xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 52fb57e7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 
45 static const struct vm_operations_struct xfs_file_vm_ops;
46 
47 /*
48  * Locking primitives for read and write IO paths to ensure we consistently use
49  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50  */
51 static inline void
52 xfs_rw_ilock(
53 	struct xfs_inode	*ip,
54 	int			type)
55 {
56 	if (type & XFS_IOLOCK_EXCL)
57 		mutex_lock(&VFS_I(ip)->i_mutex);
58 	xfs_ilock(ip, type);
59 }
60 
61 static inline void
62 xfs_rw_iunlock(
63 	struct xfs_inode	*ip,
64 	int			type)
65 {
66 	xfs_iunlock(ip, type);
67 	if (type & XFS_IOLOCK_EXCL)
68 		mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70 
71 static inline void
72 xfs_rw_ilock_demote(
73 	struct xfs_inode	*ip,
74 	int			type)
75 {
76 	xfs_ilock_demote(ip, type);
77 	if (type & XFS_IOLOCK_EXCL)
78 		mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80 
81 /*
82  *	xfs_iozero
83  *
84  *	xfs_iozero clears the specified range of buffer supplied,
85  *	and marks all the affected blocks as valid and modified.  If
86  *	an affected block is not allocated, it will be allocated.  If
87  *	an affected block is not completely overwritten, and is not
88  *	valid before the operation, it will be read from disk before
89  *	being partially zeroed.
90  */
91 int
92 xfs_iozero(
93 	struct xfs_inode	*ip,	/* inode			*/
94 	loff_t			pos,	/* offset in file		*/
95 	size_t			count)	/* size of data to zero		*/
96 {
97 	struct page		*page;
98 	struct address_space	*mapping;
99 	int			status;
100 
101 	mapping = VFS_I(ip)->i_mapping;
102 	do {
103 		unsigned offset, bytes;
104 		void *fsdata;
105 
106 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 		bytes = PAGE_CACHE_SIZE - offset;
108 		if (bytes > count)
109 			bytes = count;
110 
111 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 					AOP_FLAG_UNINTERRUPTIBLE,
113 					&page, &fsdata);
114 		if (status)
115 			break;
116 
117 		zero_user(page, offset, bytes);
118 
119 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 					page, fsdata);
121 		WARN_ON(status <= 0); /* can't return less than zero! */
122 		pos += bytes;
123 		count -= bytes;
124 		status = 0;
125 	} while (count);
126 
127 	return status;
128 }
129 
130 int
131 xfs_update_prealloc_flags(
132 	struct xfs_inode	*ip,
133 	enum xfs_prealloc_flags	flags)
134 {
135 	struct xfs_trans	*tp;
136 	int			error;
137 
138 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
139 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
140 	if (error) {
141 		xfs_trans_cancel(tp, 0);
142 		return error;
143 	}
144 
145 	xfs_ilock(ip, XFS_ILOCK_EXCL);
146 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
147 
148 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
149 		ip->i_d.di_mode &= ~S_ISUID;
150 		if (ip->i_d.di_mode & S_IXGRP)
151 			ip->i_d.di_mode &= ~S_ISGID;
152 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
153 	}
154 
155 	if (flags & XFS_PREALLOC_SET)
156 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
157 	if (flags & XFS_PREALLOC_CLEAR)
158 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
159 
160 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
161 	if (flags & XFS_PREALLOC_SYNC)
162 		xfs_trans_set_sync(tp);
163 	return xfs_trans_commit(tp, 0);
164 }
165 
166 /*
167  * Fsync operations on directories are much simpler than on regular files,
168  * as there is no file data to flush, and thus also no need for explicit
169  * cache flush operations, and there are no non-transaction metadata updates
170  * on directories either.
171  */
172 STATIC int
173 xfs_dir_fsync(
174 	struct file		*file,
175 	loff_t			start,
176 	loff_t			end,
177 	int			datasync)
178 {
179 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
180 	struct xfs_mount	*mp = ip->i_mount;
181 	xfs_lsn_t		lsn = 0;
182 
183 	trace_xfs_dir_fsync(ip);
184 
185 	xfs_ilock(ip, XFS_ILOCK_SHARED);
186 	if (xfs_ipincount(ip))
187 		lsn = ip->i_itemp->ili_last_lsn;
188 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
189 
190 	if (!lsn)
191 		return 0;
192 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
193 }
194 
195 STATIC int
196 xfs_file_fsync(
197 	struct file		*file,
198 	loff_t			start,
199 	loff_t			end,
200 	int			datasync)
201 {
202 	struct inode		*inode = file->f_mapping->host;
203 	struct xfs_inode	*ip = XFS_I(inode);
204 	struct xfs_mount	*mp = ip->i_mount;
205 	int			error = 0;
206 	int			log_flushed = 0;
207 	xfs_lsn_t		lsn = 0;
208 
209 	trace_xfs_file_fsync(ip);
210 
211 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
212 	if (error)
213 		return error;
214 
215 	if (XFS_FORCED_SHUTDOWN(mp))
216 		return -EIO;
217 
218 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
219 
220 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
221 		/*
222 		 * If we have an RT and/or log subvolume we need to make sure
223 		 * to flush the write cache the device used for file data
224 		 * first.  This is to ensure newly written file data make
225 		 * it to disk before logging the new inode size in case of
226 		 * an extending write.
227 		 */
228 		if (XFS_IS_REALTIME_INODE(ip))
229 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
230 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
231 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
232 	}
233 
234 	/*
235 	 * All metadata updates are logged, which means that we just have
236 	 * to flush the log up to the latest LSN that touched the inode.
237 	 */
238 	xfs_ilock(ip, XFS_ILOCK_SHARED);
239 	if (xfs_ipincount(ip)) {
240 		if (!datasync ||
241 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
242 			lsn = ip->i_itemp->ili_last_lsn;
243 	}
244 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
245 
246 	if (lsn)
247 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
248 
249 	/*
250 	 * If we only have a single device, and the log force about was
251 	 * a no-op we might have to flush the data device cache here.
