required, we can do concurrent
589  * sub-block dios to the same block successfully.
590  *
591  * Optimistically submit the I/O using the shared lock first, but use the
592  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
593  * if block allocation or partial block zeroing would be required.  In that case
594  * we try again with the exclusive lock.
595  */
596 static noinline ssize_t
597 xfs_file_dio_write_unaligned(
598 	struct xfs_inode	*ip,
599 	struct kiocb		*iocb,
600 	struct iov_iter		*from)
601 {
602 	size_t			isize = i_size_read(VFS_I(ip));
603 	size_t			count = iov_iter_count(from);
604 	unsigned int		iolock = XFS_IOLOCK_SHARED;
605 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
606 	ssize_t			ret;
607 
608 	/*
609 	 * Extending writes need exclusivity because of the sub-block zeroing
610 	 * that the DIO code always does for partial tail blocks beyond EOF, so
611 	 * don't even bother trying the fast path in this case.
612 	 */
613 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
614 		if (iocb->ki_flags & IOCB_NOWAIT)
615 			return -EAGAIN;
616 retry_exclusive:
617 		iolock = XFS_IOLOCK_EXCL;
618 		flags = IOMAP_DIO_FORCE_WAIT;
619 	}
620 
621 	ret = xfs_ilock_iocb(iocb, iolock);
622 	if (ret)
623 		return ret;
624 
625 	/*
626 	 * We can't properly handle unaligned direct I/O to reflink files yet,
627 	 * as we can't unshare a partial block.
628 	 */
629 	if (xfs_is_cow_inode(ip)) {
630 		trace_xfs_reflink_bounce_dio_write(iocb, from);
631 		ret = -ENOTBLK;
632 		goto out_unlock;
633 	}
634 
635 	ret = xfs_file_write_checks(iocb, from, &iolock);
636 	if (ret)
637 		goto out_unlock;
638 
639 	/*
640 	 * If we are doing exclusive unaligned I/O, this must be the only I/O
641 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
642 	 * conversions from the AIO end_io handler.  Wait for all other I/O to
643 	 * drain first.
644 	 */
645 	if (flags & IOMAP_DIO_FORCE_WAIT)
646 		inode_dio_wait(VFS_I(ip));
647 
648 	trace_xfs_file_direct_write(iocb, from);
649 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
650 			   &xfs_dio_write_ops, flags, NULL, 0);
651 
652 	/*
653 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
654 	 * layer rejected it for mapping or locking reasons. If we are doing
655 	 * nonblocking user I/O, propagate the error.
656 	 */
657 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
658 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
659 		xfs_iunlock(ip, iolock);
660 		goto retry_exclusive;
661 	}
662 
663 out_unlock:
664 	if (iolock)
665 		xfs_iunlock(ip, iolock);
666 	return ret;
667 }
668 
669 static ssize_t
670 xfs_file_dio_write(
671 	struct kiocb		*iocb,
672 	struct iov_iter		*from)
673 {
674 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
675 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
676 	size_t			count = iov_iter_count(from);
677 
678 	/* direct I/O must be aligned to device logical sector size */
679 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
680 		return -EINVAL;
681 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
682 		return xfs_file_dio_write_unaligned(ip, iocb, from);
683 	return xfs_file_dio_write_aligned(ip, iocb, from);
684 }
685 
686 static noinline ssize_t
687 xfs_file_dax_write(
688 	struct kiocb		*iocb,
689 	struct iov_iter		*from)
690 {
691 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
692 	struct xfs_inode	*ip = XFS_I(inode);
693 	unsigned int		iolock = XFS_IOLOCK_EXCL;
694 	ssize_t			ret, error = 0;
695 	loff_t			pos;
696 
