xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 4cff79e9)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 #include <linux/mman.h>
48 
49 static const struct vm_operations_struct xfs_file_vm_ops;
50 
51 int
52 xfs_update_prealloc_flags(
53 	struct xfs_inode	*ip,
54 	enum xfs_prealloc_flags	flags)
55 {
56 	struct xfs_trans	*tp;
57 	int			error;
58 
59 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
60 			0, 0, 0, &tp);
61 	if (error)
62 		return error;
63 
64 	xfs_ilock(ip, XFS_ILOCK_EXCL);
65 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
66 
67 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
68 		VFS_I(ip)->i_mode &= ~S_ISUID;
69 		if (VFS_I(ip)->i_mode & S_IXGRP)
70 			VFS_I(ip)->i_mode &= ~S_ISGID;
71 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
72 	}
73 
74 	if (flags & XFS_PREALLOC_SET)
75 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
76 	if (flags & XFS_PREALLOC_CLEAR)
77 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
78 
79 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
80 	if (flags & XFS_PREALLOC_SYNC)
81 		xfs_trans_set_sync(tp);
82 	return xfs_trans_commit(tp);
83 }
84 
85 /*
86  * Fsync operations on directories are much simpler than on regular files,
87  * as there is no file data to flush, and thus also no need for explicit
88  * cache flush operations, and there are no non-transaction metadata updates
89  * on directories either.
90  */
91 STATIC int
92 xfs_dir_fsync(
93 	struct file		*file,
94 	loff_t			start,
95 	loff_t			end,
96 	int			datasync)
97 {
98 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
99 	struct xfs_mount	*mp = ip->i_mount;
100 	xfs_lsn_t		lsn = 0;
101 
102 	trace_xfs_dir_fsync(ip);
103 
104 	xfs_ilock(ip, XFS_ILOCK_SHARED);
105 	if (xfs_ipincount(ip))
106 		lsn = ip->i_itemp->ili_last_lsn;
107 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
108 
109 	if (!lsn)
110 		return 0;
111 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
112 }
113 
114 STATIC int
115 xfs_file_fsync(
116 	struct file		*file,
117 	loff_t			start,
118 	loff_t			end,
119 	int			datasync)
120 {
121 	struct inode		*inode = file->f_mapping->host;
122 	struct xfs_inode	*ip = XFS_I(inode);
123 	struct xfs_mount	*mp = ip->i_mount;
124 	int			error = 0;
125 	int			log_flushed = 0;
126 	xfs_lsn_t		lsn = 0;
127 
128 	trace_xfs_file_fsync(ip);
129 
130 	error = file_write_and_wait_range(file, start, end);
131 	if (error)
132 		return error;
133 
134 	if (XFS_FORCED_SHUTDOWN(mp))
135 		return -EIO;
136 
137 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
138 
139 	/*
140 	 * If we have an RT and/or log subvolume we need to make sure to flush
141 	 * the write cache the device used for file data first.  This is to
142 	 * ensure newly written file data make it to disk before logging the new
143 	 * inode size in case of an extending write.
144 	 */
145 	if (XFS_IS_REALTIME_INODE(ip))
146 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
147 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
148 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
149 
150 	/*
151 	 * All metadata updates are logged, which means that we just have to
152 	 * flush the log up to the latest LSN that touched the inode. If we have
153 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
154 	 * log force before we clear the ili_fsync_fields field. This ensures
155 	 * that we don't get a racing sync operation that does not wait for the
156 	 * metadata to hit the journal before returning. If we race with
157 	 * clearing the ili_fsync_fields, then all that will happen is the log
158 	 * force will do nothing as the lsn will already be on disk. We can't
159 	 * race with setting ili_fsync_fields because that is done under
160 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
161 	 * until after the ili_fsync_fields is cleared.
162 	 */
163 	xfs_ilock(ip, XFS_ILOCK_SHARED);
164 	if (xfs_ipincount(ip)) {
165 		if (!datasync ||
166 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
167 			lsn = ip->i_itemp->ili_last_lsn;
168 	}
169 
170 	if (lsn) {
171 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
172 		ip->i_itemp->ili_fsync_fields = 0;
173 	}
174 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
175 
176 	/*
177 	 * If we only have a single device, and the log force about was
178 	 * a no-op we might have to flush the data device cache here.
179 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
180 	 * an already allocated file and thus do not have any metadata to
181 	 * commit.
