1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log.h" 21 #include "xfs_sb.h" 22 #include "xfs_ag.h" 23 #include "xfs_trans.h" 24 #include "xfs_mount.h" 25 #include "xfs_bmap_btree.h" 26 #include "xfs_alloc.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_da_btree.h" 34 #include "xfs_dir2_format.h" 35 #include "xfs_dir2.h" 36 #include "xfs_dir2_priv.h" 37 #include "xfs_ioctl.h" 38 #include "xfs_trace.h" 39 40 #include <linux/aio.h> 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 45 static const struct vm_operations_struct xfs_file_vm_ops; 46 47 /* 48 * Locking primitives for read and write IO paths to ensure we consistently use 49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 50 */ 51 static inline void 52 xfs_rw_ilock( 53 struct xfs_inode *ip, 54 int type) 55 { 56 if (type & XFS_IOLOCK_EXCL) 57 mutex_lock(&VFS_I(ip)->i_mutex); 58 xfs_ilock(ip, type); 59 } 60 61 static inline void 62 xfs_rw_iunlock( 63 struct xfs_inode *ip, 64 int type) 65 { 66 xfs_iunlock(ip, type); 67 if (type & XFS_IOLOCK_EXCL) 68 mutex_unlock(&VFS_I(ip)->i_mutex); 69 } 70 71 static inline void 72 xfs_rw_ilock_demote( 73 struct xfs_inode *ip, 74 int type) 75 { 76 xfs_ilock_demote(ip, type); 77 if (type & XFS_IOLOCK_EXCL) 78 mutex_unlock(&VFS_I(ip)->i_mutex); 79 } 80 81 /* 82 * xfs_iozero 83 * 84 * xfs_iozero clears the specified range of buffer supplied, 85 * and marks all the affected blocks as valid and modified. If 86 * an affected block is not allocated, it will be allocated. If 87 * an affected block is not completely overwritten, and is not 88 * valid before the operation, it will be read from disk before 89 * being partially zeroed. 90 */ 91 int 92 xfs_iozero( 93 struct xfs_inode *ip, /* inode */ 94 loff_t pos, /* offset in file */ 95 size_t count) /* size of data to zero */ 96 { 97 struct page *page; 98 struct address_space *mapping; 99 int status; 100 101 mapping = VFS_I(ip)->i_mapping; 102 do { 103 unsigned offset, bytes; 104 void *fsdata; 105 106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 107 bytes = PAGE_CACHE_SIZE - offset; 108 if (bytes > count) 109 bytes = count; 110 111 status = pagecache_write_begin(NULL, mapping, pos, bytes, 112 AOP_FLAG_UNINTERRUPTIBLE, 113 &page, &fsdata); 114 if (status) 115 break; 116 117 zero_user(page, offset, bytes); 118 119 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 120 page, fsdata); 121 WARN_ON(status <= 0); /* can't return less than zero! */ 122 pos += bytes; 123 count -= bytes; 124 status = 0; 125 } while (count); 126 127 return (-status); 128 } 129 130 /* 131 * Fsync operations on directories are much simpler than on regular files, 132 * as there is no file data to flush, and thus also no need for explicit 133 * cache flush operations, and there are no non-transaction metadata updates 134 * on directories either. 135 */ 136 STATIC int 137 xfs_dir_fsync( 138 struct file *file, 139 loff_t start, 140 loff_t end, 141 int datasync) 142 { 143 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 144 struct xfs_mount *mp = ip->i_mount; 145 xfs_lsn_t lsn = 0; 146 147 trace_xfs_dir_fsync(ip); 148 149 xfs_ilock(ip, XFS_ILOCK_SHARED); 150 if (xfs_ipincount(ip)) 151 lsn = ip->i_itemp->ili_last_lsn; 152 xfs_iunlock(ip, XFS_ILOCK_SHARED); 153 154 if (!lsn) 155 return 0; 156 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 157 } 158 159 STATIC int 160 xfs_file_fsync( 161 struct file *file, 162 loff_t start, 163 loff_t end, 164 int datasync) 165 { 166 struct inode *inode = file->f_mapping->host; 167 struct xfs_inode *ip = XFS_I(inode); 168 struct xfs_mount *mp = ip->i_mount; 169 int error = 0; 170 int log_flushed = 0; 171 xfs_lsn_t lsn = 0; 172 173 trace_xfs_file_fsync(ip); 174 175 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 176 if (error) 177 return error; 178 179 if (XFS_FORCED_SHUTDOWN(mp)) 180 return -XFS_ERROR(EIO); 181 182 xfs_iflags_clear(ip, XFS_ITRUNCATED); 183 184 if (mp->m_flags & XFS_MOUNT_BARRIER) { 185 /* 186 * If we have an RT and/or log subvolume we need to make sure 187 * to flush the write cache the device used for file data 188 * first. This is to ensure newly written file data make 189 * it to disk before logging the new inode size in case of 190 * an extending write. 191 */ 192 if (XFS_IS_REALTIME_INODE(ip)) 193 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 194 else if (mp->m_logdev_targp != mp->m_ddev_targp) 195 xfs_blkdev_issue_flush(mp->m_ddev_targp); 196 } 197 198 /* 199 * All metadata updates are logged, which means that we just have 200 * to flush the log up to the latest LSN that touched the inode. 201 */ 202 xfs_ilock(ip, XFS_ILOCK_SHARED); 203 if (xfs_ipincount(ip)) { 204 if (!datasync || 205 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 206 lsn = ip->i_itemp->ili_last_lsn; 207 } 208 xfs_iunlock(ip, XFS_ILOCK_SHARED); 209 210 if (lsn) 211 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 212 213 /* 214 * If we only have a single device, and the log force about was 215 * a no-op we might have to flush the data device cache here. 216 * This can only happen for fdatasync/O_DSYNC if we were overwriting 217 * an already allocated file and thus do not have any metadata to 218 * commit. 