1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_da_format.h" 14 #include "xfs_da_btree.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_bmap.h" 19 #include "xfs_bmap_util.h" 20 #include "xfs_error.h" 21 #include "xfs_dir2.h" 22 #include "xfs_dir2_priv.h" 23 #include "xfs_ioctl.h" 24 #include "xfs_trace.h" 25 #include "xfs_log.h" 26 #include "xfs_icache.h" 27 #include "xfs_pnfs.h" 28 #include "xfs_iomap.h" 29 #include "xfs_reflink.h" 30 31 #include <linux/dcache.h> 32 #include <linux/falloc.h> 33 #include <linux/pagevec.h> 34 #include <linux/backing-dev.h> 35 #include <linux/mman.h> 36 37 static const struct vm_operations_struct xfs_file_vm_ops; 38 39 int 40 xfs_update_prealloc_flags( 41 struct xfs_inode *ip, 42 enum xfs_prealloc_flags flags) 43 { 44 struct xfs_trans *tp; 45 int error; 46 47 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 48 0, 0, 0, &tp); 49 if (error) 50 return error; 51 52 xfs_ilock(ip, XFS_ILOCK_EXCL); 53 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 54 55 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 56 VFS_I(ip)->i_mode &= ~S_ISUID; 57 if (VFS_I(ip)->i_mode & S_IXGRP) 58 VFS_I(ip)->i_mode &= ~S_ISGID; 59 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 60 } 61 62 if (flags & XFS_PREALLOC_SET) 63 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 64 if (flags & XFS_PREALLOC_CLEAR) 65 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 66 67 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 68 if (flags & XFS_PREALLOC_SYNC) 69 xfs_trans_set_sync(tp); 70 return xfs_trans_commit(tp); 71 } 72 73 /* 74 * Fsync operations on directories are much simpler than on regular files, 75 * as there is no file data to flush, and thus also no need for explicit 76 * cache flush operations, and there are no non-transaction metadata updates 77 * on directories either. 78 */ 79 STATIC int 80 xfs_dir_fsync( 81 struct file *file, 82 loff_t start, 83 loff_t end, 84 int datasync) 85 { 86 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 87 struct xfs_mount *mp = ip->i_mount; 88 xfs_lsn_t lsn = 0; 89 90 trace_xfs_dir_fsync(ip); 91 92 xfs_ilock(ip, XFS_ILOCK_SHARED); 93 if (xfs_ipincount(ip)) 94 lsn = ip->i_itemp->ili_last_lsn; 95 xfs_iunlock(ip, XFS_ILOCK_SHARED); 96 97 if (!lsn) 98 return 0; 99 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 100 } 101 102 STATIC int 103 xfs_file_fsync( 104 struct file *file, 105 loff_t start, 106 loff_t end, 107 int datasync) 108 { 109 struct inode *inode = file->f_mapping->host; 110 struct xfs_inode *ip = XFS_I(inode); 111 struct xfs_mount *mp = ip->i_mount; 112 int error = 0; 113 int log_flushed = 0; 114 xfs_lsn_t lsn = 0; 115 116 trace_xfs_file_fsync(ip); 117 118 error = file_write_and_wait_range(file, start, end); 119 if (error) 120 return error; 121 122 if (XFS_FORCED_SHUTDOWN(mp)) 123 return -EIO; 124 125 xfs_iflags_clear(ip, XFS_ITRUNCATED); 126 127 /* 128 * If we have an RT and/or log subvolume we need to make sure to flush 129 * the write cache the device used for file data first. This is to 130 * ensure newly written file data make it to disk before logging the new 131 * inode size in case of an extending write. 132 */ 133 if (XFS_IS_REALTIME_INODE(ip)) 134 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 135 else if (mp->m_logdev_targp != mp->m_ddev_targp) 136 xfs_blkdev_issue_flush(mp->m_ddev_targp); 137 138 /* 139 * All metadata updates are logged, which means that we just have to 140 * flush the log up to the latest LSN that touched the inode. If we have 141 * concurrent fsync/fdatasync() calls, we need them to all block on the 142 * log force before we clear the ili_fsync_fields field. This ensures 143 * that we don't get a racing sync operation that does not wait for the 144 * metadata to hit the journal before returning. If we race with 145 * clearing the ili_fsync_fields, then all that will happen is the log 146 * force will do nothing as the lsn will already be on disk. We can't 147 * race with setting ili_fsync_fields because that is done under 148 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 149 * until after the ili_fsync_fields is cleared. 