182 	 */
183 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
184 	    mp->m_logdev_targp == mp->m_ddev_targp)
185 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
186 
187 	return error;
188 }
189 
190 STATIC ssize_t
191 xfs_file_dio_aio_read(
192 	struct kiocb		*iocb,
193 	struct iov_iter		*to)
194 {
195 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
196 	size_t			count = iov_iter_count(to);
197 	ssize_t			ret;
198 
199 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
200 
201 	if (!count)
202 		return 0; /* skip atime */
203 
204 	file_accessed(iocb->ki_filp);
205 
206 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
207 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
208 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
209 
210 	return ret;
211 }
212 
213 static noinline ssize_t
214 xfs_file_dax_read(
215 	struct kiocb		*iocb,
216 	struct iov_iter		*to)
217 {
218 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
219 	size_t			count = iov_iter_count(to);
220 	ssize_t			ret = 0;
221 
222 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
223 
224 	if (!count)
225 		return 0; /* skip atime */
226 
227 	if (iocb->ki_flags & IOCB_NOWAIT) {
228 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
229 			return -EAGAIN;
230 	} else {
231 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
232 	}
233 
234 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
235 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
236 
237 	file_accessed(iocb->ki_filp);
238 	return ret;
239 }
240 
241 STATIC ssize_t
242 xfs_file_buffered_aio_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
247 	ssize_t			ret;
248 
249 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
250 
251 	if (iocb->ki_flags & IOCB_NOWAIT) {
252 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
253 			return -EAGAIN;
254 	} else {
255 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
256 	}
257 	ret = generic_file_read_iter(iocb, to);
258 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
259 
260 	return ret;
261 }
262 
263 STATIC ssize_t
264 xfs_file_read_iter(
265 	struct kiocb		*iocb,
266 	struct iov_iter		*to)
267 {
268 	struct inode		*inode = file_inode(iocb->ki_filp);
269 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
270 	ssize_t			ret = 0;
271 
272 	XFS_STATS_INC(mp, xs_read_calls);
273 
274 	if (XFS_FORCED_SHUTDOWN(mp))
275 		return -EIO;
276 
277 	if (IS_DAX(inode))
278 		ret = xfs_file_dax_read(iocb, to);
279 	else if (iocb->ki_flags & IOCB_DIRECT)
280 		ret = xfs_file_dio_aio_read(iocb, to);
281 	else
282 		ret = xfs_file_buffered_aio_read(iocb, to);
283 
284 	if (ret > 0)
285 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
286 	return ret;
287 }
288 
289 /*
290  * Common pre-write limit and setup checks.
291  *
292  * Called with the iolocked held either shared and exclusive according to
293  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
294  * if called for a direct write beyond i_size.
295  */
296 STATIC ssize_t
297 xfs_file_aio_write_checks(
298 	struct kiocb		*iocb,
299 	struct iov_iter		*from,
300 	int			*iolock)
301 {
302 	struct file		*file = iocb->ki_filp;
303 	struct inode		*inode = file->f_mapping->host;
304 	struct xfs_inode	*ip = XFS_I(inode);
305 	ssize_t			error = 0;
306 	size_t			count = iov_iter_count(from);
307 	bool			drained_dio = false;
308 	loff_t			isize;
309 
310 restart:
311 	error = generic_write_checks(iocb, from);
312 	if (error <= 0)
313 		return error;
314 
315 	error = xfs_break_layouts(inode, iolock);
316 	if (error)
317 		return error;
318 
319 	/*
320 	 * For changing security info in file_remove_privs() we need i_rwsem
321 	 * exclusively.
322 	 */
323 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
324 		xfs_iunlock(ip, *iolock);
325 		*iolock = XFS_IOLOCK_EXCL;
326 		xfs_ilock(ip, *iolock);
327 		goto restart;
328 	}
329 	/*
330 	 * If the offset is beyond the size of the file, we need to zero any
331 	 * blocks that fall between the existing EOF and the start of this
332 	 * write.  If zeroing is needed and we are currently holding the
333 	 * iolock shared, we need to update it to exclusive which implies
334 	 * having to redo all checks before.
335 	 *
336 	 * We need to serialise against EOF updates that occur in IO
337 	 * completions here. We want to make sure that nobody is changing the
338 	 * size while we do this check until we have placed an IO barrier (i.e.
