1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 #include <linux/mount.h> 33 34 static const struct vm_operations_struct xfs_file_vm_ops; 35 36 /* 37 * Decide if the given file range is aligned to the size of the fundamental 38 * allocation unit for the file. 39 */ 40 static bool 41 xfs_is_falloc_aligned( 42 struct xfs_inode *ip, 43 loff_t pos, 44 long long int len) 45 { 46 struct xfs_mount *mp = ip->i_mount; 47 uint64_t mask; 48 49 if (XFS_IS_REALTIME_INODE(ip)) { 50 if (!is_power_of_2(mp->m_sb.sb_rextsize)) { 51 u64 rextbytes; 52 u32 mod; 53 54 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize); 55 div_u64_rem(pos, rextbytes, &mod); 56 if (mod) 57 return false; 58 div_u64_rem(len, rextbytes, &mod); 59 return mod == 0; 60 } 61 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1; 62 } else { 63 mask = mp->m_sb.sb_blocksize - 1; 64 } 65 66 return !((pos | len) & mask); 67 } 68 69 int 70 xfs_update_prealloc_flags( 71 struct xfs_inode *ip, 72 enum xfs_prealloc_flags flags) 73 { 74 struct xfs_trans *tp; 75 int error; 76 77 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 78 0, 0, 0, &tp); 79 if (error) 80 return error; 81 82 xfs_ilock(ip, XFS_ILOCK_EXCL); 83 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 84 85 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 86 VFS_I(ip)->i_mode &= ~S_ISUID; 87 if (VFS_I(ip)->i_mode & S_IXGRP) 88 VFS_I(ip)->i_mode &= ~S_ISGID; 89 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 90 } 91 92 if (flags & XFS_PREALLOC_SET) 93 ip->i_diflags |= XFS_DIFLAG_PREALLOC; 94 if (flags & XFS_PREALLOC_CLEAR) 95 ip->i_diflags &= ~XFS_DIFLAG_PREALLOC; 96 97 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 98 if (flags & XFS_PREALLOC_SYNC) 99 xfs_trans_set_sync(tp); 100 return xfs_trans_commit(tp); 101 } 102 103 /* 104 * Fsync operations on directories are much simpler than on regular files, 105 * as there is no file data to flush, and thus also no need for explicit 106 * cache flush operations, and there are no non-transaction metadata updates 107 * on directories either. 108 */ 109 STATIC int 110 xfs_dir_fsync( 111 struct file *file, 112 loff_t start, 113 loff_t end, 114 int datasync) 115 { 116 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 117 118 trace_xfs_dir_fsync(ip); 119 return xfs_log_force_inode(ip); 120 } 121 122 static xfs_csn_t 123 xfs_fsync_seq( 124 struct xfs_inode *ip, 125 bool datasync) 126 { 127 if (!xfs_ipincount(ip)) 128 return 0; 129 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 130 return 0; 131 return ip->i_itemp->ili_commit_seq; 132 } 133 134 /* 135 * All metadata updates are logged, which means that we just have to flush the 136 * log up to the latest LSN that touched the inode. 137 * 138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 139 * the log force before we clear the ili_fsync_fields field. This ensures that 140 * we don't get a racing sync operation that does not wait for the metadata to 141 * hit the journal before returning. If we race with clearing ili_fsync_fields, 142 * then all that will happen is the log force will do nothing as the lsn will 143 * already be on disk. We can't race with setting ili_fsync_fields because that 144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 145 * shared until after the ili_fsync_fields is cleared. 