150 */ 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) { 153 if (!datasync || 154 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 155 lsn = ip->i_itemp->ili_last_lsn; 156 } 157 158 if (lsn) { 159 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 160 ip->i_itemp->ili_fsync_fields = 0; 161 } 162 xfs_iunlock(ip, XFS_ILOCK_SHARED); 163 164 /* 165 * If we only have a single device, and the log force about was 166 * a no-op we might have to flush the data device cache here. 167 * This can only happen for fdatasync/O_DSYNC if we were overwriting 168 * an already allocated file and thus do not have any metadata to 169 * commit. 170 */ 171 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 172 mp->m_logdev_targp == mp->m_ddev_targp) 173 xfs_blkdev_issue_flush(mp->m_ddev_targp); 174 175 return error; 176 } 177 178 STATIC ssize_t 179 xfs_file_dio_aio_read( 180 struct kiocb *iocb, 181 struct iov_iter *to) 182 { 183 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 184 size_t count = iov_iter_count(to); 185 ssize_t ret; 186 187 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 188 189 if (!count) 190 return 0; /* skip atime */ 191 192 file_accessed(iocb->ki_filp); 193 194 xfs_ilock(ip, XFS_IOLOCK_SHARED); 195 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 196 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 197 198 return ret; 199 } 200 201 static noinline ssize_t 202 xfs_file_dax_read( 203 struct kiocb *iocb, 204 struct iov_iter *to) 205 { 206 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 207 size_t count = iov_iter_count(to); 208 ssize_t ret = 0; 209 210 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 211 212 if (!count) 213 return 0; /* skip atime */ 214 215 if (iocb->ki_flags & IOCB_NOWAIT) { 216 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 217 return -EAGAIN; 218 } else { 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 } 221 222 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 223 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 224 225 file_accessed(iocb->ki_filp); 226 return ret; 227 } 228 229 STATIC ssize_t 230 xfs_file_buffered_aio_read( 231 struct kiocb *iocb, 232 struct iov_iter *to) 233 { 234 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 235 ssize_t ret; 236 237 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 238 239 if (iocb->ki_flags & IOCB_NOWAIT) { 240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 241 return -EAGAIN; 242 } else { 243 xfs_ilock(ip, XFS_IOLOCK_SHARED); 244 } 245 ret = generic_file_read_iter(iocb, to); 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 247 248 return ret; 249 } 250 251 STATIC ssize_t 252 xfs_file_read_iter( 253 struct kiocb *iocb, 254 struct iov_iter *to) 255 { 256 struct inode *inode = file_inode(iocb->ki_filp); 257 struct xfs_mount *mp = XFS_I(inode)->i_mount; 258 ssize_t ret = 0; 259 260 XFS_STATS_INC(mp, xs_read_calls); 261 262 if (XFS_FORCED_SHUTDOWN(mp)) 263 return -EIO; 264 265 if (IS_DAX(inode)) 266 ret = xfs_file_dax_read(iocb, to); 267 else if (iocb->ki_flags & IOCB_DIRECT) 268 ret = xfs_file_dio_aio_read(iocb, to); 269 else 270 ret = xfs_file_buffered_aio_read(iocb, to); 271 272 if (ret > 0) 273 XFS_STATS_ADD(mp, xs_read_bytes, ret); 274 return ret; 275 } 276 277 /* 278 * Common pre-write limit and setup checks. 279 * 280 * Called with the iolocked held either shared and exclusive according to 281 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 282 * if called for a direct write beyond i_size. 283 */ 284 STATIC ssize_t 285 xfs_file_aio_write_checks( 286 struct kiocb *iocb, 287 struct iov_iter *from, 288 int *iolock) 289 { 290 struct file *file = iocb->ki_filp; 291 struct inode *inode = file->f_mapping->host; 292 struct xfs_inode *ip = XFS_I(inode); 293 ssize_t error = 0; 294 size_t count = iov_iter_count(from); 295 bool drained_dio = false; 296 loff_t isize; 297 298 restart: 299 error = generic_write_checks(iocb, from); 300 if (error <= 0) 301 return error; 302 303 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 304 if (error) 305 return error; 306 307 /* 308 * For changing security info in file_remove_privs() we need i_rwsem 309 * exclusively. 