219 */ 220 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 221 mp->m_logdev_targp == mp->m_ddev_targp && 222 !XFS_IS_REALTIME_INODE(ip) && 223 !log_flushed) 224 xfs_blkdev_issue_flush(mp->m_ddev_targp); 225 226 return -error; 227 } 228 229 STATIC ssize_t 230 xfs_file_aio_read( 231 struct kiocb *iocb, 232 const struct iovec *iovp, 233 unsigned long nr_segs, 234 loff_t pos) 235 { 236 struct file *file = iocb->ki_filp; 237 struct inode *inode = file->f_mapping->host; 238 struct xfs_inode *ip = XFS_I(inode); 239 struct xfs_mount *mp = ip->i_mount; 240 size_t size = 0; 241 ssize_t ret = 0; 242 int ioflags = 0; 243 xfs_fsize_t n; 244 245 XFS_STATS_INC(xs_read_calls); 246 247 BUG_ON(iocb->ki_pos != pos); 248 249 if (unlikely(file->f_flags & O_DIRECT)) 250 ioflags |= IO_ISDIRECT; 251 if (file->f_mode & FMODE_NOCMTIME) 252 ioflags |= IO_INVIS; 253 254 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 255 if (ret < 0) 256 return ret; 257 258 if (unlikely(ioflags & IO_ISDIRECT)) { 259 xfs_buftarg_t *target = 260 XFS_IS_REALTIME_INODE(ip) ? 261 mp->m_rtdev_targp : mp->m_ddev_targp; 262 if ((pos & target->bt_smask) || (size & target->bt_smask)) { 263 if (pos == i_size_read(inode)) 264 return 0; 265 return -XFS_ERROR(EINVAL); 266 } 267 } 268 269 n = mp->m_super->s_maxbytes - pos; 270 if (n <= 0 || size == 0) 271 return 0; 272 273 if (n < size) 274 size = n; 275 276 if (XFS_FORCED_SHUTDOWN(mp)) 277 return -EIO; 278 279 /* 280 * Locking is a bit tricky here. If we take an exclusive lock 281 * for direct IO, we effectively serialise all new concurrent 282 * read IO to this file and block it behind IO that is currently in 283 * progress because IO in progress holds the IO lock shared. We only 284 * need to hold the lock exclusive to blow away the page cache, so 285 * only take lock exclusively if the page cache needs invalidation. 286 * This allows the normal direct IO case of no page cache pages to 287 * proceeed concurrently without serialisation. 288 */ 289 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 290 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 291 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 292 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 293 294 if (inode->i_mapping->nrpages) { 295 ret = -filemap_write_and_wait_range( 296 VFS_I(ip)->i_mapping, 297 pos, -1); 298 if (ret) { 299 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 300 return ret; 301 } 302 truncate_pagecache_range(VFS_I(ip), pos, -1); 303 } 304 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 305 } 306 307 trace_xfs_file_read(ip, size, pos, ioflags); 308 309 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos); 310 if (ret > 0) 311 XFS_STATS_ADD(xs_read_bytes, ret); 312 313 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 314 return ret; 315 } 316 317 STATIC ssize_t 318 xfs_file_splice_read( 319 struct file *infilp, 320 loff_t *ppos, 321 struct pipe_inode_info *pipe, 322 size_t count, 323 unsigned int flags) 324 { 325 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 326 int ioflags = 0; 327 ssize_t ret; 328 329 XFS_STATS_INC(xs_read_calls); 330 331 if (infilp->f_mode & FMODE_NOCMTIME) 332 ioflags |= IO_INVIS; 333 334 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 335 return -EIO; 336 337 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 338 339 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 340 341 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 342 if (ret > 0) 343 XFS_STATS_ADD(xs_read_bytes, ret); 344 345 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 346 return ret; 347 } 348 349 /* 350 * xfs_file_splice_write() does not use xfs_rw_ilock() because 351 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 352 * couuld cause lock inversions between the aio_write path and the splice path 353 * if someone is doing concurrent splice(2) based writes and write(2) based 354 * writes to the same inode. The only real way to fix this is to re-implement 355 * the generic code here with correct locking orders. 