146 */ 147 static int 148 xfs_fsync_flush_log( 149 struct xfs_inode *ip, 150 bool datasync, 151 int *log_flushed) 152 { 153 int error = 0; 154 xfs_csn_t seq; 155 156 xfs_ilock(ip, XFS_ILOCK_SHARED); 157 seq = xfs_fsync_seq(ip, datasync); 158 if (seq) { 159 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, 160 log_flushed); 161 162 spin_lock(&ip->i_itemp->ili_lock); 163 ip->i_itemp->ili_fsync_fields = 0; 164 spin_unlock(&ip->i_itemp->ili_lock); 165 } 166 xfs_iunlock(ip, XFS_ILOCK_SHARED); 167 return error; 168 } 169 170 STATIC int 171 xfs_file_fsync( 172 struct file *file, 173 loff_t start, 174 loff_t end, 175 int datasync) 176 { 177 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 178 struct xfs_mount *mp = ip->i_mount; 179 int error = 0; 180 int log_flushed = 0; 181 182 trace_xfs_file_fsync(ip); 183 184 error = file_write_and_wait_range(file, start, end); 185 if (error) 186 return error; 187 188 if (xfs_is_shutdown(mp)) 189 return -EIO; 190 191 xfs_iflags_clear(ip, XFS_ITRUNCATED); 192 193 /* 194 * If we have an RT and/or log subvolume we need to make sure to flush 195 * the write cache the device used for file data first. This is to 196 * ensure newly written file data make it to disk before logging the new 197 * inode size in case of an extending write. 198 */ 199 if (XFS_IS_REALTIME_INODE(ip)) 200 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 201 else if (mp->m_logdev_targp != mp->m_ddev_targp) 202 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 203 204 /* 205 * Any inode that has dirty modifications in the log is pinned. The 206 * racy check here for a pinned inode while not catch modifications 207 * that happen concurrently to the fsync call, but fsync semantics 208 * only require to sync previously completed I/O. 209 */ 210 if (xfs_ipincount(ip)) 211 error = xfs_fsync_flush_log(ip, datasync, &log_flushed); 212 213 /* 214 * If we only have a single device, and the log force about was 215 * a no-op we might have to flush the data device cache here. 216 * This can only happen for fdatasync/O_DSYNC if we were overwriting 217 * an already allocated file and thus do not have any metadata to 218 * commit. 219 */ 220 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 221 mp->m_logdev_targp == mp->m_ddev_targp) 222 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 223 224 return error; 225 } 226 227 static int 228 xfs_ilock_iocb( 229 struct kiocb *iocb, 230 unsigned int lock_mode) 231 { 232 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 233 234 if (iocb->ki_flags & IOCB_NOWAIT) { 235 if (!xfs_ilock_nowait(ip, lock_mode)) 236 return -EAGAIN; 237 } else { 238 xfs_ilock(ip, lock_mode); 239 } 240 241 return 0; 242 } 243 244 STATIC ssize_t 245 xfs_file_dio_read( 246 struct kiocb *iocb, 247 struct iov_iter *to) 248 { 249 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 250 ssize_t ret; 251 252 trace_xfs_file_direct_read(iocb, to); 253 254 if (!iov_iter_count(to)) 255 return 0; /* skip atime */ 256 257 file_accessed(iocb->ki_filp); 258 259 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 260 if (ret) 261 return ret; 262 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, 0); 263 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 264 265 return ret; 266 } 267 268 static noinline ssize_t 269 xfs_file_dax_read( 270 struct kiocb *iocb, 271 struct iov_iter *to) 272 { 273 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 274 ssize_t ret = 0; 275 276 trace_xfs_file_dax_read(iocb, to); 277 278 if (!iov_iter_count(to)) 279 return 0; /* skip atime */ 280 281 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 282 if (ret) 283 return ret; 284 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 285 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 286 287 file_accessed(iocb->ki_filp); 288 return ret; 289 } 290 291 STATIC ssize_t 292 xfs_file_buffered_read( 293 struct kiocb *iocb, 294 struct iov_iter *to) 295 { 296 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 297 ssize_t ret; 298 299 trace_xfs_file_buffered_read(iocb, to); 300 301 