310 */ 311 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 312 xfs_iunlock(ip, *iolock); 313 *iolock = XFS_IOLOCK_EXCL; 314 xfs_ilock(ip, *iolock); 315 goto restart; 316 } 317 /* 318 * If the offset is beyond the size of the file, we need to zero any 319 * blocks that fall between the existing EOF and the start of this 320 * write. If zeroing is needed and we are currently holding the 321 * iolock shared, we need to update it to exclusive which implies 322 * having to redo all checks before. 323 * 324 * We need to serialise against EOF updates that occur in IO 325 * completions here. We want to make sure that nobody is changing the 326 * size while we do this check until we have placed an IO barrier (i.e. 327 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 328 * The spinlock effectively forms a memory barrier once we have the 329 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 330 * and hence be able to correctly determine if we need to run zeroing. 331 */ 332 spin_lock(&ip->i_flags_lock); 333 isize = i_size_read(inode); 334 if (iocb->ki_pos > isize) { 335 spin_unlock(&ip->i_flags_lock); 336 if (!drained_dio) { 337 if (*iolock == XFS_IOLOCK_SHARED) { 338 xfs_iunlock(ip, *iolock); 339 *iolock = XFS_IOLOCK_EXCL; 340 xfs_ilock(ip, *iolock); 341 iov_iter_reexpand(from, count); 342 } 343 /* 344 * We now have an IO submission barrier in place, but 345 * AIO can do EOF updates during IO completion and hence 346 * we now need to wait for all of them to drain. Non-AIO 347 * DIO will have drained before we are given the 348 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 349 * no-op. 350 */ 351 inode_dio_wait(inode); 352 drained_dio = true; 353 goto restart; 354 } 355 356 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 357 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 358 NULL, &xfs_iomap_ops); 359 if (error) 360 return error; 361 } else 362 spin_unlock(&ip->i_flags_lock); 363 364 /* 365 * Updating the timestamps will grab the ilock again from 366 * xfs_fs_dirty_inode, so we have to call it after dropping the 367 * lock above. Eventually we should look into a way to avoid 368 * the pointless lock roundtrip. 369 */ 370 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 371 error = file_update_time(file); 372 if (error) 373 return error; 374 } 375 376 /* 377 * If we're writing the file then make sure to clear the setuid and 378 * setgid bits if the process is not being run by root. This keeps 379 * people from modifying setuid and setgid binaries. 380 */ 381 if (!IS_NOSEC(inode)) 382 return file_remove_privs(file); 383 return 0; 384 } 385 386 static int 387 xfs_dio_write_end_io( 388 struct kiocb *iocb, 389 ssize_t size, 390 unsigned flags) 391 { 392 struct inode *inode = file_inode(iocb->ki_filp); 393 struct xfs_inode *ip = XFS_I(inode); 394 loff_t offset = iocb->ki_pos; 395 int error = 0; 396 397 trace_xfs_end_io_direct_write(ip, offset, size); 398 399 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 400 return -EIO; 401 402 if (size <= 0) 403 return size; 404 405 /* 406 * Capture amount written on completion as we can't reliably account 407 * for it on submission. 408 */ 409 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 410 411 if (flags & IOMAP_DIO_COW) { 412 error = xfs_reflink_end_cow(ip, offset, size); 413 if (error) 414 return error; 415 } 416 417 /* 418 * Unwritten conversion updates the in-core isize after extent 419 * conversion but before updating the on-disk size. Updating isize any 420 * earlier allows a racing dio read to find unwritten extents before 421 * they are converted. 422 */ 423 if (flags & IOMAP_DIO_UNWRITTEN) 424 return xfs_iomap_write_unwritten(ip, offset, size, true); 425 426 /* 427 * We need to update the in-core inode size here so that we don't end up 428 * with the on-disk inode size being outside the in-core inode size. We 429 * have no other method of updating EOF for AIO, so always do it here 430 * if necessary. 431 * 432 * We need to lock the test/set EOF update as we can be racing with 433 * other IO completions here to update the EOF. Failing to serialise 434 * here can result in EOF moving backwards and Bad Things Happen when 435 * that occurs. 