339 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
340 	 * The spinlock effectively forms a memory barrier once we have the
341 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
342 	 * and hence be able to correctly determine if we need to run zeroing.
343 	 */
344 	spin_lock(&ip->i_flags_lock);
345 	isize = i_size_read(inode);
346 	if (iocb->ki_pos > isize) {
347 		spin_unlock(&ip->i_flags_lock);
348 		if (!drained_dio) {
349 			if (*iolock == XFS_IOLOCK_SHARED) {
350 				xfs_iunlock(ip, *iolock);
351 				*iolock = XFS_IOLOCK_EXCL;
352 				xfs_ilock(ip, *iolock);
353 				iov_iter_reexpand(from, count);
354 			}
355 			/*
356 			 * We now have an IO submission barrier in place, but
357 			 * AIO can do EOF updates during IO completion and hence
358 			 * we now need to wait for all of them to drain. Non-AIO
359 			 * DIO will have drained before we are given the
360 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
361 			 * no-op.
362 			 */
363 			inode_dio_wait(inode);
364 			drained_dio = true;
365 			goto restart;
366 		}
367 
368 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
369 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
370 				NULL, &xfs_iomap_ops);
371 		if (error)
372 			return error;
373 	} else
374 		spin_unlock(&ip->i_flags_lock);
375 
376 	/*
377 	 * Updating the timestamps will grab the ilock again from
378 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
379 	 * lock above.  Eventually we should look into a way to avoid
380 	 * the pointless lock roundtrip.
381 	 */
382 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
383 		error = file_update_time(file);
384 		if (error)
385 			return error;
386 	}
387 
388 	/*
389 	 * If we're writing the file then make sure to clear the setuid and
390 	 * setgid bits if the process is not being run by root.  This keeps
391 	 * people from modifying setuid and setgid binaries.
392 	 */
393 	if (!IS_NOSEC(inode))
394 		return file_remove_privs(file);
395 	return 0;
396 }
397 
398 static int
399 xfs_dio_write_end_io(
400 	struct kiocb		*iocb,
401 	ssize_t			size,
402 	unsigned		flags)
403 {
404 	struct inode		*inode = file_inode(iocb->ki_filp);
405 	struct xfs_inode	*ip = XFS_I(inode);
406 	loff_t			offset = iocb->ki_pos;
407 	int			error = 0;
408 
409 	trace_xfs_end_io_direct_write(ip, offset, size);
410 
411 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
412 		return -EIO;
413 
414 	if (size <= 0)
415 		return size;
416 
417 	if (flags & IOMAP_DIO_COW) {
418 		error = xfs_reflink_end_cow(ip, offset, size);
419 		if (error)
420 			return error;
421 	}
422 
423 	/*
424 	 * Unwritten conversion updates the in-core isize after extent
425 	 * conversion but before updating the on-disk size. Updating isize any
426 	 * earlier allows a racing dio read to find unwritten extents before
427 	 * they are converted.
428 	 */
429 	if (flags & IOMAP_DIO_UNWRITTEN)
430 		return xfs_iomap_write_unwritten(ip, offset, size, true);
431 
432 	/*
433 	 * We need to update the in-core inode size here so that we don't end up
434 	 * with the on-disk inode size being outside the in-core inode size. We
435 	 * have no other method of updating EOF for AIO, so always do it here
436 	 * if necessary.
437 	 *
438 	 * We need to lock the test/set EOF update as we can be racing with
439 	 * other IO completions here to update the EOF. Failing to serialise
440 	 * here can result in EOF moving backwards and Bad Things Happen when
441 	 * that occurs.
442 	 */
443 	spin_lock(&ip->i_flags_lock);
444 	if (offset + size > i_size_read(inode)) {
445 		i_size_write(inode, offset + size);
446 		spin_unlock(&ip->i_flags_lock);
447 		error = xfs_setfilesize(ip, offset, size);
448 	} else {
449 		spin_unlock(&ip->i_flags_lock);
450 	}
451 
452 	return error;
453 }
454 
455 /*
456  * xfs_file_dio_aio_write - handle direct IO writes
457  *
458  * Lock the inode appropriately to prepare for and issue a direct IO write.
459  * By separating it from the buffered write path we remove all the tricky to
460  * follow locking changes and looping.
461  *
462  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
463  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
464  * pages are flushed out.
465  *
466  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
467  * allowing them to be done in parallel with reads and other direct IO writes.