697 	ret = xfs_ilock_iocb(iocb, iolock);
698 	if (ret)
699 		return ret;
700 	ret = xfs_file_write_checks(iocb, from, &iolock);
701 	if (ret)
702 		goto out;
703 
704 	pos = iocb->ki_pos;
705 
706 	trace_xfs_file_dax_write(iocb, from);
707 	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
708 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
709 		i_size_write(inode, iocb->ki_pos);
710 		error = xfs_setfilesize(ip, pos, ret);
711 	}
712 out:
713 	if (iolock)
714 		xfs_iunlock(ip, iolock);
715 	if (error)
716 		return error;
717 
718 	if (ret > 0) {
719 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
720 
721 		/* Handle various SYNC-type writes */
722 		ret = generic_write_sync(iocb, ret);
723 	}
724 	return ret;
725 }
726 
727 STATIC ssize_t
728 xfs_file_buffered_write(
729 	struct kiocb		*iocb,
730 	struct iov_iter		*from)
731 {
732 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
733 	struct xfs_inode	*ip = XFS_I(inode);
734 	ssize_t			ret;
735 	bool			cleared_space = false;
736 	unsigned int		iolock;
737 
738 write_retry:
739 	iolock = XFS_IOLOCK_EXCL;
740 	ret = xfs_ilock_iocb(iocb, iolock);
741 	if (ret)
742 		return ret;
743 
744 	ret = xfs_file_write_checks(iocb, from, &iolock);
745 	if (ret)
746 		goto out;
747 
748 	trace_xfs_file_buffered_write(iocb, from);
749 	ret = iomap_file_buffered_write(iocb, from,
750 			&xfs_buffered_write_iomap_ops);
751 
752 	/*
753 	 * If we hit a space limit, try to free up some lingering preallocated
754 	 * space before returning an error. In the case of ENOSPC, first try to
755 	 * write back all dirty inodes to free up some of the excess reserved
756 	 * metadata space. This reduces the chances that the eofblocks scan
757 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
758 	 * also behaves as a filter to prevent too many eofblocks scans from
759 	 * running at the same time.  Use a synchronous scan to increase the
760 	 * effectiveness of the scan.
761 	 */
762 	if (ret == -EDQUOT && !cleared_space) {
763 		xfs_iunlock(ip, iolock);
764 		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
765 		cleared_space = true;
766 		goto write_retry;
767 	} else if (ret == -ENOSPC && !cleared_space) {
768 		struct xfs_icwalk	icw = {0};
769 
770 		cleared_space = true;
771 		xfs_flush_inodes(ip->i_mount);
772 
773 		xfs_iunlock(ip, iolock);
774 		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
775 		xfs_blockgc_free_space(ip->i_mount, &icw);
776 		goto write_retry;
777 	}
778 
779 out:
780 	if (iolock)
781 		xfs_iunlock(ip, iolock);
782 
783 	if (ret > 0) {
784 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
785 		/* Handle various SYNC-type writes */
786 		ret = generic_write_sync(iocb, ret);
787 	}
788 	return ret;
789 }
790 
791 STATIC ssize_t
792 xfs_file_write_iter(
793 	struct kiocb		*iocb,
794 	struct iov_iter		*from)
795 {
796 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
797 	struct xfs_inode	*ip = XFS_I(inode);
798 	ssize_t			ret;
799 	size_t			ocount = iov_iter_count(from);
800 
801 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
802 
803 	if (ocount == 0)
804 		return 0;
805 
806 	if (xfs_is_shutdown(ip->i_mount))
807 		return -EIO;
808 
809 	if (IS_DAX(inode))
810 		return xfs_file_dax_write(iocb, from);
811 
812 	if (iocb->ki_flags & IOCB_DIRECT) {
813 		/*
814 		 * Allow a directio write to fall back to a buffered
815 		 * write *only* in the case that we're doing a reflink
816 		 * CoW.  In all other directio scenarios we do not
817 		 * allow an operation to fall back to buffered mode.