356 */ 357 STATIC ssize_t 358 xfs_file_splice_write( 359 struct pipe_inode_info *pipe, 360 struct file *outfilp, 361 loff_t *ppos, 362 size_t count, 363 unsigned int flags) 364 { 365 struct inode *inode = outfilp->f_mapping->host; 366 struct xfs_inode *ip = XFS_I(inode); 367 int ioflags = 0; 368 ssize_t ret; 369 370 XFS_STATS_INC(xs_write_calls); 371 372 if (outfilp->f_mode & FMODE_NOCMTIME) 373 ioflags |= IO_INVIS; 374 375 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 376 return -EIO; 377 378 xfs_ilock(ip, XFS_IOLOCK_EXCL); 379 380 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 381 382 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 383 if (ret > 0) 384 XFS_STATS_ADD(xs_write_bytes, ret); 385 386 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 387 return ret; 388 } 389 390 /* 391 * This routine is called to handle zeroing any space in the last block of the 392 * file that is beyond the EOF. We do this since the size is being increased 393 * without writing anything to that block and we don't want to read the 394 * garbage on the disk. 395 */ 396 STATIC int /* error (positive) */ 397 xfs_zero_last_block( 398 struct xfs_inode *ip, 399 xfs_fsize_t offset, 400 xfs_fsize_t isize) 401 { 402 struct xfs_mount *mp = ip->i_mount; 403 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 404 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 405 int zero_len; 406 int nimaps = 1; 407 int error = 0; 408 struct xfs_bmbt_irec imap; 409 410 xfs_ilock(ip, XFS_ILOCK_EXCL); 411 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 412 xfs_iunlock(ip, XFS_ILOCK_EXCL); 413 if (error) 414 return error; 415 416 ASSERT(nimaps > 0); 417 418 /* 419 * If the block underlying isize is just a hole, then there 420 * is nothing to zero. 421 */ 422 if (imap.br_startblock == HOLESTARTBLOCK) 423 return 0; 424 425 zero_len = mp->m_sb.sb_blocksize - zero_offset; 426 if (isize + zero_len > offset) 427 zero_len = offset - isize; 428 return xfs_iozero(ip, isize, zero_len); 429 } 430 431 /* 432 * Zero any on disk space between the current EOF and the new, larger EOF. 433 * 434 * This handles the normal case of zeroing the remainder of the last block in 435 * the file and the unusual case of zeroing blocks out beyond the size of the 436 * file. This second case only happens with fixed size extents and when the 437 * system crashes before the inode size was updated but after blocks were 438 * allocated. 439 * 440 * Expects the iolock to be held exclusive, and will take the ilock internally. 441 */ 442 int /* error (positive) */ 443 xfs_zero_eof( 444 struct xfs_inode *ip, 445 xfs_off_t offset, /* starting I/O offset */ 446 xfs_fsize_t isize) /* current inode size */ 447 { 448 struct xfs_mount *mp = ip->i_mount; 449 xfs_fileoff_t start_zero_fsb; 450 xfs_fileoff_t end_zero_fsb; 451 xfs_fileoff_t zero_count_fsb; 452 xfs_fileoff_t last_fsb; 453 xfs_fileoff_t zero_off; 454 xfs_fsize_t zero_len; 455 int nimaps; 456 int error = 0; 457 struct xfs_bmbt_irec imap; 458 459 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 460 ASSERT(offset > isize); 461 462 /* 463 * First handle zeroing the block on which isize resides. 464 * 465 * We only zero a part of that block so it is handled specially. 466 */ 467 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 468 error = xfs_zero_last_block(ip, offset, isize); 469 if (error) 470 return error; 471 } 472 473 /* 474 * Calculate the range between the new size and the old where blocks 475 * needing to be zeroed may exist. 476 * 477 * To get the block where the last byte in the file currently resides, 478 * we need to subtract one from the size and truncate back to a block 479 * boundary. We subtract 1 in case the size is exactly on a block 480 * boundary. 481 */ 482 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 483 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 484 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 485 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 486 if (last_fsb == end_zero_fsb) { 487 /* 488 * The size was only incremented on its last block. 489 * We took care of that above, so just return. 490 */ 491 return 0; 492 } 493 494 ASSERT(start_zero_fsb <= end_zero_fsb); 495 while (start_zero_fsb <= end_zero_fsb) { 496 nimaps = 1; 497 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 498 499 xfs_ilock(ip, XFS_ILOCK_EXCL); 500 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 501 &imap, &nimaps, 0); 502 xfs_iunlock(ip, XFS_ILOCK_EXCL); 503 if (error) 504 return error; 505 506 ASSERT(nimaps > 0); 507 508 if (imap.br_state == XFS_EXT_UNWRITTEN || 509 imap.br_startblock == HOLESTARTBLOCK) { 510 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 511 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 512 continue; 513 } 514 515 /* 516 * There are blocks we need to zero. 517 */ 518 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 519 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 520 521 if ((zero_off + zero_len) > offset) 522 zero_len = offset - zero_off; 523 524 error = xfs_iozero(ip, zero_off, zero_len); 525 if (error) 526 return error; 527 528 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 529 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 530 } 531 532 return 0; 533 } 534 535 /* 536 * Common pre-write limit and setup checks. 