252 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
253 	 * an already allocated file and thus do not have any metadata to
254 	 * commit.
255 	 */
256 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
257 	    mp->m_logdev_targp == mp->m_ddev_targp &&
258 	    !XFS_IS_REALTIME_INODE(ip) &&
259 	    !log_flushed)
260 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
261 
262 	return error;
263 }
264 
265 STATIC ssize_t
266 xfs_file_read_iter(
267 	struct kiocb		*iocb,
268 	struct iov_iter		*to)
269 {
270 	struct file		*file = iocb->ki_filp;
271 	struct inode		*inode = file->f_mapping->host;
272 	struct xfs_inode	*ip = XFS_I(inode);
273 	struct xfs_mount	*mp = ip->i_mount;
274 	size_t			size = iov_iter_count(to);
275 	ssize_t			ret = 0;
276 	int			ioflags = 0;
277 	xfs_fsize_t		n;
278 	loff_t			pos = iocb->ki_pos;
279 
280 	XFS_STATS_INC(xs_read_calls);
281 
282 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
283 		ioflags |= XFS_IO_ISDIRECT;
284 	if (file->f_mode & FMODE_NOCMTIME)
285 		ioflags |= XFS_IO_INVIS;
286 
287 	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
288 		xfs_buftarg_t	*target =
289 			XFS_IS_REALTIME_INODE(ip) ?
290 				mp->m_rtdev_targp : mp->m_ddev_targp;
291 		/* DIO must be aligned to device logical sector size */
292 		if ((pos | size) & target->bt_logical_sectormask) {
293 			if (pos == i_size_read(inode))
294 				return 0;
295 			return -EINVAL;
296 		}
297 	}
298 
299 	n = mp->m_super->s_maxbytes - pos;
300 	if (n <= 0 || size == 0)
301 		return 0;
302 
303 	if (n < size)
304 		size = n;
305 
306 	if (XFS_FORCED_SHUTDOWN(mp))
307 		return -EIO;
308 
309 	/*
310 	 * Locking is a bit tricky here. If we take an exclusive lock
311 	 * for direct IO, we effectively serialise all new concurrent
312 	 * read IO to this file and block it behind IO that is currently in
313 	 * progress because IO in progress holds the IO lock shared. We only
314 	 * need to hold the lock exclusive to blow away the page cache, so
315 	 * only take lock exclusively if the page cache needs invalidation.
316 	 * This allows the normal direct IO case of no page cache pages to
317 	 * proceeed concurrently without serialisation.
318 	 */
319 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
320 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
321 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323 
324 		if (inode->i_mapping->nrpages) {
325 			ret = filemap_write_and_wait_range(
326 							VFS_I(ip)->i_mapping,
327 							pos, pos + size - 1);
328 			if (ret) {
329 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
330 				return ret;
331 			}
332 
333 			/*
334 			 * Invalidate whole pages. This can return an error if
335 			 * we fail to invalidate a page, but this should never
336 			 * happen on XFS. Warn if it does fail.
337 			 */
338 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
339 					pos >> PAGE_CACHE_SHIFT,
340 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
341 			WARN_ON_ONCE(ret);
342 			ret = 0;
343 		}
344 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345 	}
346 
347 	trace_xfs_file_read(ip, size, pos, ioflags);
348 
349 	ret = generic_file_read_iter(iocb, to);
350 	if (ret > 0)
351 		XFS_STATS_ADD(xs_read_bytes, ret);
352 
353 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 	return ret;
355 }
356 
357 STATIC ssize_t
358 xfs_file_splice_read(
359 	struct file		*infilp,
360 	loff_t			*ppos,
361 	struct pipe_inode_info	*pipe,
362 	size_t			count,
363 	unsigned int		flags)
364 {
365 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
366 	int			ioflags = 0;
367 	ssize_t			ret;
368 
369 	XFS_STATS_INC(xs_read_calls);
370 
371 	if (infilp->f_mode & FMODE_NOCMTIME)
372 		ioflags |= XFS_IO_INVIS;
373 
374 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 		return -EIO;
376 
377 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378 
379 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
380 
381 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382 	if (ret > 0)
383 		XFS_STATS_ADD(xs_read_bytes, ret);
384 
385 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 	return ret;
387 }
388 
389 /*
390  * This routine is called to handle zeroing any space in the last block of the
391  * file that is beyond the EOF.  We do this since the size is being increased
392  * without writing anything to that block and we don't want to read the
393  * garbage on the disk.
394  */
395 STATIC int				/* error (positive) */
396 xfs_zero_last_block(
397 	struct xfs_inode	*ip,
398 	xfs_fsize_t		offset,
399 	xfs_fsize_t		isize,
400 	bool			*did_zeroing)
401 {
402 	struct xfs_mount	*mp = ip->i_mount;
403 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
404 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405 	int			zero_len;
406 	int			nimaps = 1;
407 	int			error = 0;
408 	struct xfs_bmbt_irec	imap;
409 
410 	xfs_ilock(ip, XFS_ILOCK_EXCL);
411 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
413 	if (error)
414 		return error;
415 
416 	ASSERT(nimaps > 0);
417 
418 	/*
419 	 * If the block underlying isize is just a hole, then there
420 	 * is nothing to zero.
421 	 */
422 	if (imap.br_startblock == HOLESTARTBLOCK)
423 		return 0;
424 
425 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
426 	if (isize + zero_len > offset)
427 		zero_len = offset - isize;
428 	*did_zeroing = true;
429 	return xfs_iozero(ip, isize, zero_len);
430 }
431 
432 /*
433  * Zero any on disk space between the current EOF and the new, larger EOF.
434  *
435  * This handles the normal case of zeroing the remainder of the last block in
436  * the file and the unusual case of zeroing blocks out beyond the size of the
437  * file.  This second case only happens with fixed size extents and when the
438  * system crashes before the inode size was updated but after blocks were
439  * allocated.