436 */ 437 spin_lock(&ip->i_flags_lock); 438 if (offset + size > i_size_read(inode)) { 439 i_size_write(inode, offset + size); 440 spin_unlock(&ip->i_flags_lock); 441 error = xfs_setfilesize(ip, offset, size); 442 } else { 443 spin_unlock(&ip->i_flags_lock); 444 } 445 446 return error; 447 } 448 449 /* 450 * xfs_file_dio_aio_write - handle direct IO writes 451 * 452 * Lock the inode appropriately to prepare for and issue a direct IO write. 453 * By separating it from the buffered write path we remove all the tricky to 454 * follow locking changes and looping. 455 * 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 458 * pages are flushed out. 459 * 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 461 * allowing them to be done in parallel with reads and other direct IO writes. 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 463 * needs to do sub-block zeroing and that requires serialisation against other 464 * direct IOs to the same block. In this case we need to serialise the 465 * submission of the unaligned IOs so that we don't get racing block zeroing in 466 * the dio layer. To avoid the problem with aio, we also need to wait for 467 * outstanding IOs to complete so that unwritten extent conversion is completed 468 * before we try to map the overlapping block. This is currently implemented by 469 * hitting it with a big hammer (i.e. inode_dio_wait()). 470 * 471 * Returns with locks held indicated by @iolock and errors indicated by 472 * negative return values. 473 */ 474 STATIC ssize_t 475 xfs_file_dio_aio_write( 476 struct kiocb *iocb, 477 struct iov_iter *from) 478 { 479 struct file *file = iocb->ki_filp; 480 struct address_space *mapping = file->f_mapping; 481 struct inode *inode = mapping->host; 482 struct xfs_inode *ip = XFS_I(inode); 483 struct xfs_mount *mp = ip->i_mount; 484 ssize_t ret = 0; 485 int unaligned_io = 0; 486 int iolock; 487 size_t count = iov_iter_count(from); 488 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 489 mp->m_rtdev_targp : mp->m_ddev_targp; 490 491 /* DIO must be aligned to device logical sector size */ 492 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 493 return -EINVAL; 494 495 /* 496 * Don't take the exclusive iolock here unless the I/O is unaligned to 497 * the file system block size. We don't need to consider the EOF 498 * extension case here because xfs_file_aio_write_checks() will relock 499 * the inode as necessary for EOF zeroing cases and fill out the new 500 * inode size as appropriate. 501 */ 502 if ((iocb->ki_pos & mp->m_blockmask) || 503 ((iocb->ki_pos + count) & mp->m_blockmask)) { 504 unaligned_io = 1; 505 506 /* 507 * We can't properly handle unaligned direct I/O to reflink 508 * files yet, as we can't unshare a partial block. 509 */ 510 if (xfs_is_reflink_inode(ip)) { 511 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 512 return -EREMCHG; 513 } 514 iolock = XFS_IOLOCK_EXCL; 515 } else { 516 iolock = XFS_IOLOCK_SHARED; 517 } 518 519 if (iocb->ki_flags & IOCB_NOWAIT) { 520 if (!xfs_ilock_nowait(ip, iolock)) 521 return -EAGAIN; 522 } else { 523 xfs_ilock(ip, iolock); 524 } 525 526 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 527 if (ret) 528 goto out; 529 count = iov_iter_count(from); 530 531 /* 532 * If we are doing unaligned IO, wait for all other IO to drain, 533 * otherwise demote the lock if we had to take the exclusive lock 534 * for other reasons in xfs_file_aio_write_checks. 535 */ 536 if (unaligned_io) { 537 /* If we are going to wait for other DIO to finish, bail */ 538 if (iocb->ki_flags & IOCB_NOWAIT) { 539 if (atomic_read(&inode->i_dio_count)) 540 return -EAGAIN; 541 } else { 542 inode_dio_wait(inode); 543 } 544 } else if (iolock == XFS_IOLOCK_EXCL) { 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 546 iolock = XFS_IOLOCK_SHARED; 547 } 548 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 551 out: 552 xfs_iunlock(ip, iolock); 553 554 /* 555 * No fallback to buffered IO on errors for XFS, direct IO will either 556 * complete fully or fail. 557 */ 558 ASSERT(ret < 0 || ret == count); 559 return ret; 560 } 561 562 static noinline ssize_t 563 xfs_file_dax_write( 564 struct kiocb *iocb, 565 struct iov_iter *from) 566 { 567 struct inode *inode = iocb->ki_filp->f_mapping->host; 568 struct xfs_inode *ip = XFS_I(inode); 569 int iolock = XFS_IOLOCK_EXCL; 570 ssize_t ret, error = 0; 571 size_t count; 572 loff_t pos; 573 574 if (iocb->ki_flags & IOCB_NOWAIT) { 575 