537 * 538 * Called with the iolocked held either shared and exclusive according to 539 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 540 * if called for a direct write beyond i_size. 541 */ 542 STATIC ssize_t 543 xfs_file_aio_write_checks( 544 struct file *file, 545 loff_t *pos, 546 size_t *count, 547 int *iolock) 548 { 549 struct inode *inode = file->f_mapping->host; 550 struct xfs_inode *ip = XFS_I(inode); 551 int error = 0; 552 553 restart: 554 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 555 if (error) 556 return error; 557 558 /* 559 * If the offset is beyond the size of the file, we need to zero any 560 * blocks that fall between the existing EOF and the start of this 561 * write. If zeroing is needed and we are currently holding the 562 * iolock shared, we need to update it to exclusive which implies 563 * having to redo all checks before. 564 */ 565 if (*pos > i_size_read(inode)) { 566 if (*iolock == XFS_IOLOCK_SHARED) { 567 xfs_rw_iunlock(ip, *iolock); 568 *iolock = XFS_IOLOCK_EXCL; 569 xfs_rw_ilock(ip, *iolock); 570 goto restart; 571 } 572 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 573 if (error) 574 return error; 575 } 576 577 /* 578 * Updating the timestamps will grab the ilock again from 579 * xfs_fs_dirty_inode, so we have to call it after dropping the 580 * lock above. Eventually we should look into a way to avoid 581 * the pointless lock roundtrip. 582 */ 583 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 584 error = file_update_time(file); 585 if (error) 586 return error; 587 } 588 589 /* 590 * If we're writing the file then make sure to clear the setuid and 591 * setgid bits if the process is not being run by root. This keeps 592 * people from modifying setuid and setgid binaries. 593 */ 594 return file_remove_suid(file); 595 } 596 597 /* 598 * xfs_file_dio_aio_write - handle direct IO writes 599 * 600 * Lock the inode appropriately to prepare for and issue a direct IO write. 601 * By separating it from the buffered write path we remove all the tricky to 602 * follow locking changes and looping. 603 * 604 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 605 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 606 * pages are flushed out. 607 * 608 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 609 * allowing them to be done in parallel with reads and other direct IO writes. 610 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 611 * needs to do sub-block zeroing and that requires serialisation against other 612 * direct IOs to the same block. In this case we need to serialise the 613 * submission of the unaligned IOs so that we don't get racing block zeroing in 614 * the dio layer. To avoid the problem with aio, we also need to wait for 615 * outstanding IOs to complete so that unwritten extent conversion is completed 616 * before we try to map the overlapping block. This is currently implemented by 617 * hitting it with a big hammer (i.e. inode_dio_wait()). 618 * 619 * Returns with locks held indicated by @iolock and errors indicated by 620 * negative return values. 621 */ 622 STATIC ssize_t 623 xfs_file_dio_aio_write( 624 struct kiocb *iocb, 625 const struct iovec *iovp, 626 unsigned long nr_segs, 627 loff_t pos, 628 size_t ocount) 629 { 630 struct file *file = iocb->ki_filp; 631 struct address_space *mapping = file->f_mapping; 632 struct inode *inode = mapping->host; 633 struct xfs_inode *ip = XFS_I(inode); 634 struct xfs_mount *mp = ip->i_mount; 635 ssize_t ret = 0; 636 size_t count = ocount; 637 int unaligned_io = 0; 638 int iolock; 639 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 640 mp->m_rtdev_targp : mp->m_ddev_targp; 641 642 if ((pos & target->bt_smask) || (count & target->bt_smask)) 643 return -XFS_ERROR(EINVAL); 644 645 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 646 unaligned_io = 1; 647 648 /* 649 * We don't need to take an exclusive lock unless there page cache needs 650 * to be invalidated or unaligned IO is being executed. We don't need to 651 * consider the EOF extension case here because 652 * xfs_file_aio_write_checks() will relock the inode as necessary for 653 * EOF zeroing cases and fill out the new inode size as appropriate. 654 */ 655 if (unaligned_io || mapping->nrpages) 656 iolock = XFS_IOLOCK_EXCL; 657 else 658 iolock = XFS_IOLOCK_SHARED; 659 xfs_rw_ilock(ip, iolock); 660 661 /* 662 * Recheck if there are cached pages that need invalidate after we got 663 * the iolock to protect against other threads adding new pages while 664 * we were waiting for the iolock. 