xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 5bd8e16d)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 
40 #include <linux/aio.h>
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 
45 static const struct vm_operations_struct xfs_file_vm_ops;
46 
47 /*
48  * Locking primitives for read and write IO paths to ensure we consistently use
49  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50  */
51 static inline void
52 xfs_rw_ilock(
53 	struct xfs_inode	*ip,
54 	int			type)
55 {
56 	if (type & XFS_IOLOCK_EXCL)
57 		mutex_lock(&VFS_I(ip)->i_mutex);
58 	xfs_ilock(ip, type);
59 }
60 
61 static inline void
62 xfs_rw_iunlock(
63 	struct xfs_inode	*ip,
64 	int			type)
65 {
66 	xfs_iunlock(ip, type);
67 	if (type & XFS_IOLOCK_EXCL)
68 		mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70 
71 static inline void
72 xfs_rw_ilock_demote(
73 	struct xfs_inode	*ip,
74 	int			type)
75 {
76 	xfs_ilock_demote(ip, type);
77 	if (type & XFS_IOLOCK_EXCL)
78 		mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80 
81 /*
82  *	xfs_iozero
83  *
84  *	xfs_iozero clears the specified range of buffer supplied,
85  *	and marks all the affected blocks as valid and modified.  If
86  *	an affected block is not allocated, it will be allocated.  If
87  *	an affected block is not completely overwritten, and is not
88  *	valid before the operation, it will be read from disk before
89  *	being partially zeroed.
90  */
91 int
92 xfs_iozero(
93 	struct xfs_inode	*ip,	/* inode			*/
94 	loff_t			pos,	/* offset in file		*/
95 	size_t			count)	/* size of data to zero		*/
96 {
97 	struct page		*page;
98 	struct address_space	*mapping;
99 	int			status;
100 
101 	mapping = VFS_I(ip)->i_mapping;
102 	do {
103 		unsigned offset, bytes;
104 		void *fsdata;
105 
106 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 		bytes = PAGE_CACHE_SIZE - offset;
108 		if (bytes > count)
109 			bytes = count;
110 
111 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 					AOP_FLAG_UNINTERRUPTIBLE,
113 					&page, &fsdata);
114 		if (status)
115 			break;
116 
117 		zero_user(page, offset, bytes);
118 
119 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 					page, fsdata);
121 		WARN_ON(status <= 0); /* can't return less than zero! */
122 		pos += bytes;
123 		count -= bytes;
124 		status = 0;
125 	} while (count);
126 
127 	return (-status);
128 }
129 
130 /*
131  * Fsync operations on directories are much simpler than on regular files,
132  * as there is no file data to flush, and thus also no need for explicit
133  * cache flush operations, and there are no non-transaction metadata updates
134  * on directories either.
135  */
136 STATIC int
137 xfs_dir_fsync(
138 	struct file		*file,
139 	loff_t			start,
140 	loff_t			end,
141 	int			datasync)
142 {
143 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
144 	struct xfs_mount	*mp = ip->i_mount;
145 	xfs_lsn_t		lsn = 0;
146 
147 	trace_xfs_dir_fsync(ip);
148 
149 	xfs_ilock(ip, XFS_ILOCK_SHARED);
150 	if (xfs_ipincount(ip))
151 		lsn = ip->i_itemp->ili_last_lsn;
152 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
153 
154 	if (!lsn)
155 		return 0;
156 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
157 }
158 
159 STATIC int
160 xfs_file_fsync(
161 	struct file		*file,
162 	loff_t			start,
163 	loff_t			end,
164 	int			datasync)
165 {
166 	struct inode		*inode = file->f_mapping->host;
167 	struct xfs_inode	*ip = XFS_I(inode);
168 	struct xfs_mount	*mp = ip->i_mount;
169 	int			error = 0;
170 	int			log_flushed = 0;
171 	xfs_lsn_t		lsn = 0;
172 
173 	trace_xfs_file_fsync(ip);
174 
175 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
176 	if (error)
177 		return error;
178 
179 	if (XFS_FORCED_SHUTDOWN(mp))
180 		return -XFS_ERROR(EIO);
181 
182 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
183 
184 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
185 		/*
186 		 * If we have an RT and/or log subvolume we need to make sure
187 		 * to flush the write cache the device used for file data
188 		 * first.  This is to ensure newly written file data make
189 		 * it to disk before logging the new inode size in case of
190 		 * an extending write.
191 		 */
192 		if (XFS_IS_REALTIME_INODE(ip))
193 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
194 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
195 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
196 	}
197 
198 	/*
199 	 * All metadata updates are logged, which means that we just have
200 	 * to flush the log up to the latest LSN that touched the inode.
201 	 */
202 	xfs_ilock(ip, XFS_ILOCK_SHARED);
203 	if (xfs_ipincount(ip)) {
204 		if (!datasync ||
205 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
206 			lsn = ip->i_itemp->ili_last_lsn;
207 	}
208 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
209 
210 	if (lsn)
211 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
212 
213 	/*
214 	 * If we only have a single device, and the log force about was
215 	 * a no-op we might have to flush the data device cache here.
216 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 	 * an already allocated file and thus do not have any metadata to
218 	 * commit.