if (!xfs_ilock_nowait(ip, iolock)) 576 return -EAGAIN; 577 } else { 578 xfs_ilock(ip, iolock); 579 } 580 581 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 582 if (ret) 583 goto out; 584 585 pos = iocb->ki_pos; 586 count = iov_iter_count(from); 587 588 trace_xfs_file_dax_write(ip, count, pos); 589 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 590 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 591 i_size_write(inode, iocb->ki_pos); 592 error = xfs_setfilesize(ip, pos, ret); 593 } 594 out: 595 xfs_iunlock(ip, iolock); 596 if (error) 597 return error; 598 599 if (ret > 0) { 600 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 601 602 /* Handle various SYNC-type writes */ 603 ret = generic_write_sync(iocb, ret); 604 } 605 return ret; 606 } 607 608 STATIC ssize_t 609 xfs_file_buffered_aio_write( 610 struct kiocb *iocb, 611 struct iov_iter *from) 612 { 613 struct file *file = iocb->ki_filp; 614 struct address_space *mapping = file->f_mapping; 615 struct inode *inode = mapping->host; 616 struct xfs_inode *ip = XFS_I(inode); 617 ssize_t ret; 618 int enospc = 0; 619 int iolock; 620 621 if (iocb->ki_flags & IOCB_NOWAIT) 622 return -EOPNOTSUPP; 623 624 write_retry: 625 iolock = XFS_IOLOCK_EXCL; 626 xfs_ilock(ip, iolock); 627 628 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 629 if (ret) 630 goto out; 631 632 /* We can write back this queue in page reclaim */ 633 current->backing_dev_info = inode_to_bdi(inode); 634 635 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 636 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 637 if (likely(ret >= 0)) 638 iocb->ki_pos += ret; 639 640 /* 641 * If we hit a space limit, try to free up some lingering preallocated 642 * space before returning an error. In the case of ENOSPC, first try to 643 * write back all dirty inodes to free up some of the excess reserved 644 * metadata space. This reduces the chances that the eofblocks scan 645 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 646 * also behaves as a filter to prevent too many eofblocks scans from 647 * running at the same time. 648 */ 649 if (ret == -EDQUOT && !enospc) { 650 xfs_iunlock(ip, iolock); 651 enospc = xfs_inode_free_quota_eofblocks(ip); 652 if (enospc) 653 goto write_retry; 654 enospc = xfs_inode_free_quota_cowblocks(ip); 655 if (enospc) 656 goto write_retry; 657 iolock = 0; 658 } else if (ret == -ENOSPC && !enospc) { 659 struct xfs_eofblocks eofb = {0}; 660 661 enospc = 1; 662 xfs_flush_inodes(ip->i_mount); 663 664 xfs_iunlock(ip, iolock); 665 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 666 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 667 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 668 goto write_retry; 669 } 670 671 current->backing_dev_info = NULL; 672 out: 673 if (iolock) 674 xfs_iunlock(ip, iolock); 675 676 if (ret > 0) { 677 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 678 /* Handle various SYNC-type writes */ 679 ret = generic_write_sync(iocb, ret); 680 } 681 return ret; 682 } 683 684 STATIC ssize_t 685 xfs_file_write_iter( 686 struct kiocb *iocb, 687 struct iov_iter *from) 688 { 689 struct file *file = iocb->ki_filp; 690 struct address_space *mapping = file->f_mapping; 691 struct inode *inode = mapping->host; 692 struct xfs_inode *ip = XFS_I(inode); 693 ssize_t ret; 694 size_t ocount = iov_iter_count(from); 695 696 XFS_STATS_INC(ip->i_mount, xs_write_calls); 697 698 if (ocount == 0) 699 return 0; 700 701 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 702 return -EIO; 703 704 if (IS_DAX(inode)) 705 return xfs_file_dax_write(iocb, from); 706 707 if (iocb->ki_flags & IOCB_DIRECT) { 708 /* 709 * Allow a directio write to fall back to a buffered 710 * write *only* in the case that we're doing a reflink 711 * CoW. In all other directio scenarios we do not 712 * allow an operation to fall back to buffered mode. 713 */ 714 ret = xfs_file_dio_aio_write(iocb, from); 715 if (ret != -EREMCHG) 716 return ret; 717 } 718 719 return xfs_file_buffered_aio_write(iocb, from); 720 } 721 722 static void 723 xfs_wait_dax_page( 724 struct inode *inode, 725 bool *did_unlock) 726 { 727 struct xfs_inode *ip = XFS_I(inode); 728 729 *did_unlock = true; 730 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 