xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 3932b9ca)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
41 #include "xfs_icache.h"
42 
43 #include <linux/aio.h>
44 #include <linux/dcache.h>
45 #include <linux/falloc.h>
46 #include <linux/pagevec.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Locking primitives for read and write IO paths to ensure we consistently use
52  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53  */
54 static inline void
55 xfs_rw_ilock(
56 	struct xfs_inode	*ip,
57 	int			type)
58 {
59 	if (type & XFS_IOLOCK_EXCL)
60 		mutex_lock(&VFS_I(ip)->i_mutex);
61 	xfs_ilock(ip, type);
62 }
63 
64 static inline void
65 xfs_rw_iunlock(
66 	struct xfs_inode	*ip,
67 	int			type)
68 {
69 	xfs_iunlock(ip, type);
70 	if (type & XFS_IOLOCK_EXCL)
71 		mutex_unlock(&VFS_I(ip)->i_mutex);
72 }
73 
74 static inline void
75 xfs_rw_ilock_demote(
76 	struct xfs_inode	*ip,
77 	int			type)
78 {
79 	xfs_ilock_demote(ip, type);
80 	if (type & XFS_IOLOCK_EXCL)
81 		mutex_unlock(&VFS_I(ip)->i_mutex);
82 }
83 
84 /*
85  *	xfs_iozero
86  *
87  *	xfs_iozero clears the specified range of buffer supplied,
88  *	and marks all the affected blocks as valid and modified.  If
89  *	an affected block is not allocated, it will be allocated.  If
90  *	an affected block is not completely overwritten, and is not
91  *	valid before the operation, it will be read from disk before
92  *	being partially zeroed.
93  */
94 int
95 xfs_iozero(
96 	struct xfs_inode	*ip,	/* inode			*/
97 	loff_t			pos,	/* offset in file		*/
98 	size_t			count)	/* size of data to zero		*/
99 {
100 	struct page		*page;
101 	struct address_space	*mapping;
102 	int			status;
103 
104 	mapping = VFS_I(ip)->i_mapping;
105 	do {
106 		unsigned offset, bytes;
107 		void *fsdata;
108 
109 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
110 		bytes = PAGE_CACHE_SIZE - offset;
111 		if (bytes > count)
112 			bytes = count;
113 
114 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
115 					AOP_FLAG_UNINTERRUPTIBLE,
116 					&page, &fsdata);
117 		if (status)
118 			break;
119 
120 		zero_user(page, offset, bytes);
121 
122 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
123 					page, fsdata);
124 		WARN_ON(status <= 0); /* can't return less than zero! */
125 		pos += bytes;
126 		count -= bytes;
127 		status = 0;
128 	} while (count);
129 
130 	return (-status);
131 }
132 
133 /*
134  * Fsync operations on directories are much simpler than on regular files,
135  * as there is no file data to flush, and thus also no need for explicit
136  * cache flush operations, and there are no non-transaction metadata updates
137  * on directories either.
138  */
139 STATIC int
140 xfs_dir_fsync(
141 	struct file		*file,
142 	loff_t			start,
143 	loff_t			end,
144 	int			datasync)
145 {
146 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
147 	struct xfs_mount	*mp = ip->i_mount;
148 	xfs_lsn_t		lsn = 0;
149 
150 	trace_xfs_dir_fsync(ip);
151 
152 	xfs_ilock(ip, XFS_ILOCK_SHARED);
153 	if (xfs_ipincount(ip))
154 		lsn = ip->i_itemp->ili_last_lsn;
155 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
156 
157 	if (!lsn)
158 		return 0;
159 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
160 }
161 
162 STATIC int
163 xfs_file_fsync(
164 	struct file		*file,
165 	loff_t			start,
166 	loff_t			end,
167 	int			datasync)
168 {
169 	struct inode		*inode = file->f_mapping->host;
170 	struct xfs_inode	*ip = XFS_I(inode);
171 	struct xfs_mount	*mp = ip->i_mount;
172 	int			error = 0;
173 	int			log_flushed = 0;
174 	xfs_lsn_t		lsn = 0;
175 
176 	trace_xfs_file_fsync(ip);
177 
178 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
179 	if (error)
180 		return error;
181 
182 	if (XFS_FORCED_SHUTDOWN(mp))
183 		return -EIO;
184 
185 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
186 
187 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
188 		/*
189 		 * If we have an RT and/or log subvolume we need to make sure
190 		 * to flush the write cache the device used for file data
191 		 * first.  This is to ensure newly written file data make
192 		 * it to disk before logging the new inode size in case of
193 		 * an extending write.
194 		 */
195 		if (XFS_IS_REALTIME_INODE(ip))
196 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
197 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
198 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 	}
200 
201 	/*
202 	 * All metadata updates are logged, which means that we just have
203 	 * to flush the log up to the latest LSN that touched the inode.
204 	 */
205 	xfs_ilock(ip, XFS_ILOCK_SHARED);
206 	if (xfs_ipincount(ip)) {
207 		if (!datasync ||
208 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
209 			lsn = ip->i_itemp->ili_last_lsn;
210 	}
211 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
212 
213 	if (lsn)
214 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
215 
216 	/*
217 	 * If we only have a single device, and the log force about was
218 	 * a no-op we might have to flush the data device cache here.
219 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
220 	 * an already allocated file and thus do not have any metadata to
221 	 * commit.