219 	 */
220 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
221 	    mp->m_logdev_targp == mp->m_ddev_targp &&
222 	    !XFS_IS_REALTIME_INODE(ip) &&
223 	    !log_flushed)
224 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
225 
226 	return -error;
227 }
228 
229 STATIC ssize_t
230 xfs_file_aio_read(
231 	struct kiocb		*iocb,
232 	const struct iovec	*iovp,
233 	unsigned long		nr_segs,
234 	loff_t			pos)
235 {
236 	struct file		*file = iocb->ki_filp;
237 	struct inode		*inode = file->f_mapping->host;
238 	struct xfs_inode	*ip = XFS_I(inode);
239 	struct xfs_mount	*mp = ip->i_mount;
240 	size_t			size = 0;
241 	ssize_t			ret = 0;
242 	int			ioflags = 0;
243 	xfs_fsize_t		n;
244 
245 	XFS_STATS_INC(xs_read_calls);
246 
247 	BUG_ON(iocb->ki_pos != pos);
248 
249 	if (unlikely(file->f_flags & O_DIRECT))
250 		ioflags |= IO_ISDIRECT;
251 	if (file->f_mode & FMODE_NOCMTIME)
252 		ioflags |= IO_INVIS;
253 
254 	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
255 	if (ret < 0)
256 		return ret;
257 
258 	if (unlikely(ioflags & IO_ISDIRECT)) {
259 		xfs_buftarg_t	*target =
260 			XFS_IS_REALTIME_INODE(ip) ?
261 				mp->m_rtdev_targp : mp->m_ddev_targp;
262 		if ((pos & target->bt_smask) || (size & target->bt_smask)) {
263 			if (pos == i_size_read(inode))
264 				return 0;
265 			return -XFS_ERROR(EINVAL);
266 		}
267 	}
268 
269 	n = mp->m_super->s_maxbytes - pos;
270 	if (n <= 0 || size == 0)
271 		return 0;
272 
273 	if (n < size)
274 		size = n;
275 
276 	if (XFS_FORCED_SHUTDOWN(mp))
277 		return -EIO;
278 
279 	/*
280 	 * Locking is a bit tricky here. If we take an exclusive lock
281 	 * for direct IO, we effectively serialise all new concurrent
282 	 * read IO to this file and block it behind IO that is currently in
283 	 * progress because IO in progress holds the IO lock shared. We only
284 	 * need to hold the lock exclusive to blow away the page cache, so
285 	 * only take lock exclusively if the page cache needs invalidation.
286 	 * This allows the normal direct IO case of no page cache pages to
287 	 * proceeed concurrently without serialisation.
288 	 */
289 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
290 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
291 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
292 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
293 
294 		if (inode->i_mapping->nrpages) {
295 			ret = -filemap_write_and_wait_range(
296 							VFS_I(ip)->i_mapping,
297 							pos, -1);
298 			if (ret) {
299 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
300 				return ret;
301 			}
302 			truncate_pagecache_range(VFS_I(ip), pos, -1);
303 		}
304 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
305 	}
306 
307 	trace_xfs_file_read(ip, size, pos, ioflags);
308 
309 	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
310 	if (ret > 0)
311 		XFS_STATS_ADD(xs_read_bytes, ret);
312 
313 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
314 	return ret;
315 }
316 
317 STATIC ssize_t
318 xfs_file_splice_read(
319 	struct file		*infilp,
320 	loff_t			*ppos,
321 	struct pipe_inode_info	*pipe,
322 	size_t			count,
323 	unsigned int		flags)
324 {
325 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
326 	int			ioflags = 0;
327 	ssize_t			ret;
328 
329 	XFS_STATS_INC(xs_read_calls);
330 
331 	if (infilp->f_mode & FMODE_NOCMTIME)
332 		ioflags |= IO_INVIS;
333 
334 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
335 		return -EIO;
336 
337 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
338 
339 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
340 
341 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
342 	if (ret > 0)
343 		XFS_STATS_ADD(xs_read_bytes, ret);
344 
345 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
346 	return ret;
347 }
348 
349 /*
350  * xfs_file_splice_write() does not use xfs_rw_ilock() because
351  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
352  * couuld cause lock inversions between the aio_write path and the splice path
353  * if someone is doing concurrent splice(2) based writes and write(2) based
354  * writes to the same inode. The only real way to fix this is to re-implement
355  * the generic code here with correct locking orders.
356  */
357 STATIC ssize_t
358 xfs_file_splice_write(
359 	struct pipe_inode_info	*pipe,
360 	struct file		*outfilp,
361 	loff_t			*ppos,
362 	size_t			count,
363 	unsigned int		flags)
364 {
365 	struct inode		*inode = outfilp->f_mapping->host;
366 	struct xfs_inode	*ip = XFS_I(inode);
367 	int			ioflags = 0;
368 	ssize_t			ret;
369 
370 	XFS_STATS_INC(xs_write_calls);
371 
372 	if (outfilp->f_mode & FMODE_NOCMTIME)
373 		ioflags |= IO_INVIS;
374 
375 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
376 		return -EIO;
377 
378 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
379 
380 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
381 
382 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
383 	if (ret > 0)
384 		XFS_STATS_ADD(xs_write_bytes, ret);
385 
386 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
387 	return ret;
388 }
389 
390 /*
391  * This routine is called to handle zeroing any space in the last block of the
392  * file that is beyond the EOF.  We do this since the size is being increased
393  * without writing anything to that block and we don't want to read the
394  * garbage on the disk.