818 		 */
819 		ret = xfs_file_dio_write(iocb, from);
820 		if (ret != -ENOTBLK)
821 			return ret;
822 	}
823 
824 	return xfs_file_buffered_write(iocb, from);
825 }
826 
827 static void
828 xfs_wait_dax_page(
829 	struct inode		*inode)
830 {
831 	struct xfs_inode        *ip = XFS_I(inode);
832 
833 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
834 	schedule();
835 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
836 }
837 
838 int
839 xfs_break_dax_layouts(
840 	struct inode		*inode,
841 	bool			*retry)
842 {
843 	struct page		*page;
844 
845 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
846 
847 	page = dax_layout_busy_page(inode->i_mapping);
848 	if (!page)
849 		return 0;
850 
851 	*retry = true;
852 	return ___wait_var_event(&page->_refcount,
853 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
854 			0, 0, xfs_wait_dax_page(inode));
855 }
856 
857 int
858 xfs_break_layouts(
859 	struct inode		*inode,
860 	uint			*iolock,
861 	enum layout_break_reason reason)
862 {
863 	bool			retry;
864 	int			error;
865 
866 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
867 
868 	do {
869 		retry = false;
870 		switch (reason) {
871 		case BREAK_UNMAP:
872 			error = xfs_break_dax_layouts(inode, &retry);
873 			if (error || retry)
874 				break;
875 			fallthrough;
876 		case BREAK_WRITE:
877 			error = xfs_break_leased_layouts(inode, iolock, &retry);
878 			break;
879 		default:
880 			WARN_ON_ONCE(1);
881 			error = -EINVAL;
882 		}
883 	} while (error == 0 && retry);
884 
885 	return error;
886 }
887 
888 /* Does this file, inode, or mount want synchronous writes? */
889 static inline bool xfs_file_sync_writes(struct file *filp)
890 {
891 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
892 
893 	if (xfs_has_wsync(ip->i_mount))
894 		return true;
895 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
896 		return true;
897 	if (IS_SYNC(file_inode(filp)))
898 		return true;
899 
900 	return false;
901 }
902 
903 #define	XFS_FALLOC_FL_SUPPORTED						\
904 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
905 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
906 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
907 
908 STATIC long
909 xfs_file_fallocate(
910 	struct file		*file,
911 	int			mode,
912 	loff_t			offset,
913 	loff_t			len)
914 {
915 	struct inode		*inode = file_inode(file);
916 	struct xfs_inode	*ip = XFS_I(inode);
917 	long			error;
918 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
919 	loff_t			new_size = 0;
920 	bool			do_file_insert = false;
921 
922 	if (!S_ISREG(inode->i_mode))
923 		return -EINVAL;
924 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
925 		return -EOPNOTSUPP;
926 
927 	xfs_ilock(ip, iolock);
928 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
929 	if (error)
930 		goto out_unlock;
931 
932 	/*
933 	 * Must wait for all AIO to complete before we continue as AIO can
934 	 * change the file size on completion without holding any locks we
935 	 * currently hold. We must do this first because AIO can update both
936 	 * the on disk and in memory inode sizes, and the operations that follow
937 	 * require the in-memory size to be fully up-to-date.
938 	 */
939 	inode_dio_wait(inode);
940 
941 	/*
942 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
943 	 * the cached range over the first operation we are about to run.
944 	 *
945 	 * We care about zero and collapse here because they both run a hole
946 	 * punch over the range first. Because that can zero data, and the range
947 	 * of invalidation for the shift operations is much larger, we still do
948 	 * the required flush for collapse in xfs_prepare_shift().
949 	 *
950 	 * Insert has the same range requirements as collapse, and we extend the
951 	 * file first which can zero data. Hence insert has the same
952 	 * flush/invalidate requirements as collapse and so they are both
953 	 * handled at the right time by xfs_prepare_shift().
954 	 */
955 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
956 		    FALLOC_FL_COLLAPSE_RANGE)) {
957 		error = xfs_flush_unmap_range(ip, offset, len);
958 		if (error)
959 			goto out_unlock;
960 	}
961 
962 	error = file_modified(file);
963 	if (error)
964 		goto out_unlock;
965 
966 	if (mode & FALLOC_FL_PUNCH_HOLE) {
967 		error = xfs_free_file_space(ip, offset, len);
968 		if (error)
969 			goto out_unlock;
970 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
971 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
972 			error = -EINVAL;
973 			goto out_unlock;
974 		}
975 
976 		/*
977 		 * There is no need to overlap collapse range with EOF,
978 		 * in which case it is effectively a truncate operation
979 		 */
980 		if (offset + len >= i_size_read(inode)) {
981 			error = -EINVAL;
982 			goto out_unlock;
983 		}
984 
985 		new_size = i_size_read(inode) - len;
986 
987 		error = xfs_collapse_file_space(ip, offset, len);
988 		if (error)
989 			goto out_unlock;
990 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
991 		loff_t		isize = i_size_read(inode);
992 
993 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
994 			error = -EINVAL;
995 			goto out_unlock;
996 		}
997 
998 		/*
999 		 * New inode size must not exceed ->s_maxbytes, accounting for
1000 		 * possible signed overflow.