222 	 */
223 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
224 	    mp->m_logdev_targp == mp->m_ddev_targp &&
225 	    !XFS_IS_REALTIME_INODE(ip) &&
226 	    !log_flushed)
227 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
228 
229 	return error;
230 }
231 
232 STATIC ssize_t
233 xfs_file_read_iter(
234 	struct kiocb		*iocb,
235 	struct iov_iter		*to)
236 {
237 	struct file		*file = iocb->ki_filp;
238 	struct inode		*inode = file->f_mapping->host;
239 	struct xfs_inode	*ip = XFS_I(inode);
240 	struct xfs_mount	*mp = ip->i_mount;
241 	size_t			size = iov_iter_count(to);
242 	ssize_t			ret = 0;
243 	int			ioflags = 0;
244 	xfs_fsize_t		n;
245 	loff_t			pos = iocb->ki_pos;
246 
247 	XFS_STATS_INC(xs_read_calls);
248 
249 	if (unlikely(file->f_flags & O_DIRECT))
250 		ioflags |= XFS_IO_ISDIRECT;
251 	if (file->f_mode & FMODE_NOCMTIME)
252 		ioflags |= XFS_IO_INVIS;
253 
254 	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
255 		xfs_buftarg_t	*target =
256 			XFS_IS_REALTIME_INODE(ip) ?
257 				mp->m_rtdev_targp : mp->m_ddev_targp;
258 		/* DIO must be aligned to device logical sector size */
259 		if ((pos | size) & target->bt_logical_sectormask) {
260 			if (pos == i_size_read(inode))
261 				return 0;
262 			return -EINVAL;
263 		}
264 	}
265 
266 	n = mp->m_super->s_maxbytes - pos;
267 	if (n <= 0 || size == 0)
268 		return 0;
269 
270 	if (n < size)
271 		size = n;
272 
273 	if (XFS_FORCED_SHUTDOWN(mp))
274 		return -EIO;
275 
276 	/*
277 	 * Locking is a bit tricky here. If we take an exclusive lock
278 	 * for direct IO, we effectively serialise all new concurrent
279 	 * read IO to this file and block it behind IO that is currently in
280 	 * progress because IO in progress holds the IO lock shared. We only
281 	 * need to hold the lock exclusive to blow away the page cache, so
282 	 * only take lock exclusively if the page cache needs invalidation.
283 	 * This allows the normal direct IO case of no page cache pages to
284 	 * proceeed concurrently without serialisation.
285 	 */
286 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
287 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
288 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
289 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
290 
291 		if (inode->i_mapping->nrpages) {
292 			ret = filemap_write_and_wait_range(
293 							VFS_I(ip)->i_mapping,
294 							pos, pos + size - 1);
295 			if (ret) {
296 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
297 				return ret;
298 			}
299 
300 			/*
301 			 * Invalidate whole pages. This can return an error if
302 			 * we fail to invalidate a page, but this should never
303 			 * happen on XFS. Warn if it does fail.
304 			 */
305 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
306 					pos >> PAGE_CACHE_SHIFT,
307 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
308 			WARN_ON_ONCE(ret);
309 			ret = 0;
310 		}
311 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
312 	}
313 
314 	trace_xfs_file_read(ip, size, pos, ioflags);
315 
316 	ret = generic_file_read_iter(iocb, to);
317 	if (ret > 0)
318 		XFS_STATS_ADD(xs_read_bytes, ret);
319 
320 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
321 	return ret;
322 }
323 
324 STATIC ssize_t
325 xfs_file_splice_read(
326 	struct file		*infilp,
327 	loff_t			*ppos,
328 	struct pipe_inode_info	*pipe,
329 	size_t			count,
330 	unsigned int		flags)
331 {
332 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
333 	int			ioflags = 0;
334 	ssize_t			ret;
335 
336 	XFS_STATS_INC(xs_read_calls);
337 
338 	if (infilp->f_mode & FMODE_NOCMTIME)
339 		ioflags |= XFS_IO_INVIS;
340 
341 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
342 		return -EIO;
343 
344 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
345 
346 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
347 
348 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
349 	if (ret > 0)
350 		XFS_STATS_ADD(xs_read_bytes, ret);
351 
352 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
353 	return ret;
354 }
355 
356 /*
357  * This routine is called to handle zeroing any space in the last block of the
358  * file that is beyond the EOF.  We do this since the size is being increased
359  * without writing anything to that block and we don't want to read the
360  * garbage on the disk.
361  */
362 STATIC int				/* error (positive) */
363 xfs_zero_last_block(
364 	struct xfs_inode	*ip,
365 	xfs_fsize_t		offset,
366 	xfs_fsize_t		isize)
367 {
368 	struct xfs_mount	*mp = ip->i_mount;
369 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
370 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
371 	int			zero_len;
372 	int			nimaps = 1;
373 	int			error = 0;
374 	struct xfs_bmbt_irec	imap;
375 
376 	xfs_ilock(ip, XFS_ILOCK_EXCL);
377 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
378 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
379 	if (error)
380 		return error;
381 
382 	ASSERT(nimaps > 0);
383 
384 	/*
385 	 * If the block underlying isize is just a hole, then there
386 	 * is nothing to zero.
387 	 */
388 	if (imap.br_startblock == HOLESTARTBLOCK)
389 		return 0;
390 
391 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
392 	if (isize + zero_len > offset)
393 		zero_len = offset - isize;
394 	return xfs_iozero(ip, isize, zero_len);
395 }
396 
397 /*
398  * Zero any on disk space between the current EOF and the new, larger EOF.
399  *
400  * This handles the normal case of zeroing the remainder of the last block in
401  * the file and the unusual case of zeroing blocks out beyond the size of the
402  * file.  This second case only happens with fixed size extents and when the
403  * system crashes before the inode size was updated but after blocks were
404  * allocated.
405  *
406  * Expects the iolock to be held exclusive, and will take the ilock internally.