395  */
396 STATIC int				/* error (positive) */
397 xfs_zero_last_block(
398 	struct xfs_inode	*ip,
399 	xfs_fsize_t		offset,
400 	xfs_fsize_t		isize)
401 {
402 	struct xfs_mount	*mp = ip->i_mount;
403 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
404 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 	int			zero_len;
406 	int			nimaps = 1;
407 	int			error = 0;
408 	struct xfs_bmbt_irec	imap;
409 
410 	xfs_ilock(ip, XFS_ILOCK_EXCL);
411 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
413 	if (error)
414 		return error;
415 
416 	ASSERT(nimaps > 0);
417 
418 	/*
419 	 * If the block underlying isize is just a hole, then there
420 	 * is nothing to zero.
421 	 */
422 	if (imap.br_startblock == HOLESTARTBLOCK)
423 		return 0;
424 
425 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 	if (isize + zero_len > offset)
427 		zero_len = offset - isize;
428 	return xfs_iozero(ip, isize, zero_len);
429 }
430 
431 /*
432  * Zero any on disk space between the current EOF and the new, larger EOF.
433  *
434  * This handles the normal case of zeroing the remainder of the last block in
435  * the file and the unusual case of zeroing blocks out beyond the size of the
436  * file.  This second case only happens with fixed size extents and when the
437  * system crashes before the inode size was updated but after blocks were
438  * allocated.
439  *
440  * Expects the iolock to be held exclusive, and will take the ilock internally.
441  */
442 int					/* error (positive) */
443 xfs_zero_eof(
444 	struct xfs_inode	*ip,
445 	xfs_off_t		offset,		/* starting I/O offset */
446 	xfs_fsize_t		isize)		/* current inode size */
447 {
448 	struct xfs_mount	*mp = ip->i_mount;
449 	xfs_fileoff_t		start_zero_fsb;
450 	xfs_fileoff_t		end_zero_fsb;
451 	xfs_fileoff_t		zero_count_fsb;
452 	xfs_fileoff_t		last_fsb;
453 	xfs_fileoff_t		zero_off;
454 	xfs_fsize_t		zero_len;
455 	int			nimaps;
456 	int			error = 0;
457 	struct xfs_bmbt_irec	imap;
458 
459 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
460 	ASSERT(offset > isize);
461 
462 	/*
463 	 * First handle zeroing the block on which isize resides.
464 	 *
465 	 * We only zero a part of that block so it is handled specially.
466 	 */
467 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
468 		error = xfs_zero_last_block(ip, offset, isize);
469 		if (error)
470 			return error;
471 	}
472 
473 	/*
474 	 * Calculate the range between the new size and the old where blocks
475 	 * needing to be zeroed may exist.
476 	 *
477 	 * To get the block where the last byte in the file currently resides,
478 	 * we need to subtract one from the size and truncate back to a block
479 	 * boundary.  We subtract 1 in case the size is exactly on a block
480 	 * boundary.
481 	 */
482 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
483 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
484 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
485 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
486 	if (last_fsb == end_zero_fsb) {
487 		/*
488 		 * The size was only incremented on its last block.
489 		 * We took care of that above, so just return.
490 		 */
491 		return 0;
492 	}
493 
494 	ASSERT(start_zero_fsb <= end_zero_fsb);
495 	while (start_zero_fsb <= end_zero_fsb) {
496 		nimaps = 1;
497 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
498 
499 		xfs_ilock(ip, XFS_ILOCK_EXCL);
500 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
501 					  &imap, &nimaps, 0);
502 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
503 		if (error)
504 			return error;
505 
506 		ASSERT(nimaps > 0);
507 
508 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
509 		    imap.br_startblock == HOLESTARTBLOCK) {
510 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
511 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
512 			continue;
513 		}
514 
515 		/*
516 		 * There are blocks we need to zero.
517 		 */
518 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
519 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
520 
521 		if ((zero_off + zero_len) > offset)
522 			zero_len = offset - zero_off;
523 
524 		error = xfs_iozero(ip, zero_off, zero_len);
525 		if (error)
526 			return error;
527 
528 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
529 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
530 	}
531 
532 	return 0;
533 }
534 
535 /*
536  * Common pre-write limit and setup checks.
537  *
538  * Called with the iolocked held either shared and exclusive according to
539  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
540  * if called for a direct write beyond i_size.
541  */
542 STATIC ssize_t
543 xfs_file_aio_write_checks(
544 	struct file		*file,
545 	loff_t			*pos,
546 	size_t			*count,
547 	int			*iolock)
548 {
549 	struct inode		*inode = file->f_mapping->host;
550 	struct xfs_inode	*ip = XFS_I(inode);
551 	int			error = 0;
552 
553 restart:
554 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
555 	if (error)
556 		return error;
557 
558 	/*
559 	 * If the offset is beyond the size of the file, we need to zero any
560 	 * blocks that fall between the existing EOF and the start of this
561 	 * write.  If zeroing is needed and we are currently holding the
562 	 * iolock shared, we need to update it to exclusive which implies
563 	 * having to redo all checks before.
564 	 */
565 	if (*pos > i_size_read(inode)) {
566 		if (*iolock == XFS_IOLOCK_SHARED) {
567 			xfs_rw_iunlock(ip, *iolock);
568 			*iolock = XFS_IOLOCK_EXCL;
569 			xfs_rw_ilock(ip, *iolock);
570 			goto restart;
571 		}
572 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
573 		if (error)
574 			return error;
575 	}
576 
577 	/*
578 	 * Updating the timestamps will grab the ilock again from
579 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
580 	 * lock above.  Eventually we should look into a way to avoid
581 	 * the pointless lock roundtrip.
582 	 */
583 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
584 		error = file_update_time(file);
585 		if (error)
586 			return error;
587 	}
588 
589 	/*
590 	 * If we're writing the file then make sure to clear the setuid and
591 	 * setgid bits if the process is not being run by root.  This keeps
592 	 * people from modifying setuid and setgid binaries.