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 302 if (ret) 303 return ret; 304 ret = generic_file_read_iter(iocb, to); 305 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 306 307 return ret; 308 } 309 310 STATIC ssize_t 311 xfs_file_read_iter( 312 struct kiocb *iocb, 313 struct iov_iter *to) 314 { 315 struct inode *inode = file_inode(iocb->ki_filp); 316 struct xfs_mount *mp = XFS_I(inode)->i_mount; 317 ssize_t ret = 0; 318 319 XFS_STATS_INC(mp, xs_read_calls); 320 321 if (xfs_is_shutdown(mp)) 322 return -EIO; 323 324 if (IS_DAX(inode)) 325 ret = xfs_file_dax_read(iocb, to); 326 else if (iocb->ki_flags & IOCB_DIRECT) 327 ret = xfs_file_dio_read(iocb, to); 328 else 329 ret = xfs_file_buffered_read(iocb, to); 330 331 if (ret > 0) 332 XFS_STATS_ADD(mp, xs_read_bytes, ret); 333 return ret; 334 } 335 336 /* 337 * Common pre-write limit and setup checks. 338 * 339 * Called with the iolocked held either shared and exclusive according to 340 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 341 * if called for a direct write beyond i_size. 342 */ 343 STATIC ssize_t 344 xfs_file_write_checks( 345 struct kiocb *iocb, 346 struct iov_iter *from, 347 int *iolock) 348 { 349 struct file *file = iocb->ki_filp; 350 struct inode *inode = file->f_mapping->host; 351 struct xfs_inode *ip = XFS_I(inode); 352 ssize_t error = 0; 353 size_t count = iov_iter_count(from); 354 bool drained_dio = false; 355 loff_t isize; 356 357 restart: 358 error = generic_write_checks(iocb, from); 359 if (error <= 0) 360 return error; 361 362 if (iocb->ki_flags & IOCB_NOWAIT) { 363 error = break_layout(inode, false); 364 if (error == -EWOULDBLOCK) 365 error = -EAGAIN; 366 } else { 367 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 368 } 369 370 if (error) 371 return error; 372 373 /* 374 * For changing security info in file_remove_privs() we need i_rwsem 375 * exclusively. 376 */ 377 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 378 xfs_iunlock(ip, *iolock); 379 *iolock = XFS_IOLOCK_EXCL; 380 error = xfs_ilock_iocb(iocb, *iolock); 381 if (error) { 382 *iolock = 0; 383 return error; 384 } 385 goto restart; 386 } 387 388 /* 389 * If the offset is beyond the size of the file, we need to zero any 390 * blocks that fall between the existing EOF and the start of this 391 * write. If zeroing is needed and we are currently holding the iolock 392 * shared, we need to update it to exclusive which implies having to 393 * redo all checks before. 394 * 395 * We need to serialise against EOF updates that occur in IO completions 396 * here. We want to make sure that nobody is changing the size while we 397 * do this check until we have placed an IO barrier (i.e. hold the 398 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The 399 * spinlock effectively forms a memory barrier once we have the 400 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and 401 * hence be able to correctly determine if we need to run zeroing. 402 * 403 * We can do an unlocked check here safely as IO completion can only 404 * extend EOF. Truncate is locked out at this point, so the EOF can 405 * not move backwards, only forwards. Hence we only need to take the 406 * slow path and spin locks when we are at or beyond the current EOF. 407 */ 408 if (iocb->ki_pos <= i_size_read(inode)) 409 goto out; 410 411 spin_lock(&ip->i_flags_lock); 412 isize = i_size_read(inode); 413 if (iocb->ki_pos > isize) { 414 spin_unlock(&ip->i_flags_lock); 415 416 if (iocb->ki_flags & IOCB_NOWAIT) 417 return -EAGAIN; 418 419 if (!drained_dio) { 420 if (*iolock == XFS_IOLOCK_SHARED) { 421 xfs_iunlock(ip, *iolock); 422 *iolock = XFS_IOLOCK_EXCL; 423 xfs_ilock(ip, *iolock); 424 iov_iter_reexpand(from, count); 