407  */
408 int					/* error (positive) */
409 xfs_zero_eof(
410 	struct xfs_inode	*ip,
411 	xfs_off_t		offset,		/* starting I/O offset */
412 	xfs_fsize_t		isize)		/* current inode size */
413 {
414 	struct xfs_mount	*mp = ip->i_mount;
415 	xfs_fileoff_t		start_zero_fsb;
416 	xfs_fileoff_t		end_zero_fsb;
417 	xfs_fileoff_t		zero_count_fsb;
418 	xfs_fileoff_t		last_fsb;
419 	xfs_fileoff_t		zero_off;
420 	xfs_fsize_t		zero_len;
421 	int			nimaps;
422 	int			error = 0;
423 	struct xfs_bmbt_irec	imap;
424 
425 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
426 	ASSERT(offset > isize);
427 
428 	/*
429 	 * First handle zeroing the block on which isize resides.
430 	 *
431 	 * We only zero a part of that block so it is handled specially.
432 	 */
433 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
434 		error = xfs_zero_last_block(ip, offset, isize);
435 		if (error)
436 			return error;
437 	}
438 
439 	/*
440 	 * Calculate the range between the new size and the old where blocks
441 	 * needing to be zeroed may exist.
442 	 *
443 	 * To get the block where the last byte in the file currently resides,
444 	 * we need to subtract one from the size and truncate back to a block
445 	 * boundary.  We subtract 1 in case the size is exactly on a block
446 	 * boundary.
447 	 */
448 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
449 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
450 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
451 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
452 	if (last_fsb == end_zero_fsb) {
453 		/*
454 		 * The size was only incremented on its last block.
455 		 * We took care of that above, so just return.
456 		 */
457 		return 0;
458 	}
459 
460 	ASSERT(start_zero_fsb <= end_zero_fsb);
461 	while (start_zero_fsb <= end_zero_fsb) {
462 		nimaps = 1;
463 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
464 
465 		xfs_ilock(ip, XFS_ILOCK_EXCL);
466 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
467 					  &imap, &nimaps, 0);
468 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
469 		if (error)
470 			return error;
471 
472 		ASSERT(nimaps > 0);
473 
474 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
475 		    imap.br_startblock == HOLESTARTBLOCK) {
476 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
477 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
478 			continue;
479 		}
480 
481 		/*
482 		 * There are blocks we need to zero.
483 		 */
484 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
485 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
486 
487 		if ((zero_off + zero_len) > offset)
488 			zero_len = offset - zero_off;
489 
490 		error = xfs_iozero(ip, zero_off, zero_len);
491 		if (error)
492 			return error;
493 
494 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
495 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
496 	}
497 
498 	return 0;
499 }
500 
501 /*
502  * Common pre-write limit and setup checks.
503  *
504  * Called with the iolocked held either shared and exclusive according to
505  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
506  * if called for a direct write beyond i_size.
507  */
508 STATIC ssize_t
509 xfs_file_aio_write_checks(
510 	struct file		*file,
511 	loff_t			*pos,
512 	size_t			*count,
513 	int			*iolock)
514 {
515 	struct inode		*inode = file->f_mapping->host;
516 	struct xfs_inode	*ip = XFS_I(inode);
517 	int			error = 0;
518 
519 restart:
520 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
521 	if (error)
522 		return error;
523 
524 	/*
525 	 * If the offset is beyond the size of the file, we need to zero any
526 	 * blocks that fall between the existing EOF and the start of this
527 	 * write.  If zeroing is needed and we are currently holding the
528 	 * iolock shared, we need to update it to exclusive which implies
529 	 * having to redo all checks before.
530 	 */
531 	if (*pos > i_size_read(inode)) {
532 		if (*iolock == XFS_IOLOCK_SHARED) {
533 			xfs_rw_iunlock(ip, *iolock);
534 			*iolock = XFS_IOLOCK_EXCL;
535 			xfs_rw_ilock(ip, *iolock);
536 			goto restart;
537 		}
538 		error = xfs_zero_eof(ip, *pos, i_size_read(inode));
539 		if (error)
540 			return error;
541 	}
542 
543 	/*
544 	 * Updating the timestamps will grab the ilock again from
545 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
546 	 * lock above.  Eventually we should look into a way to avoid
547 	 * the pointless lock roundtrip.
548 	 */
549 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
550 		error = file_update_time(file);
551 		if (error)
552 			return error;
553 	}
554 
555 	/*
556 	 * If we're writing the file then make sure to clear the setuid and
557 	 * setgid bits if the process is not being run by root.  This keeps
558 	 * people from modifying setuid and setgid binaries.
559 	 */
560 	return file_remove_suid(file);
561 }
562 
563 /*
564  * xfs_file_dio_aio_write - handle direct IO writes
565  *
566  * Lock the inode appropriately to prepare for and issue a direct IO write.
567  * By separating it from the buffered write path we remove all the tricky to
568  * follow locking changes and looping.
569  *
570  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
571  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
572  * pages are flushed out.
573  *
574  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
575  * allowing them to be done in parallel with reads and other direct IO writes.
576  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
577  * needs to do sub-block zeroing and that requires serialisation against other
578  * direct IOs to the same block. In this case we need to serialise the
579  * submission of the unaligned IOs so that we don't get racing block zeroing in
580  * the dio layer.  To avoid the problem with aio, we also need to wait for
581  * outstanding IOs to complete so that unwritten extent conversion is completed
582  * before we try to map the overlapping block. This is currently implemented by
583  * hitting it with a big hammer (i.e. inode_dio_wait()).
584  *
585  * Returns with locks held indicated by @iolock and errors indicated by
586  * negative return values.