593 	 */
594 	return file_remove_suid(file);
595 }
596 
597 /*
598  * xfs_file_dio_aio_write - handle direct IO writes
599  *
600  * Lock the inode appropriately to prepare for and issue a direct IO write.
601  * By separating it from the buffered write path we remove all the tricky to
602  * follow locking changes and looping.
603  *
604  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
605  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
606  * pages are flushed out.
607  *
608  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
609  * allowing them to be done in parallel with reads and other direct IO writes.
610  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
611  * needs to do sub-block zeroing and that requires serialisation against other
612  * direct IOs to the same block. In this case we need to serialise the
613  * submission of the unaligned IOs so that we don't get racing block zeroing in
614  * the dio layer.  To avoid the problem with aio, we also need to wait for
615  * outstanding IOs to complete so that unwritten extent conversion is completed
616  * before we try to map the overlapping block. This is currently implemented by
617  * hitting it with a big hammer (i.e. inode_dio_wait()).
618  *
619  * Returns with locks held indicated by @iolock and errors indicated by
620  * negative return values.
621  */
622 STATIC ssize_t
623 xfs_file_dio_aio_write(
624 	struct kiocb		*iocb,
625 	const struct iovec	*iovp,
626 	unsigned long		nr_segs,
627 	loff_t			pos,
628 	size_t			ocount)
629 {
630 	struct file		*file = iocb->ki_filp;
631 	struct address_space	*mapping = file->f_mapping;
632 	struct inode		*inode = mapping->host;
633 	struct xfs_inode	*ip = XFS_I(inode);
634 	struct xfs_mount	*mp = ip->i_mount;
635 	ssize_t			ret = 0;
636 	size_t			count = ocount;
637 	int			unaligned_io = 0;
638 	int			iolock;
639 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
640 					mp->m_rtdev_targp : mp->m_ddev_targp;
641 
642 	if ((pos & target->bt_smask) || (count & target->bt_smask))
643 		return -XFS_ERROR(EINVAL);
644 
645 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
646 		unaligned_io = 1;
647 
648 	/*
649 	 * We don't need to take an exclusive lock unless there page cache needs
650 	 * to be invalidated or unaligned IO is being executed. We don't need to
651 	 * consider the EOF extension case here because
652 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
653 	 * EOF zeroing cases and fill out the new inode size as appropriate.
654 	 */
655 	if (unaligned_io || mapping->nrpages)
656 		iolock = XFS_IOLOCK_EXCL;
657 	else
658 		iolock = XFS_IOLOCK_SHARED;
659 	xfs_rw_ilock(ip, iolock);
660 
661 	/*
662 	 * Recheck if there are cached pages that need invalidate after we got
663 	 * the iolock to protect against other threads adding new pages while
664 	 * we were waiting for the iolock.
665 	 */
666 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
667 		xfs_rw_iunlock(ip, iolock);
668 		iolock = XFS_IOLOCK_EXCL;
669 		xfs_rw_ilock(ip, iolock);
670 	}
671 
672 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
673 	if (ret)
674 		goto out;
675 
676 	if (mapping->nrpages) {
677 		ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
678 						    pos, -1);
679 		if (ret)
680 			goto out;
681 		truncate_pagecache_range(VFS_I(ip), pos, -1);
682 	}
683 
684 	/*
685 	 * If we are doing unaligned IO, wait for all other IO to drain,
686 	 * otherwise demote the lock if we had to flush cached pages
687 	 */
688 	if (unaligned_io)
689 		inode_dio_wait(inode);
690 	else if (iolock == XFS_IOLOCK_EXCL) {
691 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
692 		iolock = XFS_IOLOCK_SHARED;
693 	}
694 
695 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
696 	ret = generic_file_direct_write(iocb, iovp,
697 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
698 
699 out:
700 	xfs_rw_iunlock(ip, iolock);
701 
702 	/* No fallback to buffered IO on errors for XFS. */
703 	ASSERT(ret < 0 || ret == count);
704 	return ret;
705 }
706 
707 STATIC ssize_t
708 xfs_file_buffered_aio_write(
709 	struct kiocb		*iocb,
710 	const struct iovec	*iovp,
711 	unsigned long		nr_segs,
712 	loff_t			pos,
713 	size_t			ocount)
714 {
715 	struct file		*file = iocb->ki_filp;
716 	struct address_space	*mapping = file->f_mapping;
717 	struct inode		*inode = mapping->host;
718 	struct xfs_inode	*ip = XFS_I(inode);
719 	ssize_t			ret;
720 	int			enospc = 0;
721 	int			iolock = XFS_IOLOCK_EXCL;
722 	size_t			count = ocount;
723 
724 	xfs_rw_ilock(ip, iolock);
725 
726 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
727 	if (ret)
728 		goto out;
729 
730 	/* We can write back this queue in page reclaim */
731 	current->backing_dev_info = mapping->backing_dev_info;
732 
733 write_retry:
734 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
735 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
736 			pos, &iocb->ki_pos, count, 0);
737 
738 	/*
739 	 * If we just got an ENOSPC, try to write back all dirty inodes to
740 	 * convert delalloc space to free up some of the excess reserved
741 	 * metadata space.