468  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
469  * needs to do sub-block zeroing and that requires serialisation against other
470  * direct IOs to the same block. In this case we need to serialise the
471  * submission of the unaligned IOs so that we don't get racing block zeroing in
472  * the dio layer.  To avoid the problem with aio, we also need to wait for
473  * outstanding IOs to complete so that unwritten extent conversion is completed
474  * before we try to map the overlapping block. This is currently implemented by
475  * hitting it with a big hammer (i.e. inode_dio_wait()).
476  *
477  * Returns with locks held indicated by @iolock and errors indicated by
478  * negative return values.
479  */
480 STATIC ssize_t
481 xfs_file_dio_aio_write(
482 	struct kiocb		*iocb,
483 	struct iov_iter		*from)
484 {
485 	struct file		*file = iocb->ki_filp;
486 	struct address_space	*mapping = file->f_mapping;
487 	struct inode		*inode = mapping->host;
488 	struct xfs_inode	*ip = XFS_I(inode);
489 	struct xfs_mount	*mp = ip->i_mount;
490 	ssize_t			ret = 0;
491 	int			unaligned_io = 0;
492 	int			iolock;
493 	size_t			count = iov_iter_count(from);
494 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
495 					mp->m_rtdev_targp : mp->m_ddev_targp;
496 
497 	/* DIO must be aligned to device logical sector size */
498 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
499 		return -EINVAL;
500 
501 	/*
502 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
503 	 * the file system block size.  We don't need to consider the EOF
504 	 * extension case here because xfs_file_aio_write_checks() will relock
505 	 * the inode as necessary for EOF zeroing cases and fill out the new
506 	 * inode size as appropriate.
507 	 */
508 	if ((iocb->ki_pos & mp->m_blockmask) ||
509 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
510 		unaligned_io = 1;
511 
512 		/*
513 		 * We can't properly handle unaligned direct I/O to reflink
514 		 * files yet, as we can't unshare a partial block.
515 		 */
516 		if (xfs_is_reflink_inode(ip)) {
517 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
518 			return -EREMCHG;
519 		}
520 		iolock = XFS_IOLOCK_EXCL;
521 	} else {
522 		iolock = XFS_IOLOCK_SHARED;
523 	}
524 
525 	if (iocb->ki_flags & IOCB_NOWAIT) {
526 		if (!xfs_ilock_nowait(ip, iolock))
527 			return -EAGAIN;
528 	} else {
529 		xfs_ilock(ip, iolock);
530 	}
531 
532 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
533 	if (ret)
534 		goto out;
535 	count = iov_iter_count(from);
536 
537 	/*
538 	 * If we are doing unaligned IO, wait for all other IO to drain,
539 	 * otherwise demote the lock if we had to take the exclusive lock
540 	 * for other reasons in xfs_file_aio_write_checks.
541 	 */
542 	if (unaligned_io) {
543 		/* If we are going to wait for other DIO to finish, bail */
544 		if (iocb->ki_flags & IOCB_NOWAIT) {
545 			if (atomic_read(&inode->i_dio_count))
546 				return -EAGAIN;
547 		} else {
548 			inode_dio_wait(inode);
549 		}
550 	} else if (iolock == XFS_IOLOCK_EXCL) {
551 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
552 		iolock = XFS_IOLOCK_SHARED;
553 	}
554 
555 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
556 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
557 out:
558 	xfs_iunlock(ip, iolock);
559 
560 	/*
561 	 * No fallback to buffered IO on errors for XFS, direct IO will either
562 	 * complete fully or fail.