587  */
588 STATIC ssize_t
589 xfs_file_dio_aio_write(
590 	struct kiocb		*iocb,
591 	struct iov_iter		*from)
592 {
593 	struct file		*file = iocb->ki_filp;
594 	struct address_space	*mapping = file->f_mapping;
595 	struct inode		*inode = mapping->host;
596 	struct xfs_inode	*ip = XFS_I(inode);
597 	struct xfs_mount	*mp = ip->i_mount;
598 	ssize_t			ret = 0;
599 	int			unaligned_io = 0;
600 	int			iolock;
601 	size_t			count = iov_iter_count(from);
602 	loff_t			pos = iocb->ki_pos;
603 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
604 					mp->m_rtdev_targp : mp->m_ddev_targp;
605 
606 	/* DIO must be aligned to device logical sector size */
607 	if ((pos | count) & target->bt_logical_sectormask)
608 		return -EINVAL;
609 
610 	/* "unaligned" here means not aligned to a filesystem block */
611 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
612 		unaligned_io = 1;
613 
614 	/*
615 	 * We don't need to take an exclusive lock unless there page cache needs
616 	 * to be invalidated or unaligned IO is being executed. We don't need to
617 	 * consider the EOF extension case here because
618 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
619 	 * EOF zeroing cases and fill out the new inode size as appropriate.
620 	 */
621 	if (unaligned_io || mapping->nrpages)
622 		iolock = XFS_IOLOCK_EXCL;
623 	else
624 		iolock = XFS_IOLOCK_SHARED;
625 	xfs_rw_ilock(ip, iolock);
626 
627 	/*
628 	 * Recheck if there are cached pages that need invalidate after we got
629 	 * the iolock to protect against other threads adding new pages while
630 	 * we were waiting for the iolock.
631 	 */
632 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
633 		xfs_rw_iunlock(ip, iolock);
634 		iolock = XFS_IOLOCK_EXCL;
635 		xfs_rw_ilock(ip, iolock);
636 	}
637 
638 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
639 	if (ret)
640 		goto out;
641 	iov_iter_truncate(from, count);
642 
643 	if (mapping->nrpages) {
644 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
645 						    pos, pos + count - 1);
646 		if (ret)
647 			goto out;
648 		/*
649 		 * Invalidate whole pages. This can return an error if
650 		 * we fail to invalidate a page, but this should never
651 		 * happen on XFS. Warn if it does fail.
652 		 */
653 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
654 					pos >> PAGE_CACHE_SHIFT,
655 					(pos + count - 1) >> PAGE_CACHE_SHIFT);
656 		WARN_ON_ONCE(ret);
657 		ret = 0;
658 	}
659 
660 	/*
661 	 * If we are doing unaligned IO, wait for all other IO to drain,
662 	 * otherwise demote the lock if we had to flush cached pages
663 	 */
664 	if (unaligned_io)
665 		inode_dio_wait(inode);
666 	else if (iolock == XFS_IOLOCK_EXCL) {
667 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
668 		iolock = XFS_IOLOCK_SHARED;
669 	}
670 
671 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
672 	ret = generic_file_direct_write(iocb, from, pos);
673 
674 out:
675 	xfs_rw_iunlock(ip, iolock);
676 
677 	/* No fallback to buffered IO on errors for XFS. */
678 	ASSERT(ret < 0 || ret == count);
679 	return ret;
680 }
681 
682 STATIC ssize_t
683 xfs_file_buffered_aio_write(
684 	struct kiocb		*iocb,
685 	struct iov_iter		*from)
686 {
687 	struct file		*file = iocb->ki_filp;
688 	struct address_space	*mapping = file->f_mapping;
689 	struct inode		*inode = mapping->host;
690 	struct xfs_inode	*ip = XFS_I(inode);
691 	ssize_t			ret;
692 	int			enospc = 0;
693 	int			iolock = XFS_IOLOCK_EXCL;
694 	loff_t			pos = iocb->ki_pos;
695 	size_t			count = iov_iter_count(from);
696 
697 	xfs_rw_ilock(ip, iolock);
698 
699 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
700 	if (ret)
701 		goto out;
702 
703 	iov_iter_truncate(from, count);
704 	/* We can write back this queue in page reclaim */
705 	current->backing_dev_info = mapping->backing_dev_info;
706 
707 write_retry:
708 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
709 	ret = generic_perform_write(file, from, pos);
710 	if (likely(ret >= 0))
711 		iocb->ki_pos = pos + ret;
712 
713 	/*
714 	 * If we hit a space limit, try to free up some lingering preallocated
715 	 * space before returning an error. In the case of ENOSPC, first try to
716 	 * write back all dirty inodes to free up some of the excess reserved
717 	 * metadata space. This reduces the chances that the eofblocks scan
718 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
719 	 * also behaves as a filter to prevent too many eofblocks scans from
720 	 * running at the same time.