742 	 */
743 	if (ret == -ENOSPC && !enospc) {
744 		enospc = 1;
745 		xfs_flush_inodes(ip->i_mount);
746 		goto write_retry;
747 	}
748 
749 	current->backing_dev_info = NULL;
750 out:
751 	xfs_rw_iunlock(ip, iolock);
752 	return ret;
753 }
754 
755 STATIC ssize_t
756 xfs_file_aio_write(
757 	struct kiocb		*iocb,
758 	const struct iovec	*iovp,
759 	unsigned long		nr_segs,
760 	loff_t			pos)
761 {
762 	struct file		*file = iocb->ki_filp;
763 	struct address_space	*mapping = file->f_mapping;
764 	struct inode		*inode = mapping->host;
765 	struct xfs_inode	*ip = XFS_I(inode);
766 	ssize_t			ret;
767 	size_t			ocount = 0;
768 
769 	XFS_STATS_INC(xs_write_calls);
770 
771 	BUG_ON(iocb->ki_pos != pos);
772 
773 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
774 	if (ret)
775 		return ret;
776 
777 	if (ocount == 0)
778 		return 0;
779 
780 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 		ret = -EIO;
782 		goto out;
783 	}
784 
785 	if (unlikely(file->f_flags & O_DIRECT))
786 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
787 	else
788 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
789 						  ocount);
790 
791 	if (ret > 0) {
792 		ssize_t err;
793 
794 		XFS_STATS_ADD(xs_write_bytes, ret);
795 
796 		/* Handle various SYNC-type writes */
797 		err = generic_write_sync(file, pos, ret);
798 		if (err < 0)
799 			ret = err;
800 	}
801 
802 out:
803 	return ret;
804 }
805 
806 STATIC long
807 xfs_file_fallocate(
808 	struct file	*file,
809 	int		mode,
810 	loff_t		offset,
811 	loff_t		len)
812 {
813 	struct inode	*inode = file_inode(file);
814 	long		error;
815 	loff_t		new_size = 0;
816 	xfs_flock64_t	bf;
817 	xfs_inode_t	*ip = XFS_I(inode);
818 	int		cmd = XFS_IOC_RESVSP;
819 	int		attr_flags = XFS_ATTR_NOLOCK;
820 
821 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
822 		return -EOPNOTSUPP;
823 
824 	bf.l_whence = 0;
825 	bf.l_start = offset;
826 	bf.l_len = len;
827 
828 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
829 
830 	if (mode & FALLOC_FL_PUNCH_HOLE)
831 		cmd = XFS_IOC_UNRESVSP;
832 
833 	/* check the new inode size is valid before allocating */
834 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
835 	    offset + len > i_size_read(inode)) {
836 		new_size = offset + len;
837 		error = inode_newsize_ok(inode, new_size);
838 		if (error)
839 			goto out_unlock;
840 	}
841 
842 	if (file->f_flags & O_DSYNC)
843 		attr_flags |= XFS_ATTR_SYNC;
844 
845 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
846 	if (error)
847 		goto out_unlock;
848 
849 	/* Change file size if needed */
850 	if (new_size) {
851 		struct iattr iattr;
852 
853 		iattr.ia_valid = ATTR_SIZE;
854 		iattr.ia_size = new_size;
855 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
856 	}
857 
858 out_unlock:
859 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
860 	return error;
861 }
862 
863 
864 STATIC int
865 xfs_file_open(
866 	struct inode	*inode,
867 	struct file	*file)
868 {
869 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
870 		return -EFBIG;
871 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
872 		return -EIO;
873 	return 0;
874 }
875 
876 STATIC int
877 xfs_dir_open(
878 	struct inode	*inode,
879 	struct file	*file)
880 {
881 	struct xfs_inode *ip = XFS_I(inode);
882 	int		mode;
883 	int		error;
884 
885 	error = xfs_file_open(inode, file);
886 	if (error)
887 		return error;
888 
889 	/*
890 	 * If there are any blocks, read-ahead block 0 as we're almost
891 	 * certain to have the next operation be a read there.
892 	 */
893 	mode = xfs_ilock_map_shared(ip);
894 	if (ip->i_d.di_nextents > 0)
895 		xfs_dir3_data_readahead(NULL, ip, 0, -1);
896 	xfs_iunlock(ip, mode);
897 	return 0;
898 }
899 
900 STATIC int
901 xfs_file_release(
902 	struct inode	*inode,
903 	struct file	*filp)
904 {
905 	return -xfs_release(XFS_I(inode));
906 }
907 
908 STATIC int
909 xfs_file_readdir(
910 	struct file	*file,
911 	struct dir_context *ctx)
912 {
913 	struct inode	*inode = file_inode(file);
914 	xfs_inode_t	*ip = XFS_I(inode);
915 	int		error;
916 	size_t		bufsize;
917 
918 	/*
919 	 * The Linux API doesn't pass down the total size of the buffer
920 	 * we read into down to the filesystem.  With the filldir concept
921 	 * it's not needed for correct information, but the XFS dir2 leaf
922 	 * code wants an estimate of the buffer size to calculate it's
923 	 * readahead window and size the buffers used for mapping to
924 	 * physical blocks.
925 	 *
926 	 * Try to give it an estimate that's good enough, maybe at some
927 	 * point we can change the ->readdir prototype to include the
928 	 * buffer size.  For now we use the current glibc buffer size.
929 	 */
930 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
931 
932 	error = xfs_readdir(ip, ctx, bufsize);
933 	if (error)
934 		return -error;
935 	return 0;
936 }
937 
938 STATIC int
939 xfs_file_mmap(
940 	struct file	*filp,
941 	struct vm_area_struct *vma)
942 {
943 	vma->vm_ops = &xfs_file_vm_ops;
944 
945 	file_accessed(filp);
946 	return 0;
947 }
948 
949 /*
950  * mmap()d file has taken write protection fault and is being made
951  * writable. We can set the page state up correctly for a writable
952  * page, which means we can do correct delalloc accounting (ENOSPC
953  * checking!) and unwritten extent mapping.