665 */ 666 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 667 xfs_rw_iunlock(ip, iolock); 668 iolock = XFS_IOLOCK_EXCL; 669 xfs_rw_ilock(ip, iolock); 670 } 671 672 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 673 if (ret) 674 goto out; 675 676 if (mapping->nrpages) { 677 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 678 pos, -1); 679 if (ret) 680 goto out; 681 truncate_pagecache_range(VFS_I(ip), pos, -1); 682 } 683 684 /* 685 * If we are doing unaligned IO, wait for all other IO to drain, 686 * otherwise demote the lock if we had to flush cached pages 687 */ 688 if (unaligned_io) 689 inode_dio_wait(inode); 690 else if (iolock == XFS_IOLOCK_EXCL) { 691 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 692 iolock = XFS_IOLOCK_SHARED; 693 } 694 695 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 696 ret = generic_file_direct_write(iocb, iovp, 697 &nr_segs, pos, &iocb->ki_pos, count, ocount); 698 699 out: 700 xfs_rw_iunlock(ip, iolock); 701 702 /* No fallback to buffered IO on errors for XFS. */ 703 ASSERT(ret < 0 || ret == count); 704 return ret; 705 } 706 707 STATIC ssize_t 708 xfs_file_buffered_aio_write( 709 struct kiocb *iocb, 710 const struct iovec *iovp, 711 unsigned long nr_segs, 712 loff_t pos, 713 size_t ocount) 714 { 715 struct file *file = iocb->ki_filp; 716 struct address_space *mapping = file->f_mapping; 717 struct inode *inode = mapping->host; 718 struct xfs_inode *ip = XFS_I(inode); 719 ssize_t ret; 720 int enospc = 0; 721 int iolock = XFS_IOLOCK_EXCL; 722 size_t count = ocount; 723 724 xfs_rw_ilock(ip, iolock); 725 726 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 727 if (ret) 728 goto out; 729 730 /* We can write back this queue in page reclaim */ 731 current->backing_dev_info = mapping->backing_dev_info; 732 733 write_retry: 734 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 735 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 736 pos, &iocb->ki_pos, count, 0); 737 738 /* 739 * If we just got an ENOSPC, try to write back all dirty inodes to 740 * convert delalloc space to free up some of the excess reserved 741 * metadata space. 742 */ 743 if (ret == -ENOSPC && !enospc) { 744 enospc = 1; 745 xfs_flush_inodes(ip->i_mount); 746 goto write_retry; 747 } 748 749 current->backing_dev_info = NULL; 750 out: 751 xfs_rw_iunlock(ip, iolock); 752 return ret; 753 } 754 755 STATIC ssize_t 756 xfs_file_aio_write( 757 struct kiocb *iocb, 758 const struct iovec *iovp, 759 unsigned long nr_segs, 760 loff_t pos) 761 { 762 struct file *file = iocb->ki_filp; 763 struct address_space *mapping = file->f_mapping; 764 struct inode *inode = mapping->host; 765 struct xfs_inode *ip = XFS_I(inode); 766 ssize_t ret; 767 size_t ocount = 0; 768 769 XFS_STATS_INC(xs_write_calls); 770 771 BUG_ON(iocb->ki_pos != pos); 772 773 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 774 if (ret) 775 return ret; 776 777 if (ocount == 0) 778 return 0; 779 780 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 781 ret = -EIO; 782 goto out; 783 } 784 785 if (unlikely(file->f_flags & O_DIRECT)) 786 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 787 else 788 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 789 ocount); 790 791 if (ret > 0) { 792 ssize_t err; 793 794 XFS_STATS_ADD(xs_write_bytes, ret); 795 796 /* Handle various SYNC-type writes */ 797 err = generic_write_sync(file, pos, ret); 798 if (err < 0) 799 ret = err; 800 } 801 802 out: 803 return ret; 804 } 805 806 STATIC long 807 xfs_file_fallocate( 808 struct file *file, 809 int mode, 810 loff_t offset, 811 loff_t len) 812 { 813 struct inode *inode = file_inode(file); 814 long error; 815 loff_t new_size = 0; 816 xfs_flock64_t bf; 817 xfs_inode_t *ip = XFS_I(inode); 818 int cmd = XFS_IOC_RESVSP; 819 int attr_flags = XFS_ATTR_NOLOCK; 820 821 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 822 return -EOPNOTSUPP; 823 824 bf.l_whence = 0; 825 bf.l_start = offset; 826 bf.l_len = len; 827 828 xfs_ilock(ip, XFS_IOLOCK_EXCL); 829 830 if (mode & FALLOC_FL_PUNCH_HOLE) 831 cmd = XFS_IOC_UNRESVSP; 832 833 /* check the new inode size is valid before allocating */ 834 if (!(mode & FALLOC_FL_KEEP_SIZE) && 835 offset + len > i_size_read(inode)) { 836 new_size = offset + len; 837 error = inode_newsize_ok(inode, new_size); 838 if (error) 839 goto out_unlock; 840 } 841 842 if (file->f_flags & O_DSYNC) 843 attr_flags |= XFS_ATTR_SYNC; 844 845 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 846 if (error) 847 goto out_unlock; 848 849 /* Change file size if needed */ 850 if (new_size) { 851 struct iattr iattr; 852 853 iattr.ia_valid = ATTR_SIZE; 854 iattr.ia_size = new_size; 855 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 856 } 857 858 out_unlock: 859 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 860 return error; 861 } 862 863 864 STATIC int 865 xfs_file_open( 866 struct inode *inode, 867 struct file *file) 868 { 869 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 870 return -EFBIG; 871 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 872 return -EIO; 873 return 0; 874 } 875 876 STATIC int 877 xfs_dir_open( 878 struct inode *inode, 879 struct file *file) 880 { 881 struct xfs_inode *ip = XFS_I(inode); 882 int mode; 883 int error; 884 885 error = xfs_file_open(inode, file); 886 if (error) 887 return error; 888 889 /* 890 * If there are any blocks, read-ahead block 0 as we're almost 891 * certain to have the next operation be a read there. 