721 	 */
722 	if (ret == -EDQUOT && !enospc) {
723 		enospc = xfs_inode_free_quota_eofblocks(ip);
724 		if (enospc)
725 			goto write_retry;
726 	} else if (ret == -ENOSPC && !enospc) {
727 		struct xfs_eofblocks eofb = {0};
728 
729 		enospc = 1;
730 		xfs_flush_inodes(ip->i_mount);
731 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
732 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
733 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
734 		goto write_retry;
735 	}
736 
737 	current->backing_dev_info = NULL;
738 out:
739 	xfs_rw_iunlock(ip, iolock);
740 	return ret;
741 }
742 
743 STATIC ssize_t
744 xfs_file_write_iter(
745 	struct kiocb		*iocb,
746 	struct iov_iter		*from)
747 {
748 	struct file		*file = iocb->ki_filp;
749 	struct address_space	*mapping = file->f_mapping;
750 	struct inode		*inode = mapping->host;
751 	struct xfs_inode	*ip = XFS_I(inode);
752 	ssize_t			ret;
753 	size_t			ocount = iov_iter_count(from);
754 
755 	XFS_STATS_INC(xs_write_calls);
756 
757 	if (ocount == 0)
758 		return 0;
759 
760 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
761 		return -EIO;
762 
763 	if (unlikely(file->f_flags & O_DIRECT))
764 		ret = xfs_file_dio_aio_write(iocb, from);
765 	else
766 		ret = xfs_file_buffered_aio_write(iocb, from);
767 
768 	if (ret > 0) {
769 		ssize_t err;
770 
771 		XFS_STATS_ADD(xs_write_bytes, ret);
772 
773 		/* Handle various SYNC-type writes */
774 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
775 		if (err < 0)
776 			ret = err;
777 	}
778 	return ret;
779 }
780 
781 STATIC long
782 xfs_file_fallocate(
783 	struct file		*file,
784 	int			mode,
785 	loff_t			offset,
786 	loff_t			len)
787 {
788 	struct inode		*inode = file_inode(file);
789 	struct xfs_inode	*ip = XFS_I(inode);
790 	struct xfs_trans	*tp;
791 	long			error;
792 	loff_t			new_size = 0;
793 
794 	if (!S_ISREG(inode->i_mode))
795 		return -EINVAL;
796 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
797 		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
798 		return -EOPNOTSUPP;
799 
800 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
801 	if (mode & FALLOC_FL_PUNCH_HOLE) {
802 		error = xfs_free_file_space(ip, offset, len);
803 		if (error)
804 			goto out_unlock;
805 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
806 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
807 
808 		if (offset & blksize_mask || len & blksize_mask) {
809 			error = -EINVAL;
810 			goto out_unlock;
811 		}
812 
813 		/*
814 		 * There is no need to overlap collapse range with EOF,
815 		 * in which case it is effectively a truncate operation
816 		 */
817 		if (offset + len >= i_size_read(inode)) {
818 			error = -EINVAL;
819 			goto out_unlock;
820 		}
821 
822 		new_size = i_size_read(inode) - len;
823 
824 		error = xfs_collapse_file_space(ip, offset, len);
825 		if (error)
826 			goto out_unlock;
827 	} else {
828 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
829 		    offset + len > i_size_read(inode)) {
830 			new_size = offset + len;
831 			error = inode_newsize_ok(inode, new_size);
832 			if (error)
833 				goto out_unlock;
834 		}
835 
836 		if (mode & FALLOC_FL_ZERO_RANGE)
837 			error = xfs_zero_file_space(ip, offset, len);
838 		else
839 			error = xfs_alloc_file_space(ip, offset, len,
840 						     XFS_BMAPI_PREALLOC);
841 		if (error)
842 			goto out_unlock;
843 	}
844 
845 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
846 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
847 	if (error) {
848 		xfs_trans_cancel(tp, 0);
849 		goto out_unlock;
850 	}
851 
852 	xfs_ilock(ip, XFS_ILOCK_EXCL);
853 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
854 	ip->i_d.di_mode &= ~S_ISUID;
855 	if (ip->i_d.di_mode & S_IXGRP)
856 		ip->i_d.di_mode &= ~S_ISGID;
857 
858 	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
859 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
860 
861 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
862 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
863 
864 	if (file->f_flags & O_DSYNC)
865 		xfs_trans_set_sync(tp);
866 	error = xfs_trans_commit(tp, 0);
867 	if (error)
868 		goto out_unlock;
869 
870 	/* Change file size if needed */
871 	if (new_size) {
872 		struct iattr iattr;
873 
874 		iattr.ia_valid = ATTR_SIZE;
875 		iattr.ia_size = new_size;
876 		error = xfs_setattr_size(ip, &iattr);
877 	}
878 
879 out_unlock:
880 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
881 	return error;
882 }
883 
884 
885 STATIC int
886 xfs_file_open(
887 	struct inode	*inode,
888 	struct file	*file)
889 {
890 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
891 		return -EFBIG;
892 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
893 		return -EIO;
894 	return 0;
895 }
896 
897 STATIC int
898 xfs_dir_open(
899 	struct inode	*inode,
900 	struct file	*file)
901 {
902 	struct xfs_inode *ip = XFS_I(inode);
903 	int		mode;
904 	int		error;
905 
906 	error = xfs_file_open(inode, file);
907 	if (error)
908 		return error;
909 
910 	/*
911 	 * If there are any blocks, read-ahead block 0 as we're almost
912 	 * certain to have the next operation be a read there.
913 	 */
914 	mode = xfs_ilock_data_map_shared(ip);
915 	if (ip->i_d.di_nextents > 0)
916 		xfs_dir3_data_readahead(ip, 0, -1);
917 	xfs_iunlock(ip, mode);
918 	return 0;
919 }
920 
921 STATIC int
922 xfs_file_release(
923 	struct inode	*inode,
924 	struct file	*filp)
925 {
926 	return xfs_release(XFS_I(inode));
927 }
928 
929 STATIC int
930 xfs_file_readdir(
931 	struct file	*file,
932 	struct dir_context *ctx)
933 {
934 	struct inode	*inode = file_inode(file);
935 	xfs_inode_t	*ip = XFS_I(inode);
936 	int		error;
937 	size_t		bufsize;
938 
939 	/*
940 	 * The Linux API doesn't pass down the total size of the buffer
941 	 * we read into down to the filesystem.  With the filldir concept
942 	 * it's not needed for correct information, but the XFS dir2 leaf
943 	 * code wants an estimate of the buffer size to calculate it's
944 	 * readahead window and size the buffers used for mapping to
945 	 * physical blocks.
946 	 *
947 	 * Try to give it an estimate that's good enough, maybe at some
948 	 * point we can change the ->readdir prototype to include the
949 	 * buffer size.  For now we use the current glibc buffer size.