954  */
955 STATIC int
956 xfs_vm_page_mkwrite(
957 	struct vm_area_struct	*vma,
958 	struct vm_fault		*vmf)
959 {
960 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
961 }
962 
963 /*
964  * This type is designed to indicate the type of offset we would like
965  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
966  */
967 enum {
968 	HOLE_OFF = 0,
969 	DATA_OFF,
970 };
971 
972 /*
973  * Lookup the desired type of offset from the given page.
974  *
975  * On success, return true and the offset argument will point to the
976  * start of the region that was found.  Otherwise this function will
977  * return false and keep the offset argument unchanged.
978  */
979 STATIC bool
980 xfs_lookup_buffer_offset(
981 	struct page		*page,
982 	loff_t			*offset,
983 	unsigned int		type)
984 {
985 	loff_t			lastoff = page_offset(page);
986 	bool			found = false;
987 	struct buffer_head	*bh, *head;
988 
989 	bh = head = page_buffers(page);
990 	do {
991 		/*
992 		 * Unwritten extents that have data in the page
993 		 * cache covering them can be identified by the
994 		 * BH_Unwritten state flag.  Pages with multiple
995 		 * buffers might have a mix of holes, data and
996 		 * unwritten extents - any buffer with valid
997 		 * data in it should have BH_Uptodate flag set
998 		 * on it.
999 		 */
1000 		if (buffer_unwritten(bh) ||
1001 		    buffer_uptodate(bh)) {
1002 			if (type == DATA_OFF)
1003 				found = true;
1004 		} else {
1005 			if (type == HOLE_OFF)
1006 				found = true;
1007 		}
1008 
1009 		if (found) {
1010 			*offset = lastoff;
1011 			break;
1012 		}
1013 		lastoff += bh->b_size;
1014 	} while ((bh = bh->b_this_page) != head);
1015 
1016 	return found;
1017 }
1018 
1019 /*
1020  * This routine is called to find out and return a data or hole offset
1021  * from the page cache for unwritten extents according to the desired
1022  * type for xfs_seek_data() or xfs_seek_hole().
1023  *
1024  * The argument offset is used to tell where we start to search from the
1025  * page cache.  Map is used to figure out the end points of the range to
1026  * lookup pages.
1027  *
1028  * Return true if the desired type of offset was found, and the argument
1029  * offset is filled with that address.  Otherwise, return false and keep
1030  * offset unchanged.
1031  */
1032 STATIC bool
1033 xfs_find_get_desired_pgoff(
1034 	struct inode		*inode,
1035 	struct xfs_bmbt_irec	*map,
1036 	unsigned int		type,
1037 	loff_t			*offset)
1038 {
1039 	struct xfs_inode	*ip = XFS_I(inode);
1040 	struct xfs_mount	*mp = ip->i_mount;
1041 	struct pagevec		pvec;
1042 	pgoff_t			index;
1043 	pgoff_t			end;
1044 	loff_t			endoff;
1045 	loff_t			startoff = *offset;
1046 	loff_t			lastoff = startoff;
1047 	bool			found = false;
1048 
1049 	pagevec_init(&pvec, 0);
1050 
1051 	index = startoff >> PAGE_CACHE_SHIFT;
1052 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1053 	end = endoff >> PAGE_CACHE_SHIFT;
1054 	do {
1055 		int		want;
1056 		unsigned	nr_pages;
1057 		unsigned int	i;
1058 
1059 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1060 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1061 					  want);
1062 		/*
1063 		 * No page mapped into given range.  If we are searching holes
1064 		 * and if this is the first time we got into the loop, it means
1065 		 * that the given offset is landed in a hole, return it.
1066 		 *
1067 		 * If we have already stepped through some block buffers to find
1068 		 * holes but they all contains data.  In this case, the last
1069 		 * offset is already updated and pointed to the end of the last
1070 		 * mapped page, if it does not reach the endpoint to search,
1071 		 * that means there should be a hole between them.
1072 		 */
1073 		if (nr_pages == 0) {
1074 			/* Data search found nothing */
1075 			if (type == DATA_OFF)
1076 				break;
1077 
1078 			ASSERT(type == HOLE_OFF);
1079 			if (lastoff == startoff || lastoff < endoff) {
1080 				found = true;
1081 				*offset = lastoff;
1082 			}
1083 			break;
1084 		}
1085 
1086 		/*
1087 		 * At lease we found one page.  If this is the first time we
1088 		 * step into the loop, and if the first page index offset is
1089 		 * greater than the given search offset, a hole was found.
1090 		 */
1091 		if (type == HOLE_OFF && lastoff == startoff &&
1092 		    lastoff < page_offset(pvec.pages[0])) {
1093 			found = true;
1094 			break;
1095 		}
1096 
1097 		for (i = 0; i < nr_pages; i++) {
1098 			struct page	*page = pvec.pages[i];
1099 			loff_t		b_offset;
1100 
1101 			/*
1102 			 * At this point, the page may be truncated or
1103 			 * invalidated (changing page->mapping to NULL),
1104 			 * or even swizzled back from swapper_space to tmpfs
1105 			 * file mapping. However, page->index will not change
1106 			 * because we have a reference on the page.
1107 			 *
1108 			 * Searching done if the page index is out of range.