440  *
441  * Expects the iolock to be held exclusive, and will take the ilock internally.
442  */
443 int					/* error (positive) */
444 xfs_zero_eof(
445 	struct xfs_inode	*ip,
446 	xfs_off_t		offset,		/* starting I/O offset */
447 	xfs_fsize_t		isize,		/* current inode size */
448 	bool			*did_zeroing)
449 {
450 	struct xfs_mount	*mp = ip->i_mount;
451 	xfs_fileoff_t		start_zero_fsb;
452 	xfs_fileoff_t		end_zero_fsb;
453 	xfs_fileoff_t		zero_count_fsb;
454 	xfs_fileoff_t		last_fsb;
455 	xfs_fileoff_t		zero_off;
456 	xfs_fsize_t		zero_len;
457 	int			nimaps;
458 	int			error = 0;
459 	struct xfs_bmbt_irec	imap;
460 
461 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
462 	ASSERT(offset > isize);
463 
464 	/*
465 	 * First handle zeroing the block on which isize resides.
466 	 *
467 	 * We only zero a part of that block so it is handled specially.
468 	 */
469 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
471 		if (error)
472 			return error;
473 	}
474 
475 	/*
476 	 * Calculate the range between the new size and the old where blocks
477 	 * needing to be zeroed may exist.
478 	 *
479 	 * To get the block where the last byte in the file currently resides,
480 	 * we need to subtract one from the size and truncate back to a block
481 	 * boundary.  We subtract 1 in case the size is exactly on a block
482 	 * boundary.
483 	 */
484 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488 	if (last_fsb == end_zero_fsb) {
489 		/*
490 		 * The size was only incremented on its last block.
491 		 * We took care of that above, so just return.
492 		 */
493 		return 0;
494 	}
495 
496 	ASSERT(start_zero_fsb <= end_zero_fsb);
497 	while (start_zero_fsb <= end_zero_fsb) {
498 		nimaps = 1;
499 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
500 
501 		xfs_ilock(ip, XFS_ILOCK_EXCL);
502 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503 					  &imap, &nimaps, 0);
504 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
505 		if (error)
506 			return error;
507 
508 		ASSERT(nimaps > 0);
509 
510 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
511 		    imap.br_startblock == HOLESTARTBLOCK) {
512 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514 			continue;
515 		}
516 
517 		/*
518 		 * There are blocks we need to zero.
519 		 */
520 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522 
523 		if ((zero_off + zero_len) > offset)
524 			zero_len = offset - zero_off;
525 
526 		error = xfs_iozero(ip, zero_off, zero_len);
527 		if (error)
528 			return error;
529 
530 		*did_zeroing = true;
531 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533 	}
534 
535 	return 0;
536 }
537 
538 /*
539  * Common pre-write limit and setup checks.
540  *
541  * Called with the iolocked held either shared and exclusive according to
542  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
543  * if called for a direct write beyond i_size.
544  */
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 	struct kiocb		*iocb,
548 	struct iov_iter		*from,
549 	int			*iolock)
550 {
551 	struct file		*file = iocb->ki_filp;
552 	struct inode		*inode = file->f_mapping->host;
553 	struct xfs_inode	*ip = XFS_I(inode);
554 	ssize_t			error = 0;
555 	size_t			count = iov_iter_count(from);
556 
557 restart:
558 	error = generic_write_checks(iocb, from);
559 	if (error <= 0)
560 		return error;
561 
562 	error = xfs_break_layouts(inode, iolock, true);
563 	if (error)
564 		return error;
565 
566 	/*
567 	 * If the offset is beyond the size of the file, we need to zero any
568 	 * blocks that fall between the existing EOF and the start of this
569 	 * write.  If zeroing is needed and we are currently holding the
570 	 * iolock shared, we need to update it to exclusive which implies
571 	 * having to redo all checks before.
572 	 *
573 	 * We need to serialise against EOF updates that occur in IO
574 	 * completions here. We want to make sure that nobody is changing the
575 	 * size while we do this check until we have placed an IO barrier (i.e.
576 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
577 	 * The spinlock effectively forms a memory barrier once we have the
578 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
579 	 * and hence be able to correctly determine if we need to run zeroing.
580 	 */
581 	spin_lock(&ip->i_flags_lock);
582 	if (iocb->ki_pos > i_size_read(inode)) {
583 		bool	zero = false;
584 
585 		spin_unlock(&ip->i_flags_lock);
586 		if (*iolock == XFS_IOLOCK_SHARED) {
587 			xfs_rw_iunlock(ip, *iolock);
588 			*iolock = XFS_IOLOCK_EXCL;
589 			xfs_rw_ilock(ip, *iolock);
590 			iov_iter_reexpand(from, count);
591 
592 			/*
593 			 * We now have an IO submission barrier in place, but
594 			 * AIO can do EOF updates during IO completion and hence
595 			 * we now need to wait for all of them to drain. Non-AIO
596 			 * DIO will have drained before we are given the
597 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
598 			 * no-op.
599 			 */
600 			inode_dio_wait(inode);
601 			goto restart;
602 		}
603 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
604 		if (error)
605 			return error;
606 	} else
607 		spin_unlock(&ip->i_flags_lock);
608 
609 	/*
610 	 * Updating the timestamps will grab the ilock again from
611 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
612 	 * lock above.  Eventually we should look into a way to avoid
613 	 * the pointless lock roundtrip.
614 	 */
615 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
616 		error = file_update_time(file);
617 		if (error)
618 			return error;
619 	}
620 
621 	/*
622 	 * If we're writing the file then make sure to clear the setuid and
623 	 * setgid bits if the process is not being run by root.  This keeps
624 	 * people from modifying setuid and setgid binaries.
625 	 */
626 	return file_remove_suid(file);
627 }
628 
629 /*
630  * xfs_file_dio_aio_write - handle direct IO writes
631  *
632  * Lock the inode appropriately to prepare for and issue a direct IO write.
633  * By separating it from the buffered write path we remove all the tricky to
634  * follow locking changes and looping.