950 	 */
951 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
952 
953 	error = xfs_readdir(ip, ctx, bufsize);
954 	if (error)
955 		return error;
956 	return 0;
957 }
958 
959 STATIC int
960 xfs_file_mmap(
961 	struct file	*filp,
962 	struct vm_area_struct *vma)
963 {
964 	vma->vm_ops = &xfs_file_vm_ops;
965 
966 	file_accessed(filp);
967 	return 0;
968 }
969 
970 /*
971  * mmap()d file has taken write protection fault and is being made
972  * writable. We can set the page state up correctly for a writable
973  * page, which means we can do correct delalloc accounting (ENOSPC
974  * checking!) and unwritten extent mapping.
975  */
976 STATIC int
977 xfs_vm_page_mkwrite(
978 	struct vm_area_struct	*vma,
979 	struct vm_fault		*vmf)
980 {
981 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
982 }
983 
984 /*
985  * This type is designed to indicate the type of offset we would like
986  * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
987  */
988 enum {
989 	HOLE_OFF = 0,
990 	DATA_OFF,
991 };
992 
993 /*
994  * Lookup the desired type of offset from the given page.
995  *
996  * On success, return true and the offset argument will point to the
997  * start of the region that was found.  Otherwise this function will
998  * return false and keep the offset argument unchanged.
999  */
1000 STATIC bool
1001 xfs_lookup_buffer_offset(
1002 	struct page		*page,
1003 	loff_t			*offset,
1004 	unsigned int		type)
1005 {
1006 	loff_t			lastoff = page_offset(page);
1007 	bool			found = false;
1008 	struct buffer_head	*bh, *head;
1009 
1010 	bh = head = page_buffers(page);
1011 	do {
1012 		/*
1013 		 * Unwritten extents that have data in the page
1014 		 * cache covering them can be identified by the
1015 		 * BH_Unwritten state flag.  Pages with multiple
1016 		 * buffers might have a mix of holes, data and
1017 		 * unwritten extents - any buffer with valid
1018 		 * data in it should have BH_Uptodate flag set
1019 		 * on it.
1020 		 */
1021 		if (buffer_unwritten(bh) ||
1022 		    buffer_uptodate(bh)) {
1023 			if (type == DATA_OFF)
1024 				found = true;
1025 		} else {
1026 			if (type == HOLE_OFF)
1027 				found = true;
1028 		}
1029 
1030 		if (found) {
1031 			*offset = lastoff;
1032 			break;
1033 		}
1034 		lastoff += bh->b_size;
1035 	} while ((bh = bh->b_this_page) != head);
1036 
1037 	return found;
1038 }
1039 
1040 /*
1041  * This routine is called to find out and return a data or hole offset
1042  * from the page cache for unwritten extents according to the desired
1043  * type for xfs_seek_data() or xfs_seek_hole().
1044  *
1045  * The argument offset is used to tell where we start to search from the
1046  * page cache.  Map is used to figure out the end points of the range to
1047  * lookup pages.
1048  *
1049  * Return true if the desired type of offset was found, and the argument
1050  * offset is filled with that address.  Otherwise, return false and keep
1051  * offset unchanged.
1052  */
1053 STATIC bool
1054 xfs_find_get_desired_pgoff(
1055 	struct inode		*inode,
1056 	struct xfs_bmbt_irec	*map,
1057 	unsigned int		type,
1058 	loff_t			*offset)
1059 {
1060 	struct xfs_inode	*ip = XFS_I(inode);
1061 	struct xfs_mount	*mp = ip->i_mount;
1062 	struct pagevec		pvec;
1063 	pgoff_t			index;
1064 	pgoff_t			end;
1065 	loff_t			endoff;
1066 	loff_t			startoff = *offset;
1067 	loff_t			lastoff = startoff;
1068 	bool			found = false;
1069 
1070 	pagevec_init(&pvec, 0);
1071 
1072 	index = startoff >> PAGE_CACHE_SHIFT;
1073 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1074 	end = endoff >> PAGE_CACHE_SHIFT;
1075 	do {
1076 		int		want;
1077 		unsigned	nr_pages;
1078 		unsigned int	i;
1079 
1080 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1081 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1082 					  want);
1083 		/*
1084 		 * No page mapped into given range.  If we are searching holes
1085 		 * and if this is the first time we got into the loop, it means
1086 		 * that the given offset is landed in a hole, return it.
1087 		 *
1088 		 * If we have already stepped through some block buffers to find
1089 		 * holes but they all contains data.  In this case, the last
1090 		 * offset is already updated and pointed to the end of the last
1091 		 * mapped page, if it does not reach the endpoint to search,
1092 		 * that means there should be a hole between them.
1093 		 */
1094 		if (nr_pages == 0) {
1095 			/* Data search found nothing */
1096 			if (type == DATA_OFF)
1097 				break;
1098 
1099 			ASSERT(type == HOLE_OFF);
1100 			if (lastoff == startoff || lastoff < endoff) {
1101 				found = true;
1102 				*offset = lastoff;
1103 			}
1104 			break;
1105 		}
1106 
1107 		/*
1108 		 * At lease we found one page.  If this is the first time we
1109 		 * step into the loop, and if the first page index offset is
1110 		 * greater than the given search offset, a hole was found.
1111 		 */
1112 		if (type == HOLE_OFF && lastoff == startoff &&
1113 		    lastoff < page_offset(pvec.pages[0])) {
1114 			found = true;
1115 			break;
1116 		}
1117 
1118 		for (i = 0; i < nr_pages; i++) {
1119 			struct page	*page = pvec.pages[i];
1120 			loff_t		b_offset;
1121 
1122 			/*
1123 			 * At this point, the page may be truncated or
1124 			 * invalidated (changing page->mapping to NULL),
1125 			 * or even swizzled back from swapper_space to tmpfs
1126 			 * file mapping. However, page->index will not change
1127 			 * because we have a reference on the page.