1001 		 */
1002 		if (inode->i_sb->s_maxbytes - isize < len) {
1003 			error = -EFBIG;
1004 			goto out_unlock;
1005 		}
1006 		new_size = isize + len;
1007 
1008 		/* Offset should be less than i_size */
1009 		if (offset >= isize) {
1010 			error = -EINVAL;
1011 			goto out_unlock;
1012 		}
1013 		do_file_insert = true;
1014 	} else {
1015 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1016 		    offset + len > i_size_read(inode)) {
1017 			new_size = offset + len;
1018 			error = inode_newsize_ok(inode, new_size);
1019 			if (error)
1020 				goto out_unlock;
1021 		}
1022 
1023 		if (mode & FALLOC_FL_ZERO_RANGE) {
1024 			/*
1025 			 * Punch a hole and prealloc the range.  We use a hole
1026 			 * punch rather than unwritten extent conversion for two
1027 			 * reasons:
1028 			 *
1029 			 *   1.) Hole punch handles partial block zeroing for us.
1030 			 *   2.) If prealloc returns ENOSPC, the file range is
1031 			 *       still zero-valued by virtue of the hole punch.
1032 			 */
1033 			unsigned int blksize = i_blocksize(inode);
1034 
1035 			trace_xfs_zero_file_space(ip);
1036 
1037 			error = xfs_free_file_space(ip, offset, len);
1038 			if (error)
1039 				goto out_unlock;
1040 
1041 			len = round_up(offset + len, blksize) -
1042 			      round_down(offset, blksize);
1043 			offset = round_down(offset, blksize);
1044 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1045 			error = xfs_reflink_unshare(ip, offset, len);
1046 			if (error)
1047 				goto out_unlock;
1048 		} else {
1049 			/*
1050 			 * If always_cow mode we can't use preallocations and
1051 			 * thus should not create them.
1052 			 */
1053 			if (xfs_is_always_cow_inode(ip)) {
1054 				error = -EOPNOTSUPP;
1055 				goto out_unlock;
1056 			}
1057 		}
1058 
1059 		if (!xfs_is_always_cow_inode(ip)) {
1060 			error = xfs_alloc_file_space(ip, offset, len);
1061 			if (error)
1062 				goto out_unlock;
1063 		}
1064 	}
1065 
1066 	/* Change file size if needed */
1067 	if (new_size) {
1068 		struct iattr iattr;
1069 
1070 		iattr.ia_valid = ATTR_SIZE;
1071 		iattr.ia_size = new_size;
1072 		error = xfs_vn_setattr_size(file_mnt_idmap(file),
1073 					    file_dentry(file), &iattr);
1074 		if (error)
1075 			goto out_unlock;
1076 	}
1077 
1078 	/*
1079 	 * Perform hole insertion now that the file size has been
1080 	 * updated so that if we crash during the operation we don't
1081 	 * leave shifted extents past EOF and hence losing access to
1082 	 * the data that is contained within them.