635  *
636  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
637  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
638  * pages are flushed out.
639  *
640  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
641  * allowing them to be done in parallel with reads and other direct IO writes.
642  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
643  * needs to do sub-block zeroing and that requires serialisation against other
644  * direct IOs to the same block. In this case we need to serialise the
645  * submission of the unaligned IOs so that we don't get racing block zeroing in
646  * the dio layer.  To avoid the problem with aio, we also need to wait for
647  * outstanding IOs to complete so that unwritten extent conversion is completed
648  * before we try to map the overlapping block. This is currently implemented by
649  * hitting it with a big hammer (i.e. inode_dio_wait()).
650  *
651  * Returns with locks held indicated by @iolock and errors indicated by
652  * negative return values.
653  */
654 STATIC ssize_t
655 xfs_file_dio_aio_write(
656 	struct kiocb		*iocb,
657 	struct iov_iter		*from)
658 {
659 	struct file		*file = iocb->ki_filp;
660 	struct address_space	*mapping = file->f_mapping;
661 	struct inode		*inode = mapping->host;
662 	struct xfs_inode	*ip = XFS_I(inode);
663 	struct xfs_mount	*mp = ip->i_mount;
664 	ssize_t			ret = 0;
665 	int			unaligned_io = 0;
666 	int			iolock;
667 	size_t			count = iov_iter_count(from);
668 	loff_t			pos = iocb->ki_pos;
669 	loff_t			end;
670 	struct iov_iter		data;
671 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
672 					mp->m_rtdev_targp : mp->m_ddev_targp;
673 
674 	/* DIO must be aligned to device logical sector size */
675 	if ((pos | count) & target->bt_logical_sectormask)
676 		return -EINVAL;
677 
678 	/* "unaligned" here means not aligned to a filesystem block */
679 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
680 		unaligned_io = 1;
681 
682 	/*
683 	 * We don't need to take an exclusive lock unless there page cache needs
684 	 * to be invalidated or unaligned IO is being executed. We don't need to
685 	 * consider the EOF extension case here because
686 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
687 	 * EOF zeroing cases and fill out the new inode size as appropriate.
688 	 */
689 	if (unaligned_io || mapping->nrpages)
690 		iolock = XFS_IOLOCK_EXCL;
691 	else
692 		iolock = XFS_IOLOCK_SHARED;
693 	xfs_rw_ilock(ip, iolock);
694 
695 	/*
696 	 * Recheck if there are cached pages that need invalidate after we got
697 	 * the iolock to protect against other threads adding new pages while
698 	 * we were waiting for the iolock.
699 	 */
700 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
701 		xfs_rw_iunlock(ip, iolock);
702 		iolock = XFS_IOLOCK_EXCL;
703 		xfs_rw_ilock(ip, iolock);
704 	}
705 
706 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
707 	if (ret)
708 		goto out;
709 	count = iov_iter_count(from);
710 	pos = iocb->ki_pos;
711 	end = pos + count - 1;
712 
713 	if (mapping->nrpages) {
714 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
715 						   pos, end);
716 		if (ret)
717 			goto out;
718 		/*
719 		 * Invalidate whole pages. This can return an error if
720 		 * we fail to invalidate a page, but this should never
721 		 * happen on XFS. Warn if it does fail.
722 		 */
723 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
724 					pos >> PAGE_CACHE_SHIFT,
725 					end >> PAGE_CACHE_SHIFT);
726 		WARN_ON_ONCE(ret);
727 		ret = 0;
728 	}
729 
730 	/*
731 	 * If we are doing unaligned IO, wait for all other IO to drain,
732 	 * otherwise demote the lock if we had to flush cached pages
733 	 */
734 	if (unaligned_io)
735 		inode_dio_wait(inode);
736 	else if (iolock == XFS_IOLOCK_EXCL) {
737 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
738 		iolock = XFS_IOLOCK_SHARED;
739 	}
740 
741 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
742 
743 	data = *from;
744 	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
745 
746 	/* see generic_file_direct_write() for why this is necessary */
747 	if (mapping->nrpages) {
748 		invalidate_inode_pages2_range(mapping,
749 					      pos >> PAGE_CACHE_SHIFT,
750 					      end >> PAGE_CACHE_SHIFT);
751 	}
752 
753 	if (ret > 0) {
754 		pos += ret;
755 		iov_iter_advance(from, ret);
756 		iocb->ki_pos = pos;
757 	}
758 out:
759 	xfs_rw_iunlock(ip, iolock);
760 
761 	/* No fallback to buffered IO on errors for XFS. */
762 	ASSERT(ret < 0 || ret == count);
763 	return ret;
764 }
765 
766 STATIC ssize_t
767 xfs_file_buffered_aio_write(
768 	struct kiocb		*iocb,
769 	struct iov_iter		*from)
770 {
771 	struct file		*file = iocb->ki_filp;
772 	struct address_space	*mapping = file->f_mapping;
773 	struct inode		*inode = mapping->host;
774 	struct xfs_inode	*ip = XFS_I(inode);
775 	ssize_t			ret;
776 	int			enospc = 0;
777 	int			iolock = XFS_IOLOCK_EXCL;
778 
779 	xfs_rw_ilock(ip, iolock);
780 
781 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
782 	if (ret)
783 		goto out;
784 
785 	/* We can write back this queue in page reclaim */
786 	current->backing_dev_info = inode_to_bdi(inode);
787 
788 write_retry:
789 	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
790 				      iocb->ki_pos, 0);
791 	ret = generic_perform_write(file, from, iocb->ki_pos);
792 	if (likely(ret >= 0))
793 		iocb->ki_pos += ret;
794 
795 	/*
796 	 * If we hit a space limit, try to free up some lingering preallocated
797 	 * space before returning an error. In the case of ENOSPC, first try to
798 	 * write back all dirty inodes to free up some of the excess reserved
799 	 * metadata space. This reduces the chances that the eofblocks scan
800 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
801 	 * also behaves as a filter to prevent too many eofblocks scans from
802 	 * running at the same time.