1109 			 * If the current offset is not reaches the end of
1110 			 * the specified search range, there should be a hole
1111 			 * between them.
1112 			 */
1113 			if (page->index > end) {
1114 				if (type == HOLE_OFF && lastoff < endoff) {
1115 					*offset = lastoff;
1116 					found = true;
1117 				}
1118 				goto out;
1119 			}
1120 
1121 			lock_page(page);
1122 			/*
1123 			 * Page truncated or invalidated(page->mapping == NULL).
1124 			 * We can freely skip it and proceed to check the next
1125 			 * page.
1126 			 */
1127 			if (unlikely(page->mapping != inode->i_mapping)) {
1128 				unlock_page(page);
1129 				continue;
1130 			}
1131 
1132 			if (!page_has_buffers(page)) {
1133 				unlock_page(page);
1134 				continue;
1135 			}
1136 
1137 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1138 			if (found) {
1139 				/*
1140 				 * The found offset may be less than the start
1141 				 * point to search if this is the first time to
1142 				 * come here.
1143 				 */
1144 				*offset = max_t(loff_t, startoff, b_offset);
1145 				unlock_page(page);
1146 				goto out;
1147 			}
1148 
1149 			/*
1150 			 * We either searching data but nothing was found, or
1151 			 * searching hole but found a data buffer.  In either
1152 			 * case, probably the next page contains the desired
1153 			 * things, update the last offset to it so.
1154 			 */
1155 			lastoff = page_offset(page) + PAGE_SIZE;
1156 			unlock_page(page);
1157 		}
1158 
1159 		/*
1160 		 * The number of returned pages less than our desired, search
1161 		 * done.  In this case, nothing was found for searching data,
1162 		 * but we found a hole behind the last offset.
1163 		 */
1164 		if (nr_pages < want) {
1165 			if (type == HOLE_OFF) {
1166 				*offset = lastoff;
1167 				found = true;
1168 			}
1169 			break;
1170 		}
1171 
1172 		index = pvec.pages[i - 1]->index + 1;
1173 		pagevec_release(&pvec);
1174 	} while (index <= end);
1175 
1176 out:
1177 	pagevec_release(&pvec);
1178 	return found;
1179 }
1180 
1181 STATIC loff_t
1182 xfs_seek_data(
1183 	struct file		*file,
1184 	loff_t			start)
1185 {
1186 	struct inode		*inode = file->f_mapping->host;
1187 	struct xfs_inode	*ip = XFS_I(inode);
1188 	struct xfs_mount	*mp = ip->i_mount;
1189 	loff_t			uninitialized_var(offset);
1190 	xfs_fsize_t		isize;
1191 	xfs_fileoff_t		fsbno;
1192 	xfs_filblks_t		end;
1193 	uint			lock;
1194 	int			error;
1195 
1196 	lock = xfs_ilock_map_shared(ip);
1197 
1198 	isize = i_size_read(inode);
1199 	if (start >= isize) {
1200 		error = ENXIO;
1201 		goto out_unlock;
1202 	}
1203 
1204 	/*
1205 	 * Try to read extents from the first block indicated
1206 	 * by fsbno to the end block of the file.
1207 	 */
1208 	fsbno = XFS_B_TO_FSBT(mp, start);
1209 	end = XFS_B_TO_FSB(mp, isize);
1210 	for (;;) {
1211 		struct xfs_bmbt_irec	map[2];
1212 		int			nmap = 2;
1213 		unsigned int		i;
1214 
1215 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1216 				       XFS_BMAPI_ENTIRE);
1217 		if (error)
1218 			goto out_unlock;
1219 
1220 		/* No extents at given offset, must be beyond EOF */
1221 		if (nmap == 0) {
1222 			error = ENXIO;
1223 			goto out_unlock;
1224 		}
1225 
1226 		for (i = 0; i < nmap; i++) {
1227 			offset = max_t(loff_t, start,
1228 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1229 
1230 			/* Landed in a data extent */
1231 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1232 			    (map[i].br_state == XFS_EXT_NORM &&
1233 			     !isnullstartblock(map[i].br_startblock)))
1234 				goto out;
1235 
1236 			/*
1237 			 * Landed in an unwritten extent, try to search data
1238 			 * from page cache.
1239 			 */
1240 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1241 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1242 							DATA_OFF, &offset))
1243 					goto out;
1244 			}
1245 		}
1246 
1247 		/*
1248 		 * map[0] is hole or its an unwritten extent but
1249 		 * without data in page cache.  Probably means that
1250 		 * we are reading after EOF if nothing in map[1].
1251 		 */
1252 		if (nmap == 1) {
1253 			error = ENXIO;
1254 			goto out_unlock;
1255 		}
1256 
1257 		ASSERT(i > 1);
1258 
1259 		/*
1260 		 * Nothing was found, proceed to the next round of search
1261 		 * if reading offset not beyond or hit EOF.