1083 	 */
1084 	if (do_file_insert) {
1085 		error = xfs_insert_file_space(ip, offset, len);
1086 		if (error)
1087 			goto out_unlock;
1088 	}
1089 
1090 	if (xfs_file_sync_writes(file))
1091 		error = xfs_log_force_inode(ip);
1092 
1093 out_unlock:
1094 	xfs_iunlock(ip, iolock);
1095 	return error;
1096 }
1097 
1098 STATIC int
1099 xfs_file_fadvise(
1100 	struct file	*file,
1101 	loff_t		start,
1102 	loff_t		end,
1103 	int		advice)
1104 {
1105 	struct xfs_inode *ip = XFS_I(file_inode(file));
1106 	int ret;
1107 	int lockflags = 0;
1108 
1109 	/*
1110 	 * Operations creating pages in page cache need protection from hole
1111 	 * punching and similar ops
1112 	 */
1113 	if (advice == POSIX_FADV_WILLNEED) {
1114 		lockflags = XFS_IOLOCK_SHARED;
1115 		xfs_ilock(ip, lockflags);
1116 	}
1117 	ret = generic_fadvise(file, start, end, advice);
1118 	if (lockflags)
1119 		xfs_iunlock(ip, lockflags);
1120 	return ret;
1121 }
1122 
1123 STATIC loff_t
1124 xfs_file_remap_range(
1125 	struct file		*file_in,
1126 	loff_t			pos_in,
1127 	struct file		*file_out,
1128 	loff_t			pos_out,
1129 	loff_t			len,
1130 	unsigned int		remap_flags)
1131 {
1132 	struct inode		*inode_in = file_inode(file_in);
1133 	struct xfs_inode	*src = XFS_I(inode_in);
1134 	struct inode		*inode_out = file_inode(file_out);
1135 	struct xfs_inode	*dest = XFS_I(inode_out);
1136 	struct xfs_mount	*mp = src->i_mount;
1137 	loff_t			remapped = 0;
1138 	xfs_extlen_t		cowextsize;
1139 	int			ret;
1140 
1141 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1142 		return -EINVAL;
1143 
1144 	if (!xfs_has_reflink(mp))
1145 		return -EOPNOTSUPP;
1146 
1147 	if (xfs_is_shutdown(mp))
1148 		return -EIO;
1149 
1150 	/* Prepare and then clone file data. */
1151 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1152 			&len, remap_flags);
1153 	if (ret || len == 0)
1154 		return ret;
1155 
1156 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1157 
1158 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1159 			&remapped);
1160 	if (ret)
1161 		goto out_unlock;
1162 
1163 	/*
1164 	 * Carry the cowextsize hint from src to dest if we're sharing the
1165 	 * entire source file to the entire destination file, the source file
1166 	 * has a cowextsize hint, and the destination file does not.
1167 	 */
1168 	cowextsize = 0;
1169 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1170 	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1171 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1172 	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1173 		cowextsize = src->i_cowextsize;
1174 
1175 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1176 			remap_flags);
1177 	if (ret)
1178 		goto out_unlock;
1179 
1180 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1181 		xfs_log_force_inode(dest);
1182 out_unlock:
1183 	xfs_iunlock2_io_mmap(src, dest);
1184 	if (ret)
1185 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1186 	return remapped > 0 ? remapped : ret;
1187 }
1188 
1189 STATIC int
1190 xfs_file_open(
1191 	struct inode	*inode,
1192 	struct file	*file)
1193 {
1194 	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1195 		return -EIO;
1196 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1197 			FMODE_DIO_PARALLEL_WRITE | FMODE_CAN_ODIRECT;
1198 	return generic_file_open(inode, file);
1199 }
1200 
1201 STATIC int
1202 xfs_dir_open(
1203 	struct inode	*inode,
1204 	struct file	*file)
1205 {
1206 	struct xfs_inode *ip = XFS_I(inode);
1207 	unsigned int	mode;
1208 	int		error;
1209 
1210 	error = xfs_file_open(inode, file);
1211 	if (error)
1212 		return error;
1213 
1214 	/*
1215 	 * If there are any blocks, read-ahead block 0 as we're almost
1216 	 * certain to have the next operation be a read there.