731 schedule(); 732 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 733 } 734 735 static int 736 xfs_break_dax_layouts( 737 struct inode *inode, 738 uint iolock, 739 bool *did_unlock) 740 { 741 struct page *page; 742 743 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 744 745 page = dax_layout_busy_page(inode->i_mapping); 746 if (!page) 747 return 0; 748 749 return ___wait_var_event(&page->_refcount, 750 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 751 0, 0, xfs_wait_dax_page(inode, did_unlock)); 752 } 753 754 int 755 xfs_break_layouts( 756 struct inode *inode, 757 uint *iolock, 758 enum layout_break_reason reason) 759 { 760 bool retry; 761 int error; 762 763 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 764 765 do { 766 retry = false; 767 switch (reason) { 768 case BREAK_UNMAP: 769 error = xfs_break_dax_layouts(inode, *iolock, &retry); 770 if (error || retry) 771 break; 772 /* fall through */ 773 case BREAK_WRITE: 774 error = xfs_break_leased_layouts(inode, iolock, &retry); 775 break; 776 default: 777 WARN_ON_ONCE(1); 778 error = -EINVAL; 779 } 780 } while (error == 0 && retry); 781 782 return error; 783 } 784 785 #define XFS_FALLOC_FL_SUPPORTED \ 786 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 787 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 788 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 789 790 STATIC long 791 xfs_file_fallocate( 792 struct file *file, 793 int mode, 794 loff_t offset, 795 loff_t len) 796 { 797 struct inode *inode = file_inode(file); 798 struct xfs_inode *ip = XFS_I(inode); 799 long error; 800 enum xfs_prealloc_flags flags = 0; 801 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 802 loff_t new_size = 0; 803 bool do_file_insert = false; 804 805 if (!S_ISREG(inode->i_mode)) 806 return -EINVAL; 807 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 808 return -EOPNOTSUPP; 809 810 xfs_ilock(ip, iolock); 811 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 812 if (error) 813 goto out_unlock; 814 815 if (mode & FALLOC_FL_PUNCH_HOLE) { 816 error = xfs_free_file_space(ip, offset, len); 817 if (error) 818 goto out_unlock; 819 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 820 unsigned int blksize_mask = i_blocksize(inode) - 1; 821 822 if (offset & blksize_mask || len & blksize_mask) { 823 error = -EINVAL; 824 goto out_unlock; 825 } 826 827 /* 828 * There is no need to overlap collapse range with EOF, 829 * in which case it is effectively a truncate operation 830 */ 831 if (offset + len >= i_size_read(inode)) { 832 error = -EINVAL; 833 goto out_unlock; 834 } 835 836 new_size = i_size_read(inode) - len; 837 838 error = xfs_collapse_file_space(ip, offset, len); 839 if (error) 840 goto out_unlock; 841 } else if (mode & FALLOC_FL_INSERT_RANGE) { 842 unsigned int blksize_mask = i_blocksize(inode) - 1; 843 loff_t isize = i_size_read(inode); 844 845 if (offset & blksize_mask || len & blksize_mask) { 846 error = -EINVAL; 847 goto out_unlock; 848 } 849 850 /* 851 * New inode size must not exceed ->s_maxbytes, accounting for 852 * possible signed overflow. 853 */ 854 if (inode->i_sb->s_maxbytes - isize < len) { 855 error = -EFBIG; 856 goto out_unlock; 857 } 858 new_size = isize + len; 859 860 /* Offset should be less than i_size */ 861 if (offset >= isize) { 862 error = -EINVAL; 863 goto out_unlock; 864 } 865 do_file_insert = true; 866 } else { 867 flags |= XFS_PREALLOC_SET; 868 869 if (!(mode & FALLOC_FL_KEEP_SIZE) && 870 offset + len > i_size_read(inode)) { 871 new_size = offset + len; 872 error = inode_newsize_ok(inode, new_size); 873 if (error) 874 goto out_unlock; 875 } 876 877 if (mode & FALLOC_FL_ZERO_RANGE) 878 error = xfs_zero_file_space(ip, offset, len); 879 else { 880 if (mode & FALLOC_FL_UNSHARE_RANGE) { 881 error = xfs_reflink_unshare(ip, offset, len); 882 if (error) 883 goto out_unlock; 884 } 885 error = xfs_alloc_file_space(ip, offset, len, 886 XFS_BMAPI_PREALLOC); 887 } 888 if (error) 889 goto out_unlock; 890 } 891 892 if (file->f_flags & O_DSYNC) 893 flags |= XFS_PREALLOC_SYNC; 894 895 error = xfs_update_prealloc_flags(ip, flags); 896 if (error) 897 goto out_unlock; 898 899 /* Change file size if needed */ 900 if (new_size) { 901 struct iattr iattr; 902 903 