1262 		 */
1263 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1264 		start = XFS_FSB_TO_B(mp, fsbno);
1265 		if (start >= isize) {
1266 			error = ENXIO;
1267 			goto out_unlock;
1268 		}
1269 	}
1270 
1271 out:
1272 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1273 
1274 out_unlock:
1275 	xfs_iunlock_map_shared(ip, lock);
1276 
1277 	if (error)
1278 		return -error;
1279 	return offset;
1280 }
1281 
1282 STATIC loff_t
1283 xfs_seek_hole(
1284 	struct file		*file,
1285 	loff_t			start)
1286 {
1287 	struct inode		*inode = file->f_mapping->host;
1288 	struct xfs_inode	*ip = XFS_I(inode);
1289 	struct xfs_mount	*mp = ip->i_mount;
1290 	loff_t			uninitialized_var(offset);
1291 	xfs_fsize_t		isize;
1292 	xfs_fileoff_t		fsbno;
1293 	xfs_filblks_t		end;
1294 	uint			lock;
1295 	int			error;
1296 
1297 	if (XFS_FORCED_SHUTDOWN(mp))
1298 		return -XFS_ERROR(EIO);
1299 
1300 	lock = xfs_ilock_map_shared(ip);
1301 
1302 	isize = i_size_read(inode);
1303 	if (start >= isize) {
1304 		error = ENXIO;
1305 		goto out_unlock;
1306 	}
1307 
1308 	fsbno = XFS_B_TO_FSBT(mp, start);
1309 	end = XFS_B_TO_FSB(mp, isize);
1310 
1311 	for (;;) {
1312 		struct xfs_bmbt_irec	map[2];
1313 		int			nmap = 2;
1314 		unsigned int		i;
1315 
1316 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1317 				       XFS_BMAPI_ENTIRE);
1318 		if (error)
1319 			goto out_unlock;
1320 
1321 		/* No extents at given offset, must be beyond EOF */
1322 		if (nmap == 0) {
1323 			error = ENXIO;
1324 			goto out_unlock;
1325 		}
1326 
1327 		for (i = 0; i < nmap; i++) {
1328 			offset = max_t(loff_t, start,
1329 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1330 
1331 			/* Landed in a hole */
1332 			if (map[i].br_startblock == HOLESTARTBLOCK)
1333 				goto out;
1334 
1335 			/*
1336 			 * Landed in an unwritten extent, try to search hole
1337 			 * from page cache.
1338 			 */
1339 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1340 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1341 							HOLE_OFF, &offset))
1342 					goto out;
1343 			}
1344 		}
1345 
1346 		/*
1347 		 * map[0] contains data or its unwritten but contains
1348 		 * data in page cache, probably means that we are
1349 		 * reading after EOF.  We should fix offset to point
1350 		 * to the end of the file(i.e., there is an implicit
1351 		 * hole at the end of any file).
1352 		 */
1353 		if (nmap == 1) {
1354 			offset = isize;
1355 			break;
1356 		}
1357 
1358 		ASSERT(i > 1);
1359 
1360 		/*
1361 		 * Both mappings contains data, proceed to the next round of
1362 		 * search if the current reading offset not beyond or hit EOF.
1363 		 */
1364 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1365 		start = XFS_FSB_TO_B(mp, fsbno);
1366 		if (start >= isize) {
1367 			offset = isize;
1368 			break;
1369 		}
1370 	}
1371 
1372 out:
1373 	/*
1374 	 * At this point, we must have found a hole.  However, the returned
1375 	 * offset may be bigger than the file size as it may be aligned to
1376 	 * page boundary for unwritten extents, we need to deal with this
1377 	 * situation in particular.
1378 	 */
1379 	offset = min_t(loff_t, offset, isize);
1380 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1381 
1382 out_unlock:
1383 	xfs_iunlock_map_shared(ip, lock);
1384 
1385 	if (error)
1386 		return -error;
1387 	return offset;
1388 }
1389 
1390 STATIC loff_t
1391 xfs_file_llseek(
1392 	struct file	*file,
1393 	loff_t		offset,
1394 	int		origin)
1395 {
1396 	switch (origin) {
1397 	case SEEK_END:
1398 	case SEEK_CUR:
1399 	case SEEK_SET:
1400 		return generic_file_llseek(file, offset, origin);
1401 	case SEEK_DATA:
1402 		return xfs_seek_data(file, offset);
1403 	case SEEK_HOLE:
1404 		return xfs_seek_hole(file, offset);
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 }
1409 
1410 const struct file_operations xfs_file_operations = {
1411 	.llseek		= xfs_file_llseek,
1412 	.read		= do_sync_read,
1413 	.write		= do_sync_write,
1414 	.aio_read	= xfs_file_aio_read,
1415 	.aio_write	= xfs_file_aio_write,
1416 	.splice_read	= xfs_file_splice_read,
1417 	.splice_write	= xfs_file_splice_write,
1418 	.unlocked_ioctl	= xfs_file_ioctl,
1419 #ifdef CONFIG_COMPAT
1420 	.compat_ioctl	= xfs_file_compat_ioctl,
1421 #endif
1422 	.mmap		= xfs_file_mmap,
1423 	.open		= xfs_file_open,
1424 	.release	= xfs_file_release,
1425 	.fsync		= xfs_file_fsync,
1426 	.fallocate	= xfs_file_fallocate,
1427 };
1428 
1429 const struct file_operations xfs_dir_file_operations = {
1430 	.open		= xfs_dir_open,
1431 	.read		= generic_read_dir,
1432 	.iterate	= xfs_file_readdir,
1433 	.llseek		= generic_file_llseek,
1434 	.unlocked_ioctl	= xfs_file_ioctl,
1435 #ifdef CONFIG_COMPAT
1436 	.compat_ioctl	= xfs_file_compat_ioctl,
1437 #endif
1438 	.fsync		= xfs_dir_fsync,
1439 };
1440 
1441 static const struct vm_operations_struct xfs_file_vm_ops = {
1442 	.fault		= filemap_fault,
1443 	.page_mkwrite	= xfs_vm_page_mkwrite,
1444 	.remap_pages	= generic_file_remap_pages,
1445 };
1446