1217 	 */
1218 	mode = xfs_ilock_data_map_shared(ip);
1219 	if (ip->i_df.if_nextents > 0)
1220 		error = xfs_dir3_data_readahead(ip, 0, 0);
1221 	xfs_iunlock(ip, mode);
1222 	return error;
1223 }
1224 
1225 STATIC int
1226 xfs_file_release(
1227 	struct inode	*inode,
1228 	struct file	*filp)
1229 {
1230 	return xfs_release(XFS_I(inode));
1231 }
1232 
1233 STATIC int
1234 xfs_file_readdir(
1235 	struct file	*file,
1236 	struct dir_context *ctx)
1237 {
1238 	struct inode	*inode = file_inode(file);
1239 	xfs_inode_t	*ip = XFS_I(inode);
1240 	size_t		bufsize;
1241 
1242 	/*
1243 	 * The Linux API doesn't pass down the total size of the buffer
1244 	 * we read into down to the filesystem.  With the filldir concept
1245 	 * it's not needed for correct information, but the XFS dir2 leaf
1246 	 * code wants an estimate of the buffer size to calculate it's
1247 	 * readahead window and size the buffers used for mapping to
1248 	 * physical blocks.
1249 	 *
1250 	 * Try to give it an estimate that's good enough, maybe at some
1251 	 * point we can change the ->readdir prototype to include the
1252 	 * buffer size.  For now we use the current glibc buffer size.
1253 	 */
1254 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1255 
1256 	return xfs_readdir(NULL, ip, ctx, bufsize);
1257 }
1258 
1259 STATIC loff_t
1260 xfs_file_llseek(
1261 	struct file	*file,
1262 	loff_t		offset,
1263 	int		whence)
1264 {
1265 	struct inode		*inode = file->f_mapping->host;
1266 
1267 	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1268 		return -EIO;
1269 
1270 	switch (whence) {
1271 	default:
1272 		return generic_file_llseek(file, offset, whence);
1273 	case SEEK_HOLE:
1274 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1275 		break;
1276 	case SEEK_DATA:
1277 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1278 		break;
1279 	}
1280 
1281 	if (offset < 0)
1282 		return offset;
1283 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1284 }
1285 
1286 #ifdef CONFIG_FS_DAX
1287 static inline vm_fault_t
1288 xfs_dax_fault(
1289 	struct vm_fault		*vmf,
1290 	enum page_entry_size	pe_size,
1291 	bool			write_fault,
1292 	pfn_t			*pfn)
1293 {
1294 	return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1295 			(write_fault && !vmf->cow_page) ?
1296 				&xfs_dax_write_iomap_ops :
1297 				&xfs_read_iomap_ops);
1298 }
1299 #else
1300 static inline vm_fault_t
1301 xfs_dax_fault(
1302 	struct vm_fault		*vmf,
1303 	enum page_entry_size	pe_size,
1304 	bool			write_fault,
1305 	pfn_t			*pfn)
1306 {
1307 	ASSERT(0);
1308 	return VM_FAULT_SIGBUS;
1309 }
1310 #endif
1311 
1312 /*
1313  * Locking for serialisation of IO during page faults. This results in a lock
1314  * ordering of:
1315  *
1316  * mmap_lock (MM)
1317  *   sb_start_pagefault(vfs, freeze)
1318  *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1319  *       page_lock (MM)
1320  *         i_lock (XFS - extent map serialisation)
1321  */
1322 static vm_fault_t
1323 __xfs_filemap_fault(
1324 	struct vm_fault		*vmf,
1325 	enum page_entry_size	pe_size,
1326 	bool			write_fault)
1327 {
1328 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1329 	struct xfs_inode	*ip = XFS_I(inode);
1330 	vm_fault_t		ret;
1331 
1332 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1333 
1334 	if (write_fault) {
1335 		sb_start_pagefault(inode->i_sb);
1336 		file_update_time(vmf->vma->vm_file);
1337 	}
1338 
1339 	if (IS_DAX(inode)) {
1340 		pfn_t pfn;
1341 
1342 		xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1343 		ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
1344 		if (ret & VM_FAULT_NEEDDSYNC)
1345 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1346 		xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1347 	} else {
1348 		if (write_fault) {
1349 			xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1350 			ret = iomap_page_mkwrite(vmf,