iattr.ia_valid = ATTR_SIZE; 904 iattr.ia_size = new_size; 905 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 906 if (error) 907 goto out_unlock; 908 } 909 910 /* 911 * Perform hole insertion now that the file size has been 912 * updated so that if we crash during the operation we don't 913 * leave shifted extents past EOF and hence losing access to 914 * the data that is contained within them. 915 */ 916 if (do_file_insert) 917 error = xfs_insert_file_space(ip, offset, len); 918 919 out_unlock: 920 xfs_iunlock(ip, iolock); 921 return error; 922 } 923 924 STATIC int 925 xfs_file_clone_range( 926 struct file *file_in, 927 loff_t pos_in, 928 struct file *file_out, 929 loff_t pos_out, 930 u64 len) 931 { 932 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 933 len, false); 934 } 935 936 STATIC ssize_t 937 xfs_file_dedupe_range( 938 struct file *src_file, 939 u64 loff, 940 u64 len, 941 struct file *dst_file, 942 u64 dst_loff) 943 { 944 struct inode *srci = file_inode(src_file); 945 u64 max_dedupe; 946 int error; 947 948 /* 949 * Since we have to read all these pages in to compare them, cut 950 * it off at MAX_RW_COUNT/2 rounded down to the nearest block. 951 * That means we won't do more than MAX_RW_COUNT IO per request. 952 */ 953 max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1); 954 if (len > max_dedupe) 955 len = max_dedupe; 956 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 957 len, true); 958 if (error) 959 return error; 960 return len; 961 } 962 963 STATIC int 964 xfs_file_open( 965 struct inode *inode, 966 struct file *file) 967 { 968 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 969 return -EFBIG; 970 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 971 return -EIO; 972 file->f_mode |= FMODE_NOWAIT; 973 return 0; 974 } 975 976 STATIC int 977 xfs_dir_open( 978 struct inode *inode, 979 struct file *file) 980 { 981 struct xfs_inode *ip = XFS_I(inode); 982 int mode; 983 int error; 984 985 error = xfs_file_open(inode, file); 986 if (error) 987 return error; 988 989 /* 990 * If there are any blocks, read-ahead block 0 as we're almost 991 * certain to have the next operation be a read there. 992 */ 993 mode = xfs_ilock_data_map_shared(ip); 994 if (ip->i_d.di_nextents > 0) 995 error = xfs_dir3_data_readahead(ip, 0, -1); 996 xfs_iunlock(ip, mode); 997 return error; 998 } 999 1000 STATIC int 1001 xfs_file_release( 1002 struct inode *inode, 1003 struct file *filp) 1004 { 1005 return xfs_release(XFS_I(inode)); 1006 } 1007 1008 STATIC int 1009 xfs_file_readdir( 1010 struct file *file, 1011 struct dir_context *ctx) 1012 { 1013 struct inode *inode = file_inode(file); 1014 xfs_inode_t *ip = XFS_I(inode); 1015 size_t bufsize; 1016 1017 /* 1018 * The Linux API doesn't pass down the total size of the buffer 1019 * we read into down to the filesystem. With the filldir concept 1020 * it's not needed for correct information, but the XFS dir2 leaf 1021 * code wants an estimate of the buffer size to calculate it's 1022 * readahead window and size the buffers used for mapping to 1023 * physical blocks. 1024 * 1025 * Try to give it an estimate that's good enough, maybe at some 1026 * point we can change the ->readdir prototype to include the 1027 * buffer size. For now we use the current glibc buffer size. 1028 */ 1029 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1030 1031 return xfs_readdir(NULL, ip, ctx, bufsize); 1032 } 1033 1034 STATIC loff_t 1035 xfs_file_llseek( 1036 struct file *file, 1037 loff_t offset, 1038 int whence) 1039 { 1040 struct inode *inode = file->f_mapping->host; 1041 1042 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1043 return -EIO; 1044 1045 switch (whence) { 1046 default: 1047 return generic_file_llseek(file, offset, whence); 1048 case SEEK_HOLE: 1049 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 1050 break; 1051 case SEEK_DATA: 1052 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 1053 break; 1054 } 1055 1056 if (offset < 0) 1057 return offset; 1058 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1059 } 1060 1061 /* 1062 * Locking for serialisation of IO during page faults. This results in a lock 1063 * ordering of: 1064 * 1065 * mmap_sem (MM) 1066 * sb_start_pagefault(vfs, freeze) 1067 * i_mmaplock (XFS - truncate serialisation) 1068 * page_lock (MM) 1069 * i_lock (XFS - extent map serialisation) 1070 */ 1071 static vm_fault_t 1072 __xfs_filemap_fault( 1073 struct vm_fault *vmf, 1074 enum page_entry_size pe_size, 1075 bool write_fault) 1076 { 1077 struct inode *inode = file_inode(vmf->vma->vm_file); 1078 struct xfs_inode *ip = XFS_I(inode); 1079 vm_fault_t ret; 1080 1081 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1082 1083 if (write_fault) { 1084 sb_start_pagefault(inode->i_sb); 1085 file_update_time(vmf->vma->vm_file); 1086 } 1087 1088 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1089 if (IS_DAX(inode)) { 1090 pfn_t pfn; 1091 1092 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1093 if (ret & VM_FAULT_NEEDDSYNC) 1094 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1095 } else { 1096 if (write_fault) 1097 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1098 else 1099 ret = filemap_fault(vmf); 1100 } 1101 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1102 1103 if (write_fault) 1104 sb_end_pagefault(inode->i_sb); 1105 return ret; 1106 } 1107 1108 static vm_fault_t 1109 xfs_filemap_fault( 1110 struct vm_fault *vmf) 1111 { 1112 /* DAX can shortcut the normal fault path on write faults! */ 1113 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1114 IS_DAX(file_inode(vmf->vma->vm_file)) && 1115 (vmf->flags & FAULT_FLAG_WRITE)); 1116 } 1117 1118 static vm_fault_t 1119 xfs_filemap_huge_fault( 1120 struct vm_fault *vmf, 1121 enum page_entry_size pe_size) 1122 { 1123 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1124 return VM_FAULT_FALLBACK; 1125 1126 /* DAX can shortcut the normal fault path on write faults! */ 1127 return __xfs_filemap_fault(vmf, pe_size, 1128 (vmf->flags & FAULT_FLAG_WRITE)); 1129 } 1130 1131 static vm_fault_t 1132 xfs_filemap_page_mkwrite( 1133 struct vm_fault *vmf) 1134 { 1135 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1136 } 1137 1138 /* 1139 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1140 * on write faults. In reality, it needs to serialise against truncate and 1141 * prepare memory for writing so handle is as standard write fault. 1142 */ 1143 static vm_fault_t 1144 xfs_filemap_pfn_mkwrite( 1145 struct vm_fault *vmf) 1146 { 1147 1148 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1149 } 1150 1151 static const struct vm_operations_struct xfs_file_vm_ops = { 1152 .fault = xfs_filemap_fault, 1153 .huge_fault = xfs_filemap_huge_fault, 1154 .map_pages = filemap_map_pages, 1155 .page_mkwrite = xfs_filemap_page_mkwrite, 1156 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1157 }; 1158 1159 STATIC int 1160 xfs_file_mmap( 1161 struct file *filp, 1162 struct vm_area_struct *vma) 1163 { 1164 /* 1165 * We don't support synchronous mappings for non-DAX files. At least 1166 * until someone comes with a sensible use case. 1167 */ 1168 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) 1169 return -EOPNOTSUPP; 1170 1171 file_accessed(filp); 1172 vma->vm_ops = &xfs_file_vm_ops; 1173 if (IS_DAX(file_inode(filp))) 1174 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1175 return 0; 1176 } 1177 1178 const struct file_operations xfs_file_operations = { 1179 .llseek = xfs_file_llseek, 1180 .read_iter = xfs_file_read_iter, 1181 .write_iter = xfs_file_write_iter, 1182 .splice_read = generic_file_splice_read, 1183 .splice_write = iter_file_splice_write, 1184 .unlocked_ioctl = xfs_file_ioctl, 1185 #ifdef CONFIG_COMPAT 1186 .compat_ioctl = xfs_file_compat_ioctl, 1187 #endif 1188 .mmap = xfs_file_mmap, 1189 .mmap_supported_flags = MAP_SYNC, 1190 .open = xfs_file_open, 1191 .release = xfs_file_release, 1192 .fsync = xfs_file_fsync, 1193 .get_unmapped_area = thp_get_unmapped_area, 1194 .fallocate = xfs_file_fallocate, 1195 .clone_file_range = xfs_file_clone_range, 1196 .dedupe_file_range = xfs_file_dedupe_range, 1197 }; 1198 1199 const struct file_operations xfs_dir_file_operations = { 1200 .open = xfs_dir_open, 1201 .read = generic_read_dir, 1202 .iterate_shared = xfs_file_readdir, 1203 .llseek = generic_file_llseek, 1204 .unlocked_ioctl = xfs_file_ioctl, 1205 #ifdef CONFIG_COMPAT 1206 .compat_ioctl = xfs_file_compat_ioctl, 1207 #endif 1208 .fsync = xfs_dir_fsync, 1209 }; 1210