803 	 */
804 	if (ret == -EDQUOT && !enospc) {
805 		enospc = xfs_inode_free_quota_eofblocks(ip);
806 		if (enospc)
807 			goto write_retry;
808 	} else if (ret == -ENOSPC && !enospc) {
809 		struct xfs_eofblocks eofb = {0};
810 
811 		enospc = 1;
812 		xfs_flush_inodes(ip->i_mount);
813 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
814 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
815 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
816 		goto write_retry;
817 	}
818 
819 	current->backing_dev_info = NULL;
820 out:
821 	xfs_rw_iunlock(ip, iolock);
822 	return ret;
823 }
824 
825 STATIC ssize_t
826 xfs_file_write_iter(
827 	struct kiocb		*iocb,
828 	struct iov_iter		*from)
829 {
830 	struct file		*file = iocb->ki_filp;
831 	struct address_space	*mapping = file->f_mapping;
832 	struct inode		*inode = mapping->host;
833 	struct xfs_inode	*ip = XFS_I(inode);
834 	ssize_t			ret;
835 	size_t			ocount = iov_iter_count(from);
836 
837 	XFS_STATS_INC(xs_write_calls);
838 
839 	if (ocount == 0)
840 		return 0;
841 
842 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
843 		return -EIO;
844 
845 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
846 		ret = xfs_file_dio_aio_write(iocb, from);
847 	else
848 		ret = xfs_file_buffered_aio_write(iocb, from);
849 
850 	if (ret > 0) {
851 		ssize_t err;
852 
853 		XFS_STATS_ADD(xs_write_bytes, ret);
854 
855 		/* Handle various SYNC-type writes */
856 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
857 		if (err < 0)
858 			ret = err;
859 	}
860 	return ret;
861 }
862 
863 #define	XFS_FALLOC_FL_SUPPORTED						\
864 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
865 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
866 		 FALLOC_FL_INSERT_RANGE)
867 
868 STATIC long
869 xfs_file_fallocate(
870 	struct file		*file,
871 	int			mode,
872 	loff_t			offset,
873 	loff_t			len)
874 {
875 	struct inode		*inode = file_inode(file);
876 	struct xfs_inode	*ip = XFS_I(inode);
877 	long			error;
878 	enum xfs_prealloc_flags	flags = 0;
879 	uint			iolock = XFS_IOLOCK_EXCL;
880 	loff_t			new_size = 0;
881 	bool			do_file_insert = 0;
882 
883 	if (!S_ISREG(inode->i_mode))
884 		return -EINVAL;
885 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
886 		return -EOPNOTSUPP;
887 
888 	xfs_ilock(ip, iolock);
889 	error = xfs_break_layouts(inode, &iolock, false);
890 	if (error)
891 		goto out_unlock;
892 
893 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
894 	iolock |= XFS_MMAPLOCK_EXCL;
895 
896 	if (mode & FALLOC_FL_PUNCH_HOLE) {
897 		error = xfs_free_file_space(ip, offset, len);
898 		if (error)
899 			goto out_unlock;
900 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
901 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
902 
903 		if (offset & blksize_mask || len & blksize_mask) {
904 			error = -EINVAL;
905 			goto out_unlock;
906 		}
907 
908 		/*
909 		 * There is no need to overlap collapse range with EOF,
910 		 * in which case it is effectively a truncate operation
911 		 */
912 		if (offset + len >= i_size_read(inode)) {
913 			error = -EINVAL;
914 			goto out_unlock;
915 		}
916 
917 		new_size = i_size_read(inode) - len;
918 
919 		error = xfs_collapse_file_space(ip, offset, len);
920 		if (error)
921 			goto out_unlock;
922 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
923 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
924 
925 		new_size = i_size_read(inode) + len;
926 		if (offset & blksize_mask || len & blksize_mask) {
927 			error = -EINVAL;
928 			goto out_unlock;
929 		}
930 
931 		/* check the new inode size does not wrap through zero */
932 		if (new_size > inode->i_sb->s_maxbytes) {
933 			error = -EFBIG;
934 			goto out_unlock;
935 		}
936 
937 		/* Offset should be less than i_size */
938 		if (offset >= i_size_read(inode)) {
939 			error = -EINVAL;
940 			goto out_unlock;
941 		}
942 		do_file_insert = 1;
943 	} else {
944 		flags |= XFS_PREALLOC_SET;
945 
946 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
947 		    offset + len > i_size_read(inode)) {
948 			new_size = offset + len;
949 			error = inode_newsize_ok(inode, new_size);
950 			if (error)
951 				goto out_unlock;
952 		}
953 
954 		if (mode & FALLOC_FL_ZERO_RANGE)
955 			error = xfs_zero_file_space(ip, offset, len);
956 		else
957 			error = xfs_alloc_file_space(ip, offset, len,
958 						     XFS_BMAPI_PREALLOC);
959 		if (error)
960 			goto out_unlock;
961 	}
962 
963 	if (file->f_flags & O_DSYNC)
964 		flags |= XFS_PREALLOC_SYNC;
965 
966 	error = xfs_update_prealloc_flags(ip, flags);
967 	if (error)
968 		goto out_unlock;
969 
970 	/* Change file size if needed */
971 	if (new_size) {
972 		struct iattr iattr;
973 
974 		iattr.ia_valid = ATTR_SIZE;
975 		iattr.ia_size = new_size;
976 		error = xfs_setattr_size(ip, &iattr);
977 		if (error)
978 			goto out_unlock;
979 	}
980 
981 	/*
982 	 * Perform hole insertion now that the file size has been
983 	 * updated so that if we crash during the operation we don't
984 	 * leave shifted extents past EOF and hence losing access to
985 	 * the data that is contained within them.