563 	 */
564 	ASSERT(ret < 0 || ret == count);
565 	return ret;
566 }
567 
568 static noinline ssize_t
569 xfs_file_dax_write(
570 	struct kiocb		*iocb,
571 	struct iov_iter		*from)
572 {
573 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
574 	struct xfs_inode	*ip = XFS_I(inode);
575 	int			iolock = XFS_IOLOCK_EXCL;
576 	ssize_t			ret, error = 0;
577 	size_t			count;
578 	loff_t			pos;
579 
580 	if (iocb->ki_flags & IOCB_NOWAIT) {
581 		if (!xfs_ilock_nowait(ip, iolock))
582 			return -EAGAIN;
583 	} else {
584 		xfs_ilock(ip, iolock);
585 	}
586 
587 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
588 	if (ret)
589 		goto out;
590 
591 	pos = iocb->ki_pos;
592 	count = iov_iter_count(from);
593 
594 	trace_xfs_file_dax_write(ip, count, pos);
595 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
596 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
597 		i_size_write(inode, iocb->ki_pos);
598 		error = xfs_setfilesize(ip, pos, ret);
599 	}
600 out:
601 	xfs_iunlock(ip, iolock);
602 	return error ? error : ret;
603 }
604 
605 STATIC ssize_t
606 xfs_file_buffered_aio_write(
607 	struct kiocb		*iocb,
608 	struct iov_iter		*from)
609 {
610 	struct file		*file = iocb->ki_filp;
611 	struct address_space	*mapping = file->f_mapping;
612 	struct inode		*inode = mapping->host;
613 	struct xfs_inode	*ip = XFS_I(inode);
614 	ssize_t			ret;
615 	int			enospc = 0;
616 	int			iolock;
617 
618 	if (iocb->ki_flags & IOCB_NOWAIT)
619 		return -EOPNOTSUPP;
620 
621 write_retry:
622 	iolock = XFS_IOLOCK_EXCL;
623 	xfs_ilock(ip, iolock);
624 
625 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
626 	if (ret)
627 		goto out;
628 
629 	/* We can write back this queue in page reclaim */
630 	current->backing_dev_info = inode_to_bdi(inode);
631 
632 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
633 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
634 	if (likely(ret >= 0))
635 		iocb->ki_pos += ret;
636 
637 	/*
638 	 * If we hit a space limit, try to free up some lingering preallocated
639 	 * space before returning an error. In the case of ENOSPC, first try to
640 	 * write back all dirty inodes to free up some of the excess reserved
641 	 * metadata space. This reduces the chances that the eofblocks scan
642 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
643 	 * also behaves as a filter to prevent too many eofblocks scans from
644 	 * running at the same time.
645 	 */
646 	if (ret == -EDQUOT && !enospc) {
647 		xfs_iunlock(ip, iolock);
648 		enospc = xfs_inode_free_quota_eofblocks(ip);
649 		if (enospc)
650 			goto write_retry;
651 		enospc = xfs_inode_free_quota_cowblocks(ip);
652 		if (enospc)
653 			goto write_retry;
654 		iolock = 0;
655 	} else if (ret == -ENOSPC && !enospc) {
656 		struct xfs_eofblocks eofb = {0};
657 
658 		enospc = 1;
659 		xfs_flush_inodes(ip->i_mount);
660 
661 		xfs_iunlock(ip, iolock);
662 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
663 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
664 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
665 		goto write_retry;
666 	}
667 
668 	current->backing_dev_info = NULL;
669 out:
670 	if (iolock)
671 		xfs_iunlock(ip, iolock);
672 	return ret;
673 }
674 
675 STATIC ssize_t
676 xfs_file_write_iter(
677 	struct kiocb		*iocb,
678 	struct iov_iter		*from)
679 {
680 	struct file		*file = iocb->ki_filp;
681 	struct address_space	*mapping = file->f_mapping;
682 	struct inode		*inode = mapping->host;
683 	struct xfs_inode	*ip = XFS_I(inode);
684 	ssize_t			ret;
685 	size_t			ocount = iov_iter_count(from);
686 
687 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
688 
689 	if (ocount == 0)
690 		return 0;
691 
692 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
693 		return -EIO;
694 
695 	if (IS_DAX(inode))
696 		ret = xfs_file_dax_write(iocb, from);
697 	else if (iocb->ki_flags & IOCB_DIRECT) {
698 		/*
699 		 * Allow a directio write to fall back to a buffered
700 		 * write *only* in the case that we're doing a reflink
701 		 * CoW.  In all other directio scenarios we do not
702 		 * allow an operation to fall back to buffered mode.