892 */ 893 mode = xfs_ilock_map_shared(ip); 894 if (ip->i_d.di_nextents > 0) 895 xfs_dir3_data_readahead(NULL, ip, 0, -1); 896 xfs_iunlock(ip, mode); 897 return 0; 898 } 899 900 STATIC int 901 xfs_file_release( 902 struct inode *inode, 903 struct file *filp) 904 { 905 return -xfs_release(XFS_I(inode)); 906 } 907 908 STATIC int 909 xfs_file_readdir( 910 struct file *file, 911 struct dir_context *ctx) 912 { 913 struct inode *inode = file_inode(file); 914 xfs_inode_t *ip = XFS_I(inode); 915 int error; 916 size_t bufsize; 917 918 /* 919 * The Linux API doesn't pass down the total size of the buffer 920 * we read into down to the filesystem. With the filldir concept 921 * it's not needed for correct information, but the XFS dir2 leaf 922 * code wants an estimate of the buffer size to calculate it's 923 * readahead window and size the buffers used for mapping to 924 * physical blocks. 925 * 926 * Try to give it an estimate that's good enough, maybe at some 927 * point we can change the ->readdir prototype to include the 928 * buffer size. For now we use the current glibc buffer size. 929 */ 930 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 931 932 error = xfs_readdir(ip, ctx, bufsize); 933 if (error) 934 return -error; 935 return 0; 936 } 937 938 STATIC int 939 xfs_file_mmap( 940 struct file *filp, 941 struct vm_area_struct *vma) 942 { 943 vma->vm_ops = &xfs_file_vm_ops; 944 945 file_accessed(filp); 946 return 0; 947 } 948 949 /* 950 * mmap()d file has taken write protection fault and is being made 951 * writable. We can set the page state up correctly for a writable 952 * page, which means we can do correct delalloc accounting (ENOSPC 953 * checking!) and unwritten extent mapping. 954 */ 955 STATIC int 956 xfs_vm_page_mkwrite( 957 struct vm_area_struct *vma, 958 struct vm_fault *vmf) 959 { 960 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 961 } 962 963 /* 964 * This type is designed to indicate the type of offset we would like 965 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 966 */ 967 enum { 968 HOLE_OFF = 0, 969 DATA_OFF, 970 }; 971 972 /* 973 * Lookup the desired type of offset from the given page. 974 * 975 * On success, return true and the offset argument will point to the 976 * start of the region that was found. Otherwise this function will 977 * return false and keep the offset argument unchanged. 978 */ 979 STATIC bool 980 xfs_lookup_buffer_offset( 981 struct page *page, 982 loff_t *offset, 983 unsigned int type) 984 { 985 loff_t lastoff = page_offset(page); 986 bool found = false; 987 struct buffer_head *bh, *head; 988 989 bh = head = page_buffers(page); 990 do { 991 /* 992 * Unwritten extents that have data in the page 993 * cache covering them can be identified by the 994 * BH_Unwritten state flag. Pages with multiple 995 * buffers might have a mix of holes, data and 996 * unwritten extents - any buffer with valid 997 * data in it should have BH_Uptodate flag set 998 * on it. 999 */ 1000 if (buffer_unwritten(bh) || 1001 buffer_uptodate(bh)) { 1002 if (type == DATA_OFF) 1003 found = true; 1004 } else { 1005 if (type == HOLE_OFF) 1006 found = true; 1007 } 1008 1009 if (found) { 1010 *offset = lastoff; 1011 break; 1012 } 1013 lastoff += bh->b_size; 1014 } while ((bh = bh->b_this_page) != head); 1015 1016 return found; 1017 } 1018 1019 /* 1020 * This routine is called to find out and return a data or hole offset 1021 * from the page cache for unwritten extents according to the desired 1022 * type for xfs_seek_data() or xfs_seek_hole(). 1023 * 1024 * The argument offset is used to tell where we start to search from the 1025 * page cache. Map is used to figure out the end points of the range to 1026 * lookup pages. 1027 * 1028 * Return true if the desired type of offset was found, and the argument 1029 * offset is filled with that address. Otherwise, return false and keep 1030 * offset unchanged. 1031 */ 1032 STATIC bool 1033 xfs_find_get_desired_pgoff( 1034 struct inode *inode, 1035 struct xfs_bmbt_irec *map, 1036 unsigned int type, 1037 loff_t *offset) 1038 { 1039 struct xfs_inode *ip = XFS_I(inode); 1040 struct xfs_mount *mp = ip->i_mount; 1041 struct pagevec pvec; 1042 pgoff_t index; 1043 pgoff_t end; 1044 loff_t endoff; 1045 loff_t startoff = *offset; 1046 loff_t lastoff = startoff; 1047 bool found = false; 1048 1049 pagevec_init(&pvec, 0); 1050 1051 index = startoff >> PAGE_CACHE_SHIFT; 1052 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1053 end = endoff >> PAGE_CACHE_SHIFT; 1054 do { 1055 int want; 1056 unsigned nr_pages; 1057 unsigned int i; 1058 1059 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1060 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1061 want); 1062 /* 1063 * No page mapped into given range. If we are searching holes 1064 * and if this is the first time we got into the loop, it means 1065 * that the given offset is landed in a hole, return it. 1066 * 1067 * If we have already stepped through some block buffers to find 1068 * holes but they all contains data. In this case, the last 1069 * offset is already updated and pointed to the end of the last 1070 * mapped page, if it does not reach the endpoint to search, 1071 * that means there should be a hole between them. 1072 */ 1073 if (nr_pages == 0) { 1074 /* Data search found nothing */ 1075 if (type == DATA_OFF) 1076 break; 1077 1078 ASSERT(type == HOLE_OFF); 1079 if (lastoff == startoff || lastoff < endoff) { 1080 found = true; 1081 *offset = lastoff; 1082 } 1083 break; 1084 } 1085 1086 /* 1087 * At lease we found one page. If this is the first time we 1088 * step into the loop, and if the first page index offset is 1089 * greater than the given search offset, a hole was found. 