986 	 */
987 	if (do_file_insert)
988 		error = xfs_insert_file_space(ip, offset, len);
989 
990 out_unlock:
991 	xfs_iunlock(ip, iolock);
992 	return error;
993 }
994 
995 
996 STATIC int
997 xfs_file_open(
998 	struct inode	*inode,
999 	struct file	*file)
1000 {
1001 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1002 		return -EFBIG;
1003 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1004 		return -EIO;
1005 	return 0;
1006 }
1007 
1008 STATIC int
1009 xfs_dir_open(
1010 	struct inode	*inode,
1011 	struct file	*file)
1012 {
1013 	struct xfs_inode *ip = XFS_I(inode);
1014 	int		mode;
1015 	int		error;
1016 
1017 	error = xfs_file_open(inode, file);
1018 	if (error)
1019 		return error;
1020 
1021 	/*
1022 	 * If there are any blocks, read-ahead block 0 as we're almost
1023 	 * certain to have the next operation be a read there.
1024 	 */
1025 	mode = xfs_ilock_data_map_shared(ip);
1026 	if (ip->i_d.di_nextents > 0)
1027 		xfs_dir3_data_readahead(ip, 0, -1);
1028 	xfs_iunlock(ip, mode);
1029 	return 0;
1030 }
1031 
1032 STATIC int
1033 xfs_file_release(
1034 	struct inode	*inode,
1035 	struct file	*filp)
1036 {
1037 	return xfs_release(XFS_I(inode));
1038 }
1039 
1040 STATIC int
1041 xfs_file_readdir(
1042 	struct file	*file,
1043 	struct dir_context *ctx)
1044 {
1045 	struct inode	*inode = file_inode(file);
1046 	xfs_inode_t	*ip = XFS_I(inode);
1047 	size_t		bufsize;
1048 
1049 	/*
1050 	 * The Linux API doesn't pass down the total size of the buffer
1051 	 * we read into down to the filesystem.  With the filldir concept
1052 	 * it's not needed for correct information, but the XFS dir2 leaf
1053 	 * code wants an estimate of the buffer size to calculate it's
1054 	 * readahead window and size the buffers used for mapping to
1055 	 * physical blocks.
1056 	 *
1057 	 * Try to give it an estimate that's good enough, maybe at some
1058 	 * point we can change the ->readdir prototype to include the
1059 	 * buffer size.  For now we use the current glibc buffer size.
1060 	 */
1061 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1062 
1063 	return xfs_readdir(ip, ctx, bufsize);
1064 }
1065 
1066 STATIC int
1067 xfs_file_mmap(
1068 	struct file	*filp,
1069 	struct vm_area_struct *vma)
1070 {
1071 	vma->vm_ops = &xfs_file_vm_ops;
1072 
1073 	file_accessed(filp);
1074 	return 0;
1075 }
1076 
1077 /*
1078  * This type is designed to indicate the type of offset we would like
1079  * to search from page cache for xfs_seek_hole_data().
1080  */
1081 enum {
1082 	HOLE_OFF = 0,
1083 	DATA_OFF,
1084 };
1085 
1086 /*
1087  * Lookup the desired type of offset from the given page.
1088  *
1089  * On success, return true and the offset argument will point to the
1090  * start of the region that was found.  Otherwise this function will
1091  * return false and keep the offset argument unchanged.
1092  */
1093 STATIC bool
1094 xfs_lookup_buffer_offset(
1095 	struct page		*page,
1096 	loff_t			*offset,
1097 	unsigned int		type)
1098 {
1099 	loff_t			lastoff = page_offset(page);
1100 	bool			found = false;
1101 	struct buffer_head	*bh, *head;
1102 
1103 	bh = head = page_buffers(page);
1104 	do {
1105 		/*
1106 		 * Unwritten extents that have data in the page
1107 		 * cache covering them can be identified by the
1108 		 * BH_Unwritten state flag.  Pages with multiple
1109 		 * buffers might have a mix of holes, data and
1110 		 * unwritten extents - any buffer with valid
1111 		 * data in it should have BH_Uptodate flag set
1112 		 * on it.
1113 		 */
1114 		if (buffer_unwritten(bh) ||
1115 		    buffer_uptodate(bh)) {
1116 			if (type == DATA_OFF)
1117 				found = true;
1118 		} else {
1119 			if (type == HOLE_OFF)
1120 				found = true;
1121 		}
1122 
1123 		if (found) {
1124 			*offset = lastoff;
1125 			break;
1126 		}
1127 		lastoff += bh->b_size;
1128 	} while ((bh = bh->b_this_page) != head);
1129 
1130 	return found;
1131 }
1132 
1133 /*
1134  * This routine is called to find out and return a data or hole offset
1135  * from the page cache for unwritten extents according to the desired
1136  * type for xfs_seek_hole_data().
1137  *
1138  * The argument offset is used to tell where we start to search from the
1139  * page cache.  Map is used to figure out the end points of the range to
1140  * lookup pages.
1141  *
1142  * Return true if the desired type of offset was found, and the argument
1143  * offset is filled with that address.  Otherwise, return false and keep
1144  * offset unchanged.
1145  */
1146 STATIC bool
1147 xfs_find_get_desired_pgoff(
1148 	struct inode		*inode,
1149 	struct xfs_bmbt_irec	*map,
1150 	unsigned int		type,
1151 	loff_t			*offset)
1152 {
1153 	struct xfs_inode	*ip = XFS_I(inode);
1154 	struct xfs_mount	*mp = ip->i_mount;
1155 	struct pagevec		pvec;
1156 	pgoff_t			index;
1157 	pgoff_t			end;
1158 	loff_t			endoff;
1159 	loff_t			startoff = *offset;
1160 	loff_t			lastoff = startoff;
1161 	bool			found = false;
1162 
1163 	pagevec_init(&pvec, 0);
1164 
1165 	index = startoff >> PAGE_CACHE_SHIFT;
1166 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1167 	end = endoff >> PAGE_CACHE_SHIFT;
1168 	do {
1169 		int		want;
1170 		unsigned	nr_pages;
1171 		unsigned int	i;
1172 
1173 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1174 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1175 					  want);
1176 		/*
1177 		 * No page mapped into given range.  If we are searching holes
1178 		 * and if this is the first time we got into the loop, it means
1179 		 * that the given offset is landed in a hole, return it.