703 		 */
704 		ret = xfs_file_dio_aio_write(iocb, from);
705 		if (ret == -EREMCHG)
706 			goto buffered;
707 	} else {
708 buffered:
709 		ret = xfs_file_buffered_aio_write(iocb, from);
710 	}
711 
712 	if (ret > 0) {
713 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
714 
715 		/* Handle various SYNC-type writes */
716 		ret = generic_write_sync(iocb, ret);
717 	}
718 	return ret;
719 }
720 
721 #define	XFS_FALLOC_FL_SUPPORTED						\
722 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
723 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
724 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
725 
726 STATIC long
727 xfs_file_fallocate(
728 	struct file		*file,
729 	int			mode,
730 	loff_t			offset,
731 	loff_t			len)
732 {
733 	struct inode		*inode = file_inode(file);
734 	struct xfs_inode	*ip = XFS_I(inode);
735 	long			error;
736 	enum xfs_prealloc_flags	flags = 0;
737 	uint			iolock = XFS_IOLOCK_EXCL;
738 	loff_t			new_size = 0;
739 	bool			do_file_insert = false;
740 
741 	if (!S_ISREG(inode->i_mode))
742 		return -EINVAL;
743 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
744 		return -EOPNOTSUPP;
745 
746 	xfs_ilock(ip, iolock);
747 	error = xfs_break_layouts(inode, &iolock);
748 	if (error)
749 		goto out_unlock;
750 
751 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
752 	iolock |= XFS_MMAPLOCK_EXCL;
753 
754 	if (mode & FALLOC_FL_PUNCH_HOLE) {
755 		error = xfs_free_file_space(ip, offset, len);
756 		if (error)
757 			goto out_unlock;
758 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
759 		unsigned int blksize_mask = i_blocksize(inode) - 1;
760 
761 		if (offset & blksize_mask || len & blksize_mask) {
762 			error = -EINVAL;
763 			goto out_unlock;
764 		}
765 
766 		/*
767 		 * There is no need to overlap collapse range with EOF,
768 		 * in which case it is effectively a truncate operation
769 		 */
770 		if (offset + len >= i_size_read(inode)) {
771 			error = -EINVAL;
772 			goto out_unlock;
773 		}
774 
775 		new_size = i_size_read(inode) - len;
776 
777 		error = xfs_collapse_file_space(ip, offset, len);
778 		if (error)
779 			goto out_unlock;
780 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
781 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
782 		loff_t		isize = i_size_read(inode);
783 
784 		if (offset & blksize_mask || len & blksize_mask) {
785 			error = -EINVAL;
786 			goto out_unlock;
787 		}
788 
789 		/*
790 		 * New inode size must not exceed ->s_maxbytes, accounting for
791 		 * possible signed overflow.
792 		 */
793 		if (inode->i_sb->s_maxbytes - isize < len) {
794 			error = -EFBIG;
795 			goto out_unlock;
796 		}
797 		new_size = isize + len;
798 
799 		/* Offset should be less than i_size */
800 		if (offset >= isize) {
801 			error = -EINVAL;
802 			goto out_unlock;
803 		}
804 		do_file_insert = true;
805 	} else {
806 		flags |= XFS_PREALLOC_SET;
807 
808 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
809 		    offset + len > i_size_read(inode)) {
810 			new_size = offset + len;
811 			error = inode_newsize_ok(inode, new_size);
812 			if (error)
813 				goto out_unlock;
814 		}
815 
816 		if (mode & FALLOC_FL_ZERO_RANGE)
817 			error = xfs_zero_file_space(ip, offset, len);
818 		else {
819 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
820 				error = xfs_reflink_unshare(ip, offset, len);
821 				if (error)
822 					goto out_unlock;
823 			}
824 			error = xfs_alloc_file_space(ip, offset, len,
825 						     XFS_BMAPI_PREALLOC);
826 		}
827 		if (error)
828 			goto out_unlock;
829 	}
830 
831 	if (file->f_flags & O_DSYNC)
832 		flags |= XFS_PREALLOC_SYNC;
833 
834 	error = xfs_update_prealloc_flags(ip, flags);
835 	if (error)
836 		goto out_unlock;
837 
838 	/* Change file size if needed */
839 	if (new_size) {
840 		struct iattr iattr;
841 
842 		iattr.ia_valid = ATTR_SIZE;
843 		iattr.ia_size = new_size;
844 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
845 		if (error)
846 			goto out_unlock;
847 	}
848 
849 	/*
850 	 * Perform hole insertion now that the file size has been
851 	 * updated so that if we crash during the operation we don't
852 	 * leave shifted extents past EOF and hence losing access to
853 	 * the data that is contained within them.