1128 			 *
1129 			 * Searching done if the page index is out of range.
1130 			 * If the current offset is not reaches the end of
1131 			 * the specified search range, there should be a hole
1132 			 * between them.
1133 			 */
1134 			if (page->index > end) {
1135 				if (type == HOLE_OFF && lastoff < endoff) {
1136 					*offset = lastoff;
1137 					found = true;
1138 				}
1139 				goto out;
1140 			}
1141 
1142 			lock_page(page);
1143 			/*
1144 			 * Page truncated or invalidated(page->mapping == NULL).
1145 			 * We can freely skip it and proceed to check the next
1146 			 * page.
1147 			 */
1148 			if (unlikely(page->mapping != inode->i_mapping)) {
1149 				unlock_page(page);
1150 				continue;
1151 			}
1152 
1153 			if (!page_has_buffers(page)) {
1154 				unlock_page(page);
1155 				continue;
1156 			}
1157 
1158 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1159 			if (found) {
1160 				/*
1161 				 * The found offset may be less than the start
1162 				 * point to search if this is the first time to
1163 				 * come here.
1164 				 */
1165 				*offset = max_t(loff_t, startoff, b_offset);
1166 				unlock_page(page);
1167 				goto out;
1168 			}
1169 
1170 			/*
1171 			 * We either searching data but nothing was found, or
1172 			 * searching hole but found a data buffer.  In either
1173 			 * case, probably the next page contains the desired
1174 			 * things, update the last offset to it so.
1175 			 */
1176 			lastoff = page_offset(page) + PAGE_SIZE;
1177 			unlock_page(page);
1178 		}
1179 
1180 		/*
1181 		 * The number of returned pages less than our desired, search
1182 		 * done.  In this case, nothing was found for searching data,
1183 		 * but we found a hole behind the last offset.
1184 		 */
1185 		if (nr_pages < want) {
1186 			if (type == HOLE_OFF) {
1187 				*offset = lastoff;
1188 				found = true;
1189 			}
1190 			break;
1191 		}
1192 
1193 		index = pvec.pages[i - 1]->index + 1;
1194 		pagevec_release(&pvec);
1195 	} while (index <= end);
1196 
1197 out:
1198 	pagevec_release(&pvec);
1199 	return found;
1200 }
1201 
1202 STATIC loff_t
1203 xfs_seek_data(
1204 	struct file		*file,
1205 	loff_t			start)
1206 {
1207 	struct inode		*inode = file->f_mapping->host;
1208 	struct xfs_inode	*ip = XFS_I(inode);
1209 	struct xfs_mount	*mp = ip->i_mount;
1210 	loff_t			uninitialized_var(offset);
1211 	xfs_fsize_t		isize;
1212 	xfs_fileoff_t		fsbno;
1213 	xfs_filblks_t		end;
1214 	uint			lock;
1215 	int			error;
1216 
1217 	lock = xfs_ilock_data_map_shared(ip);
1218 
1219 	isize = i_size_read(inode);
1220 	if (start >= isize) {
1221 		error = -ENXIO;
1222 		goto out_unlock;
1223 	}
1224 
1225 	/*
1226 	 * Try to read extents from the first block indicated
1227 	 * by fsbno to the end block of the file.
1228 	 */
1229 	fsbno = XFS_B_TO_FSBT(mp, start);
1230 	end = XFS_B_TO_FSB(mp, isize);
1231 	for (;;) {
1232 		struct xfs_bmbt_irec	map[2];
1233 		int			nmap = 2;
1234 		unsigned int		i;
1235 
1236 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1237 				       XFS_BMAPI_ENTIRE);
1238 		if (error)
1239 			goto out_unlock;
1240 
1241 		/* No extents at given offset, must be beyond EOF */
1242 		if (nmap == 0) {
1243 			error = -ENXIO;
1244 			goto out_unlock;
1245 		}
1246 
1247 		for (i = 0; i < nmap; i++) {
1248 			offset = max_t(loff_t, start,
1249 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1250 
1251 			/* Landed in a data extent */
1252 			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1253 			    (map[i].br_state == XFS_EXT_NORM &&
1254 			     !isnullstartblock(map[i].br_startblock)))
1255 				goto out;
1256 
1257 			/*
1258 			 * Landed in an unwritten extent, try to search data
1259 			 * from page cache.
1260 			 */
1261 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1262 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1263 							DATA_OFF, &offset))
1264 					goto out;
1265 			}
1266 		}
1267 
1268 		/*
1269 		 * map[0] is hole or its an unwritten extent but
1270 		 * without data in page cache.  Probably means that
1271 		 * we are reading after EOF if nothing in map[1].
1272 		 */
1273 		if (nmap == 1) {
1274 			error = -ENXIO;
1275 			goto out_unlock;
1276 		}
1277 
1278 		ASSERT(i > 1);
1279 
1280 		/*
1281 		 * Nothing was found, proceed to the next round of search
1282 		 * if reading offset not beyond or hit EOF.