1180 		 *
1181 		 * If we have already stepped through some block buffers to find
1182 		 * holes but they all contains data.  In this case, the last
1183 		 * offset is already updated and pointed to the end of the last
1184 		 * mapped page, if it does not reach the endpoint to search,
1185 		 * that means there should be a hole between them.
1186 		 */
1187 		if (nr_pages == 0) {
1188 			/* Data search found nothing */
1189 			if (type == DATA_OFF)
1190 				break;
1191 
1192 			ASSERT(type == HOLE_OFF);
1193 			if (lastoff == startoff || lastoff < endoff) {
1194 				found = true;
1195 				*offset = lastoff;
1196 			}
1197 			break;
1198 		}
1199 
1200 		/*
1201 		 * At lease we found one page.  If this is the first time we
1202 		 * step into the loop, and if the first page index offset is
1203 		 * greater than the given search offset, a hole was found.
1204 		 */
1205 		if (type == HOLE_OFF && lastoff == startoff &&
1206 		    lastoff < page_offset(pvec.pages[0])) {
1207 			found = true;
1208 			break;
1209 		}
1210 
1211 		for (i = 0; i < nr_pages; i++) {
1212 			struct page	*page = pvec.pages[i];
1213 			loff_t		b_offset;
1214 
1215 			/*
1216 			 * At this point, the page may be truncated or
1217 			 * invalidated (changing page->mapping to NULL),
1218 			 * or even swizzled back from swapper_space to tmpfs
1219 			 * file mapping. However, page->index will not change
1220 			 * because we have a reference on the page.
1221 			 *
1222 			 * Searching done if the page index is out of range.
1223 			 * If the current offset is not reaches the end of
1224 			 * the specified search range, there should be a hole
1225 			 * between them.
1226 			 */
1227 			if (page->index > end) {
1228 				if (type == HOLE_OFF && lastoff < endoff) {
1229 					*offset = lastoff;
1230 					found = true;
1231 				}
1232 				goto out;
1233 			}
1234 
1235 			lock_page(page);
1236 			/*
1237 			 * Page truncated or invalidated(page->mapping == NULL).
1238 			 * We can freely skip it and proceed to check the next
1239 			 * page.
1240 			 */
1241 			if (unlikely(page->mapping != inode->i_mapping)) {
1242 				unlock_page(page);
1243 				continue;
1244 			}
1245 
1246 			if (!page_has_buffers(page)) {
1247 				unlock_page(page);
1248 				continue;
1249 			}
1250 
1251 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1252 			if (found) {
1253 				/*
1254 				 * The found offset may be less than the start
1255 				 * point to search if this is the first time to
1256 				 * come here.
1257 				 */
1258 				*offset = max_t(loff_t, startoff, b_offset);
1259 				unlock_page(page);
1260 				goto out;
1261 			}
1262 
1263 			/*
1264 			 * We either searching data but nothing was found, or
1265 			 * searching hole but found a data buffer.  In either
1266 			 * case, probably the next page contains the desired
1267 			 * things, update the last offset to it so.
1268 			 */
1269 			lastoff = page_offset(page) + PAGE_SIZE;
1270 			unlock_page(page);
1271 		}
1272 
1273 		/*
1274 		 * The number of returned pages less than our desired, search
1275 		 * done.  In this case, nothing was found for searching data,
1276 		 * but we found a hole behind the last offset.
1277 		 */
1278 		if (nr_pages < want) {
1279 			if (type == HOLE_OFF) {
1280 				*offset = lastoff;
1281 				found = true;
1282 			}
1283 			break;
1284 		}
1285 
1286 		index = pvec.pages[i - 1]->index + 1;
1287 		pagevec_release(&pvec);
1288 	} while (index <= end);
1289 
1290 out:
1291 	pagevec_release(&pvec);
1292 	return found;
1293 }
1294 
1295 STATIC loff_t
1296 xfs_seek_hole_data(
1297 	struct file		*file,
1298 	loff_t			start,
1299 	int			whence)
1300 {
1301 	struct inode		*inode = file->f_mapping->host;
1302 	struct xfs_inode	*ip = XFS_I(inode);
1303 	struct xfs_mount	*mp = ip->i_mount;
1304 	loff_t			uninitialized_var(offset);
1305 	xfs_fsize_t		isize;
1306 	xfs_fileoff_t		fsbno;
1307 	xfs_filblks_t		end;
1308 	uint			lock;
1309 	int			error;
1310 
1311 	if (XFS_FORCED_SHUTDOWN(mp))
1312 		return -EIO;
1313 
1314 	lock = xfs_ilock_data_map_shared(ip);
1315 
1316 	isize = i_size_read(inode);
1317 	if (start >= isize) {
1318 		error = -ENXIO;
1319 		goto out_unlock;
1320 	}
1321 
1322 	/*
1323 	 * Try to read extents from the first block indicated
1324 	 * by fsbno to the end block of the file.
1325 	 */
1326 	fsbno = XFS_B_TO_FSBT(mp, start);
1327 	end = XFS_B_TO_FSB(mp, isize);
1328 
1329 	for (;;) {
1330 		struct xfs_bmbt_irec	map[2];
1331 		int			nmap = 2;
1332 		unsigned int		i;
1333 
1334 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1335 				       XFS_BMAPI_ENTIRE);
1336 		if (error)
1337 			goto out_unlock;
1338 
1339 		/* No extents at given offset, must be beyond EOF */
1340 		if (nmap == 0) {
1341 			error = -ENXIO;
1342 			goto out_unlock;
1343 		}
1344 
1345 		for (i = 0; i < nmap; i++) {
1346 			offset = max_t(loff_t, start,
1347 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1348 
1349 			/* Landed in the hole we wanted? */
1350 			if (whence == SEEK_HOLE &&
1351 			    map[i].br_startblock == HOLESTARTBLOCK)
1352 				goto out;
1353 
1354 			/* Landed in the data extent we wanted? */
1355 			if (whence == SEEK_DATA &&
1356 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1357 			     (map[i].br_state == XFS_EXT_NORM &&
1358 			      !isnullstartblock(map[i].br_startblock))))
1359 				goto out;
1360 
1361 			/*
1362 			 * Landed in an unwritten extent, try to search
1363 			 * for hole or data from page cache.