854 	 */
855 	if (do_file_insert)
856 		error = xfs_insert_file_space(ip, offset, len);
857 
858 out_unlock:
859 	xfs_iunlock(ip, iolock);
860 	return error;
861 }
862 
863 STATIC int
864 xfs_file_clone_range(
865 	struct file	*file_in,
866 	loff_t		pos_in,
867 	struct file	*file_out,
868 	loff_t		pos_out,
869 	u64		len)
870 {
871 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
872 				     len, false);
873 }
874 
875 STATIC ssize_t
876 xfs_file_dedupe_range(
877 	struct file	*src_file,
878 	u64		loff,
879 	u64		len,
880 	struct file	*dst_file,
881 	u64		dst_loff)
882 {
883 	struct inode	*srci = file_inode(src_file);
884 	u64		max_dedupe;
885 	int		error;
886 
887 	/*
888 	 * Since we have to read all these pages in to compare them, cut
889 	 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
890 	 * That means we won't do more than MAX_RW_COUNT IO per request.
891 	 */
892 	max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
893 	if (len > max_dedupe)
894 		len = max_dedupe;
895 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
896 				     len, true);
897 	if (error)
898 		return error;
899 	return len;
900 }
901 
902 STATIC int
903 xfs_file_open(
904 	struct inode	*inode,
905 	struct file	*file)
906 {
907 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
908 		return -EFBIG;
909 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
910 		return -EIO;
911 	file->f_mode |= FMODE_NOWAIT;
912 	return 0;
913 }
914 
915 STATIC int
916 xfs_dir_open(
917 	struct inode	*inode,
918 	struct file	*file)
919 {
920 	struct xfs_inode *ip = XFS_I(inode);
921 	int		mode;
922 	int		error;
923 
924 	error = xfs_file_open(inode, file);
925 	if (error)
926 		return error;
927 
928 	/*
929 	 * If there are any blocks, read-ahead block 0 as we're almost
930 	 * certain to have the next operation be a read there.
931 	 */
932 	mode = xfs_ilock_data_map_shared(ip);
933 	if (ip->i_d.di_nextents > 0)
934 		error = xfs_dir3_data_readahead(ip, 0, -1);
935 	xfs_iunlock(ip, mode);
936 	return error;
937 }
938 
939 STATIC int
940 xfs_file_release(
941 	struct inode	*inode,
942 	struct file	*filp)
943 {
944 	return xfs_release(XFS_I(inode));
945 }
946 
947 STATIC int
948 xfs_file_readdir(
949 	struct file	*file,
950 	struct dir_context *ctx)
951 {
952 	struct inode	*inode = file_inode(file);
953 	xfs_inode_t	*ip = XFS_I(inode);
954 	size_t		bufsize;
955 
956 	/*
957 	 * The Linux API doesn't pass down the total size of the buffer
958 	 * we read into down to the filesystem.  With the filldir concept
959 	 * it's not needed for correct information, but the XFS dir2 leaf
960 	 * code wants an estimate of the buffer size to calculate it's
961 	 * readahead window and size the buffers used for mapping to
962 	 * physical blocks.
963 	 *
964 	 * Try to give it an estimate that's good enough, maybe at some
965 	 * point we can change the ->readdir prototype to include the
966 	 * buffer size.  For now we use the current glibc buffer size.
967 	 */
968 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
969 
970 	return xfs_readdir(NULL, ip, ctx, bufsize);
971 }
972 
973 STATIC loff_t
974 xfs_file_llseek(
975 	struct file	*file,
976 	loff_t		offset,
977 	int		whence)
978 {
979 	struct inode		*inode = file->f_mapping->host;
980 
981 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
982 		return -EIO;
983 
984 	switch (whence) {
985 	default:
986 		return generic_file_llseek(file, offset, whence);
987 	case SEEK_HOLE:
988 		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
989 		break;
990 	case SEEK_DATA:
991 		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
992 		break;
993 	}
994 
995 	if (offset < 0)
996 		return offset;
997 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
998 }
999 
1000 /*
1001  * Locking for serialisation of IO during page faults. This results in a lock
1002  * ordering of:
1003  *
1004  * mmap_sem (MM)
1005  *   sb_start_pagefault(vfs, freeze)
1006  *     i_mmaplock (XFS - truncate serialisation)
1007  *       page_lock (MM)
1008  *         i_lock (XFS - extent map serialisation)
1009  */
1010 static int
1011 __xfs_filemap_fault(
1012 	struct vm_fault		*vmf,