1283 		 */
1284 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1285 		start = XFS_FSB_TO_B(mp, fsbno);
1286 		if (start >= isize) {
1287 			error = -ENXIO;
1288 			goto out_unlock;
1289 		}
1290 	}
1291 
1292 out:
1293 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1294 
1295 out_unlock:
1296 	xfs_iunlock(ip, lock);
1297 
1298 	if (error)
1299 		return error;
1300 	return offset;
1301 }
1302 
1303 STATIC loff_t
1304 xfs_seek_hole(
1305 	struct file		*file,
1306 	loff_t			start)
1307 {
1308 	struct inode		*inode = file->f_mapping->host;
1309 	struct xfs_inode	*ip = XFS_I(inode);
1310 	struct xfs_mount	*mp = ip->i_mount;
1311 	loff_t			uninitialized_var(offset);
1312 	xfs_fsize_t		isize;
1313 	xfs_fileoff_t		fsbno;
1314 	xfs_filblks_t		end;
1315 	uint			lock;
1316 	int			error;
1317 
1318 	if (XFS_FORCED_SHUTDOWN(mp))
1319 		return -EIO;
1320 
1321 	lock = xfs_ilock_data_map_shared(ip);
1322 
1323 	isize = i_size_read(inode);
1324 	if (start >= isize) {
1325 		error = -ENXIO;
1326 		goto out_unlock;
1327 	}
1328 
1329 	fsbno = XFS_B_TO_FSBT(mp, start);
1330 	end = XFS_B_TO_FSB(mp, isize);
1331 
1332 	for (;;) {
1333 		struct xfs_bmbt_irec	map[2];
1334 		int			nmap = 2;
1335 		unsigned int		i;
1336 
1337 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1338 				       XFS_BMAPI_ENTIRE);
1339 		if (error)
1340 			goto out_unlock;
1341 
1342 		/* No extents at given offset, must be beyond EOF */
1343 		if (nmap == 0) {
1344 			error = -ENXIO;
1345 			goto out_unlock;
1346 		}
1347 
1348 		for (i = 0; i < nmap; i++) {
1349 			offset = max_t(loff_t, start,
1350 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1351 
1352 			/* Landed in a hole */
1353 			if (map[i].br_startblock == HOLESTARTBLOCK)
1354 				goto out;
1355 
1356 			/*
1357 			 * Landed in an unwritten extent, try to search hole
1358 			 * from page cache.
1359 			 */
1360 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1361 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1362 							HOLE_OFF, &offset))
1363 					goto out;
1364 			}
1365 		}
1366 
1367 		/*
1368 		 * map[0] contains data or its unwritten but contains
1369 		 * data in page cache, probably means that we are
1370 		 * reading after EOF.  We should fix offset to point
1371 		 * to the end of the file(i.e., there is an implicit
1372 		 * hole at the end of any file).
1373 		 */
1374 		if (nmap == 1) {
1375 			offset = isize;
1376 			break;
1377 		}
1378 
1379 		ASSERT(i > 1);
1380 
1381 		/*
1382 		 * Both mappings contains data, proceed to the next round of
1383 		 * search if the current reading offset not beyond or hit EOF.
1384 		 */
1385 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1386 		start = XFS_FSB_TO_B(mp, fsbno);
1387 		if (start >= isize) {
1388 			offset = isize;
1389 			break;
1390 		}
1391 	}
1392 
1393 out:
1394 	/*
1395 	 * At this point, we must have found a hole.  However, the returned
1396 	 * offset may be bigger than the file size as it may be aligned to
1397 	 * page boundary for unwritten extents, we need to deal with this
1398 	 * situation in particular.
1399 	 */
1400 	offset = min_t(loff_t, offset, isize);
1401 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1402 
1403 out_unlock:
1404 	xfs_iunlock(ip, lock);
1405 
1406 	if (error)
1407 		return error;
1408 	return offset;
1409 }
1410 
1411 STATIC loff_t
1412 xfs_file_llseek(
1413 	struct file	*file,
1414 	loff_t		offset,
1415 	int		origin)
1416 {
1417 	switch (origin) {
1418 	case SEEK_END:
1419 	case SEEK_CUR:
1420 	case SEEK_SET:
1421 		return generic_file_llseek(file, offset, origin);
1422 	case SEEK_DATA:
1423 		return xfs_seek_data(file, offset);
1424 	case SEEK_HOLE:
1425 		return xfs_seek_hole(file, offset);
1426 	default:
1427 		return -EINVAL;
1428 	}
1429 }
1430 
1431 const struct file_operations xfs_file_operations = {
1432 	.llseek		= xfs_file_llseek,
1433 	.read		= new_sync_read,
1434 	.write		= new_sync_write,
1435 	.read_iter	= xfs_file_read_iter,
1436 	.write_iter	= xfs_file_write_iter,
1437 	.splice_read	= xfs_file_splice_read,
1438 	.splice_write	= iter_file_splice_write,
1439 	.unlocked_ioctl	= xfs_file_ioctl,
1440 #ifdef CONFIG_COMPAT
1441 	.compat_ioctl	= xfs_file_compat_ioctl,
1442 #endif
1443 	.mmap		= xfs_file_mmap,
1444 	.open		= xfs_file_open,
1445 	.release	= xfs_file_release,
1446 	.fsync		= xfs_file_fsync,
1447 	.fallocate	= xfs_file_fallocate,
1448 };
1449 
1450 const struct file_operations xfs_dir_file_operations = {
1451 	.open		= xfs_dir_open,
1452 	.read		= generic_read_dir,
1453 	.iterate	= xfs_file_readdir,
1454 	.llseek		= generic_file_llseek,
1455 	.unlocked_ioctl	= xfs_file_ioctl,
1456 #ifdef CONFIG_COMPAT
1457 	.compat_ioctl	= xfs_file_compat_ioctl,
1458 #endif
1459 	.fsync		= xfs_dir_fsync,
1460 };
1461 
1462 static const struct vm_operations_struct xfs_file_vm_ops = {
1463 	.fault		= filemap_fault,
1464 	.map_pages	= filemap_map_pages,
1465 	.page_mkwrite	= xfs_vm_page_mkwrite,
1466 	.remap_pages	= generic_file_remap_pages,
1467 };
1468