1351 					&xfs_page_mkwrite_iomap_ops);
1352 			xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1353 		} else {
1354 			ret = filemap_fault(vmf);
1355 		}
1356 	}
1357 
1358 	if (write_fault)
1359 		sb_end_pagefault(inode->i_sb);
1360 	return ret;
1361 }
1362 
1363 static inline bool
1364 xfs_is_write_fault(
1365 	struct vm_fault		*vmf)
1366 {
1367 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1368 	       (vmf->vma->vm_flags & VM_SHARED);
1369 }
1370 
1371 static vm_fault_t
1372 xfs_filemap_fault(
1373 	struct vm_fault		*vmf)
1374 {
1375 	/* DAX can shortcut the normal fault path on write faults! */
1376 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1377 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1378 			xfs_is_write_fault(vmf));
1379 }
1380 
1381 static vm_fault_t
1382 xfs_filemap_huge_fault(
1383 	struct vm_fault		*vmf,
1384 	enum page_entry_size	pe_size)
1385 {
1386 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1387 		return VM_FAULT_FALLBACK;
1388 
1389 	/* DAX can shortcut the normal fault path on write faults! */
1390 	return __xfs_filemap_fault(vmf, pe_size,
1391 			xfs_is_write_fault(vmf));
1392 }
1393 
1394 static vm_fault_t
1395 xfs_filemap_page_mkwrite(
1396 	struct vm_fault		*vmf)
1397 {
1398 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1399 }
1400 
1401 /*
1402  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1403  * on write faults. In reality, it needs to serialise against truncate and
1404  * prepare memory for writing so handle is as standard write fault.
1405  */
1406 static vm_fault_t
1407 xfs_filemap_pfn_mkwrite(
1408 	struct vm_fault		*vmf)
1409 {
1410 
1411 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1412 }
1413 
1414 static const struct vm_operations_struct xfs_file_vm_ops = {
1415 	.fault		= xfs_filemap_fault,
1416 	.huge_fault	= xfs_filemap_huge_fault,
1417 	.map_pages	= filemap_map_pages,
1418 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1419 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1420 };
1421 
1422 STATIC int
1423 xfs_file_mmap(
1424 	struct file		*file,
1425 	struct vm_area_struct	*vma)
1426 {
1427 	struct inode		*inode = file_inode(file);
1428 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1429 
1430 	/*
1431 	 * We don't support synchronous mappings for non-DAX files and
1432 	 * for DAX files if underneath dax_device is not synchronous.
1433 	 */
1434 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1435 		return -EOPNOTSUPP;
1436 
1437 	file_accessed(file);
1438 	vma->vm_ops = &xfs_file_vm_ops;
1439 	if (IS_DAX(inode))
1440 		vm_flags_set(vma, VM_HUGEPAGE);
1441 	return 0;
1442 }
1443 
1444 const struct file_operations xfs_file_operations = {
1445 	.llseek		= xfs_file_llseek,
1446 	.read_iter	= xfs_file_read_iter,
1447 	.write_iter	= xfs_file_write_iter,
1448 	.splice_read	= xfs_file_splice_read,
1449 	.splice_write	= iter_file_splice_write,
1450 	.iopoll		= iocb_bio_iopoll,
1451 	.unlocked_ioctl	= xfs_file_ioctl,
1452 #ifdef CONFIG_COMPAT
1453 	.compat_ioctl	= xfs_file_compat_ioctl,
1454 #endif
1455 	.mmap		= xfs_file_mmap,
1456 	.mmap_supported_flags = MAP_SYNC,
1457 	.open		= xfs_file_open,
1458 	.release	= xfs_file_release,
1459 	.fsync		= xfs_file_fsync,
1460 	.get_unmapped_area = thp_get_unmapped_area,
1461 	.fallocate	= xfs_file_fallocate,
1462 	.fadvise	= xfs_file_fadvise,
1463 	.remap_file_range = xfs_file_remap_range,
1464 };
1465 
1466 const struct file_operations xfs_dir_file_operations = {
1467 	.open		= xfs_dir_open,
1468 	.read		= generic_read_dir,
1469 	.iterate_shared	= xfs_file_readdir,
1470 	.llseek		= generic_file_llseek,
1471 	.unlocked_ioctl	= xfs_file_ioctl,
1472 #ifdef CONFIG_COMPAT
1473 	.compat_ioctl	= xfs_file_compat_ioctl,
1474 #endif
1475 	.fsync		= xfs_dir_fsync,
1476 };
1477