1013 	enum page_entry_size	pe_size,
1014 	bool			write_fault)
1015 {
1016 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1017 	struct xfs_inode	*ip = XFS_I(inode);
1018 	int			ret;
1019 
1020 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1021 
1022 	if (write_fault) {
1023 		sb_start_pagefault(inode->i_sb);
1024 		file_update_time(vmf->vma->vm_file);
1025 	}
1026 
1027 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1028 	if (IS_DAX(inode)) {
1029 		pfn_t pfn;
1030 
1031 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1032 		if (ret & VM_FAULT_NEEDDSYNC)
1033 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1034 	} else {
1035 		if (write_fault)
1036 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1037 		else
1038 			ret = filemap_fault(vmf);
1039 	}
1040 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1041 
1042 	if (write_fault)
1043 		sb_end_pagefault(inode->i_sb);
1044 	return ret;
1045 }
1046 
1047 static int
1048 xfs_filemap_fault(
1049 	struct vm_fault		*vmf)
1050 {
1051 	/* DAX can shortcut the normal fault path on write faults! */
1052 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1053 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1054 			(vmf->flags & FAULT_FLAG_WRITE));
1055 }
1056 
1057 static int
1058 xfs_filemap_huge_fault(
1059 	struct vm_fault		*vmf,
1060 	enum page_entry_size	pe_size)
1061 {
1062 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1063 		return VM_FAULT_FALLBACK;
1064 
1065 	/* DAX can shortcut the normal fault path on write faults! */
1066 	return __xfs_filemap_fault(vmf, pe_size,
1067 			(vmf->flags & FAULT_FLAG_WRITE));
1068 }
1069 
1070 static int
1071 xfs_filemap_page_mkwrite(
1072 	struct vm_fault		*vmf)
1073 {
1074 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1075 }
1076 
1077 /*
1078  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1079  * on write faults. In reality, it needs to serialise against truncate and
1080  * prepare memory for writing so handle is as standard write fault.
1081  */
1082 static int
1083 xfs_filemap_pfn_mkwrite(
1084 	struct vm_fault		*vmf)
1085 {
1086 
1087 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1088 }
1089 
1090 static const struct vm_operations_struct xfs_file_vm_ops = {
1091 	.fault		= xfs_filemap_fault,
1092 	.huge_fault	= xfs_filemap_huge_fault,
1093 	.map_pages	= filemap_map_pages,
1094 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1095 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1096 };
1097 
1098 STATIC int
1099 xfs_file_mmap(
1100 	struct file	*filp,
1101 	struct vm_area_struct *vma)
1102 {
1103 	/*
1104 	 * We don't support synchronous mappings for non-DAX files. At least
1105 	 * until someone comes with a sensible use case.
1106 	 */
1107 	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1108 		return -EOPNOTSUPP;
1109 
1110 	file_accessed(filp);
1111 	vma->vm_ops = &xfs_file_vm_ops;
1112 	if (IS_DAX(file_inode(filp)))
1113 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1114 	return 0;
1115 }
1116 
1117 const struct file_operations xfs_file_operations = {
1118 	.llseek		= xfs_file_llseek,
1119 	.read_iter	= xfs_file_read_iter,
1120 	.write_iter	= xfs_file_write_iter,
1121 	.splice_read	= generic_file_splice_read,
1122 	.splice_write	= iter_file_splice_write,
1123 	.unlocked_ioctl	= xfs_file_ioctl,
1124 #ifdef CONFIG_COMPAT
1125 	.compat_ioctl	= xfs_file_compat_ioctl,
1126 #endif
1127 	.mmap		= xfs_file_mmap,
1128 	.mmap_supported_flags = MAP_SYNC,
1129 	.open		= xfs_file_open,
1130 	.release	= xfs_file_release,
1131 	.fsync		= xfs_file_fsync,
1132 	.get_unmapped_area = thp_get_unmapped_area,
1133 	.fallocate	= xfs_file_fallocate,
1134 	.clone_file_range = xfs_file_clone_range,
1135 	.dedupe_file_range = xfs_file_dedupe_range,
1136 };
1137 
1138 const struct file_operations xfs_dir_file_operations = {
1139 	.open		= xfs_dir_open,
1140 	.read		= generic_read_dir,
1141 	.iterate_shared	= xfs_file_readdir,
1142 	.llseek		= generic_file_llseek,
1143 	.unlocked_ioctl	= xfs_file_ioctl,
1144 #ifdef CONFIG_COMPAT
1145 	.compat_ioctl	= xfs_file_compat_ioctl,
1146 #endif
1147 	.fsync		= xfs_dir_fsync,
1148 };
1149