1364 			 */
1365 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1366 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1367 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1368 							&offset))
1369 					goto out;
1370 			}
1371 		}
1372 
1373 		/*
1374 		 * We only received one extent out of the two requested. This
1375 		 * means we've hit EOF and didn't find what we are looking for.
1376 		 */
1377 		if (nmap == 1) {
1378 			/*
1379 			 * If we were looking for a hole, set offset to
1380 			 * the end of the file (i.e., there is an implicit
1381 			 * hole at the end of any file).
1382 		 	 */
1383 			if (whence == SEEK_HOLE) {
1384 				offset = isize;
1385 				break;
1386 			}
1387 			/*
1388 			 * If we were looking for data, it's nowhere to be found
1389 			 */
1390 			ASSERT(whence == SEEK_DATA);
1391 			error = -ENXIO;
1392 			goto out_unlock;
1393 		}
1394 
1395 		ASSERT(i > 1);
1396 
1397 		/*
1398 		 * Nothing was found, proceed to the next round of search
1399 		 * if the next reading offset is not at or beyond EOF.
1400 		 */
1401 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1402 		start = XFS_FSB_TO_B(mp, fsbno);
1403 		if (start >= isize) {
1404 			if (whence == SEEK_HOLE) {
1405 				offset = isize;
1406 				break;
1407 			}
1408 			ASSERT(whence == SEEK_DATA);
1409 			error = -ENXIO;
1410 			goto out_unlock;
1411 		}
1412 	}
1413 
1414 out:
1415 	/*
1416 	 * If at this point we have found the hole we wanted, the returned
1417 	 * offset may be bigger than the file size as it may be aligned to
1418 	 * page boundary for unwritten extents.  We need to deal with this
1419 	 * situation in particular.
1420 	 */
1421 	if (whence == SEEK_HOLE)
1422 		offset = min_t(loff_t, offset, isize);
1423 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1424 
1425 out_unlock:
1426 	xfs_iunlock(ip, lock);
1427 
1428 	if (error)
1429 		return error;
1430 	return offset;
1431 }
1432 
1433 STATIC loff_t
1434 xfs_file_llseek(
1435 	struct file	*file,
1436 	loff_t		offset,
1437 	int		whence)
1438 {
1439 	switch (whence) {
1440 	case SEEK_END:
1441 	case SEEK_CUR:
1442 	case SEEK_SET:
1443 		return generic_file_llseek(file, offset, whence);
1444 	case SEEK_HOLE:
1445 	case SEEK_DATA:
1446 		return xfs_seek_hole_data(file, offset, whence);
1447 	default:
1448 		return -EINVAL;
1449 	}
1450 }
1451 
1452 /*
1453  * Locking for serialisation of IO during page faults. This results in a lock
1454  * ordering of:
1455  *
1456  * mmap_sem (MM)
1457  *   i_mmap_lock (XFS - truncate serialisation)
1458  *     page_lock (MM)
1459  *       i_lock (XFS - extent map serialisation)
1460  */
1461 STATIC int
1462 xfs_filemap_fault(
1463 	struct vm_area_struct	*vma,
1464 	struct vm_fault		*vmf)
1465 {
1466 	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1467 	int			error;
1468 
1469 	trace_xfs_filemap_fault(ip);
1470 
1471 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1472 	error = filemap_fault(vma, vmf);
1473 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1474 
1475 	return error;
1476 }
1477 
1478 /*
1479  * mmap()d file has taken write protection fault and is being made writable. We
1480  * can set the page state up correctly for a writable page, which means we can
1481  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1482  * mapping.
1483  */
1484 STATIC int
1485 xfs_filemap_page_mkwrite(
1486 	struct vm_area_struct	*vma,
1487 	struct vm_fault		*vmf)
1488 {
1489 	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1490 	int			error;
1491 
1492 	trace_xfs_filemap_page_mkwrite(ip);
1493 
1494 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1495 	error = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1496 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1497 
1498 	return error;
1499 }
1500 
1501 const struct file_operations xfs_file_operations = {
1502 	.llseek		= xfs_file_llseek,
1503 	.read_iter	= xfs_file_read_iter,
1504 	.write_iter	= xfs_file_write_iter,
1505 	.splice_read	= xfs_file_splice_read,
1506 	.splice_write	= iter_file_splice_write,
1507 	.unlocked_ioctl	= xfs_file_ioctl,
1508 #ifdef CONFIG_COMPAT
1509 	.compat_ioctl	= xfs_file_compat_ioctl,
1510 #endif
1511 	.mmap		= xfs_file_mmap,
1512 	.open		= xfs_file_open,
1513 	.release	= xfs_file_release,
1514 	.fsync		= xfs_file_fsync,
1515 	.fallocate	= xfs_file_fallocate,
1516 };
1517 
1518 const struct file_operations xfs_dir_file_operations = {
1519 	.open		= xfs_dir_open,
1520 	.read		= generic_read_dir,
1521 	.iterate	= xfs_file_readdir,
1522 	.llseek		= generic_file_llseek,
1523 	.unlocked_ioctl	= xfs_file_ioctl,
1524 #ifdef CONFIG_COMPAT
1525 	.compat_ioctl	= xfs_file_compat_ioctl,
1526 #endif
1527 	.fsync		= xfs_dir_fsync,
1528 };
1529 
1530 static const struct vm_operations_struct xfs_file_vm_ops = {
1531 	.fault		= xfs_filemap_fault,
1532 	.map_pages	= filemap_map_pages,
1533 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1534 };
1535