1090 */ 1091 if (type == HOLE_OFF && lastoff == startoff && 1092 lastoff < page_offset(pvec.pages[0])) { 1093 found = true; 1094 break; 1095 } 1096 1097 for (i = 0; i < nr_pages; i++) { 1098 struct page *page = pvec.pages[i]; 1099 loff_t b_offset; 1100 1101 /* 1102 * At this point, the page may be truncated or 1103 * invalidated (changing page->mapping to NULL), 1104 * or even swizzled back from swapper_space to tmpfs 1105 * file mapping. However, page->index will not change 1106 * because we have a reference on the page. 1107 * 1108 * Searching done if the page index is out of range. 1109 * If the current offset is not reaches the end of 1110 * the specified search range, there should be a hole 1111 * between them. 1112 */ 1113 if (page->index > end) { 1114 if (type == HOLE_OFF && lastoff < endoff) { 1115 *offset = lastoff; 1116 found = true; 1117 } 1118 goto out; 1119 } 1120 1121 lock_page(page); 1122 /* 1123 * Page truncated or invalidated(page->mapping == NULL). 1124 * We can freely skip it and proceed to check the next 1125 * page. 1126 */ 1127 if (unlikely(page->mapping != inode->i_mapping)) { 1128 unlock_page(page); 1129 continue; 1130 } 1131 1132 if (!page_has_buffers(page)) { 1133 unlock_page(page); 1134 continue; 1135 } 1136 1137 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1138 if (found) { 1139 /* 1140 * The found offset may be less than the start 1141 * point to search if this is the first time to 1142 * come here. 1143 */ 1144 *offset = max_t(loff_t, startoff, b_offset); 1145 unlock_page(page); 1146 goto out; 1147 } 1148 1149 /* 1150 * We either searching data but nothing was found, or 1151 * searching hole but found a data buffer. In either 1152 * case, probably the next page contains the desired 1153 * things, update the last offset to it so. 1154 */ 1155 lastoff = page_offset(page) + PAGE_SIZE; 1156 unlock_page(page); 1157 } 1158 1159 /* 1160 * The number of returned pages less than our desired, search 1161 * done. In this case, nothing was found for searching data, 1162 * but we found a hole behind the last offset. 1163 */ 1164 if (nr_pages < want) { 1165 if (type == HOLE_OFF) { 1166 *offset = lastoff; 1167 found = true; 1168 } 1169 break; 1170 } 1171 1172 index = pvec.pages[i - 1]->index + 1; 1173 pagevec_release(&pvec); 1174 } while (index <= end); 1175 1176 out: 1177 pagevec_release(&pvec); 1178 return found; 1179 } 1180 1181 STATIC loff_t 1182 xfs_seek_data( 1183 struct file *file, 1184 loff_t start) 1185 { 1186 struct inode *inode = file->f_mapping->host; 1187 struct xfs_inode *ip = XFS_I(inode); 1188 struct xfs_mount *mp = ip->i_mount; 1189 loff_t uninitialized_var(offset); 1190 xfs_fsize_t isize; 1191 xfs_fileoff_t fsbno; 1192 xfs_filblks_t end; 1193 uint lock; 1194 int error; 1195 1196 lock = xfs_ilock_map_shared(ip); 1197 1198 isize = i_size_read(inode); 1199 if (start >= isize) { 1200 error = ENXIO; 1201 goto out_unlock; 1202 } 1203 1204 /* 1205 * Try to read extents from the first block indicated 1206 * by fsbno to the end block of the file. 1207 */ 1208 fsbno = XFS_B_TO_FSBT(mp, start); 1209 end = XFS_B_TO_FSB(mp, isize); 1210 for (;;) { 1211 struct xfs_bmbt_irec map[2]; 1212 int nmap = 2; 1213 unsigned int i; 1214 1215 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1216 XFS_BMAPI_ENTIRE); 1217 if (error) 1218 goto out_unlock; 1219 1220 /* No extents at given offset, must be beyond EOF */ 1221 if (nmap == 0) { 1222 error = ENXIO; 1223 goto out_unlock; 1224 } 1225 1226 for (i = 0; i < nmap; i++) { 1227 offset = max_t(loff_t, start, 1228 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1229 1230 /* Landed in a data extent */ 1231 if (map[i].br_startblock == DELAYSTARTBLOCK || 1232 (map[i].br_state == XFS_EXT_NORM && 1233 !isnullstartblock(map[i].br_startblock))) 1234 goto out; 1235 1236 /* 1237 * Landed in an unwritten extent, try to search data 1238 * from page cache. 1239 */ 1240 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1241 if (xfs_find_get_desired_pgoff(inode, &map[i], 1242 DATA_OFF, &offset)) 1243 goto out; 1244 } 1245 } 1246 1247 /* 1248 * map[0] is hole or its an unwritten extent but 1249 * without data in page cache. Probably means that 1250 * we are reading after EOF if nothing in map[1]. 1251 */ 1252 if (nmap == 1) { 1253 error = ENXIO; 1254 goto out_unlock; 1255 } 1256 1257 ASSERT(i > 1); 1258 1259 /* 1260 * Nothing was found, proceed to the next round of search 1261 * if reading offset not beyond or hit EOF. 1262 */ 1263 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1264 start = XFS_FSB_TO_B(mp, fsbno); 1265 if (start >= isize) { 1266 error = ENXIO; 1267 goto out_unlock; 1268 } 1269 } 1270 1271 out: 1272 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1273 1274 out_unlock: 1275 xfs_iunlock_map_shared(ip, lock); 1276 1277 if (error) 1278 return -error; 1279 return offset; 1280 } 1281 1282 STATIC loff_t 1283 xfs_seek_hole( 1284 struct file *file, 1285 loff_t start) 1286 { 1287 struct inode *inode = file->f_mapping->host; 1288 struct xfs_inode *ip = XFS_I(inode); 1289 struct xfs_mount *mp = ip->i_mount; 1290 loff_t uninitialized_var(offset); 1291 xfs_fsize_t isize; 1292 xfs_fileoff_t fsbno; 1293 xfs_filblks_t end; 1294 uint lock; 1295 int error; 1296 1297 if (XFS_FORCED_SHUTDOWN(mp)) 1298 return -XFS_ERROR(EIO); 1299 1300 lock = xfs_ilock_map_shared(ip); 1301 1302 isize = i_size_read(inode); 1303 if (start >= isize) { 1304 error = ENXIO; 1305 goto out_unlock; 1306 } 1307 1308 fsbno = XFS_B_TO_FSBT(mp, start); 1309 end = XFS_B_TO_FSB(mp, isize); 1310 1311 for (;;) { 1312 struct xfs_bmbt_irec map[2]; 1313 int nmap = 2; 1314 unsigned int i; 1315 1316 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1317 XFS_BMAPI_ENTIRE); 1318 if (error) 1319 goto out_unlock; 1320 1321 /* No extents at given offset, must be beyond EOF */ 1322 if (nmap == 0) { 1323 error = ENXIO; 1324 goto out_unlock; 1325 } 1326 1327 for (i = 0; i < nmap; i++) { 1328 offset = max_t(loff_t, start, 1329 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1330 1331 /* Landed in a hole */ 1332 if (map[i].br_startblock == HOLESTARTBLOCK) 1333 goto out; 1334 1335 /* 1336 * Landed in an unwritten extent, try to search hole 1337 * from page cache. 1338 */ 1339 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1340 if (xfs_find_get_desired_pgoff(inode, &map[i], 1341 HOLE_OFF, &offset)) 1342 goto out; 1343 } 1344 } 1345 1346 /* 1347 * map[0] contains data or its unwritten but contains 1348 * data in page cache, probably means that we are 1349 * reading after EOF. We should fix offset to point 1350 * to the end of the file(i.e., there is an implicit 1351 * hole at the end of any file). 1352 */ 1353 if (nmap == 1) { 1354 offset = isize; 1355 break; 1356 } 1357 1358 ASSERT(i > 1); 1359 1360 /* 1361 * Both mappings contains data, proceed to the next round of 1362 * search if the current reading offset not beyond or hit EOF. 1363 */ 1364 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1365 start = XFS_FSB_TO_B(mp, fsbno); 1366 if (start >= isize) { 1367 offset = isize; 1368 break; 1369 } 1370 } 1371 1372 out: 1373 /* 1374 * At this point, we must have found a hole. However, the returned 1375 * offset may be bigger than the file size as it may be aligned to 1376 * page boundary for unwritten extents, we need to deal with this 1377 * situation in particular. 1378 */ 1379 offset = min_t(loff_t, offset, isize); 1380 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1381 1382 out_unlock: 1383 xfs_iunlock_map_shared(ip, lock); 1384 1385 if (error) 1386 return -error; 1387 return offset; 1388 } 1389 1390 STATIC loff_t 1391 xfs_file_llseek( 1392 struct file *file, 1393 loff_t offset, 1394 int origin) 1395 { 1396 switch (origin) { 1397 case SEEK_END: 1398 case SEEK_CUR: 1399 case SEEK_SET: 1400 return generic_file_llseek(file, offset, origin); 1401 case SEEK_DATA: 1402 return xfs_seek_data(file, offset); 1403 case SEEK_HOLE: 1404 return xfs_seek_hole(file, offset); 1405 default: 1406 return -EINVAL; 1407 } 1408 } 1409 1410 const struct file_operations xfs_file_operations = { 1411 .llseek = xfs_file_llseek, 1412 .read = do_sync_read, 1413 .write = do_sync_write, 1414 .aio_read = xfs_file_aio_read, 1415 .aio_write = xfs_file_aio_write, 1416 .splice_read = xfs_file_splice_read, 1417 .splice_write = xfs_file_splice_write, 1418 .unlocked_ioctl = xfs_file_ioctl, 1419 #ifdef CONFIG_COMPAT 1420 .compat_ioctl = xfs_file_compat_ioctl, 1421 #endif 1422 .mmap = xfs_file_mmap, 1423 .open = xfs_file_open, 1424 .release = xfs_file_release, 1425 .fsync = xfs_file_fsync, 1426 .fallocate = xfs_file_fallocate, 1427 }; 1428 1429 const struct file_operations xfs_dir_file_operations = { 1430 .open = xfs_dir_open, 1431 .read = generic_read_dir, 1432 .iterate = xfs_file_readdir, 1433 .llseek = generic_file_llseek, 1434 .unlocked_ioctl = xfs_file_ioctl, 1435 #ifdef CONFIG_COMPAT 1436 .compat_ioctl = xfs_file_compat_ioctl, 1437 #endif 1438 .fsync = xfs_dir_fsync, 1439 }; 1440 1441 static const struct vm_operations_struct xfs_file_vm_ops = { 1442 .fault = filemap_fault, 1443 .page_mkwrite = xfs_vm_page_mkwrite, 1444 .remap_pages = generic_file_remap_pages, 1445 }; 1446