425 } 426 /* 427 * We now have an IO submission barrier in place, but 428 * AIO can do EOF updates during IO completion and hence 429 * we now need to wait for all of them to drain. Non-AIO 430 * DIO will have drained before we are given the 431 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 432 * no-op. 433 */ 434 inode_dio_wait(inode); 435 drained_dio = true; 436 goto restart; 437 } 438 439 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 440 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); 441 if (error) 442 return error; 443 } else 444 spin_unlock(&ip->i_flags_lock); 445 446 out: 447 return file_modified(file); 448 } 449 450 static int 451 xfs_dio_write_end_io( 452 struct kiocb *iocb, 453 ssize_t size, 454 int error, 455 unsigned flags) 456 { 457 struct inode *inode = file_inode(iocb->ki_filp); 458 struct xfs_inode *ip = XFS_I(inode); 459 loff_t offset = iocb->ki_pos; 460 unsigned int nofs_flag; 461 462 trace_xfs_end_io_direct_write(ip, offset, size); 463 464 if (xfs_is_shutdown(ip->i_mount)) 465 return -EIO; 466 467 if (error) 468 return error; 469 if (!size) 470 return 0; 471 472 /* 473 * Capture amount written on completion as we can't reliably account 474 * for it on submission. 475 */ 476 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 477 478 /* 479 * We can allocate memory here while doing writeback on behalf of 480 * memory reclaim. To avoid memory allocation deadlocks set the 481 * task-wide nofs context for the following operations. 482 */ 483 nofs_flag = memalloc_nofs_save(); 484 485 if (flags & IOMAP_DIO_COW) { 486 error = xfs_reflink_end_cow(ip, offset, size); 487 if (error) 488 goto out; 489 } 490 491 /* 492 * Unwritten conversion updates the in-core isize after extent 493 * conversion but before updating the on-disk size. Updating isize any 494 * earlier allows a racing dio read to find unwritten extents before 495 * they are converted. 496 */ 497 if (flags & IOMAP_DIO_UNWRITTEN) { 498 error = xfs_iomap_write_unwritten(ip, offset, size, true); 499 goto out; 500 } 501 502 /* 503 * We need to update the in-core inode size here so that we don't end up 504 * with the on-disk inode size being outside the in-core inode size. We 505 * have no other method of updating EOF for AIO, so always do it here 506 * if necessary. 507 * 508 * We need to lock the test/set EOF update as we can be racing with 509 * other IO completions here to update the EOF. Failing to serialise 510 * here can result in EOF moving backwards and Bad Things Happen when 511 * that occurs. 512 * 513 * As IO completion only ever extends EOF, we can do an unlocked check 514 * here to avoid taking the spinlock. If we land within the current EOF, 515 * then we do not need to do an extending update at all, and we don't 516 * need to take the lock to check this. If we race with an update moving 517 * EOF, then we'll either still be beyond EOF and need to take the lock, 518 * or we'll be within EOF and we don't need to take it at all. 519 */ 520 if (offset + size <= i_size_read(inode)) 521 goto out; 522 523 spin_lock(&ip->i_flags_lock); 524 if (offset + size > i_size_read(inode)) { 525 i_size_write(inode, offset + size); 526 spin_unlock(&ip->i_flags_lock); 527 error = xfs_setfilesize(ip, offset, size); 528 } else { 529 spin_unlock(&ip->i_flags_lock); 530 } 531 532 out: 533 memalloc_nofs_restore(nofs_flag); 534 return error; 535 } 536 537 static const struct iomap_dio_ops xfs_dio_write_ops = { 538 .end_io = xfs_dio_write_end_io, 539 }; 540 541 /* 542 * Handle block aligned direct I/O writes 543 */ 544 static noinline ssize_t 545 xfs_file_dio_write_aligned( 546 struct xfs_inode *ip, 547 struct kiocb *iocb, 548 struct iov_iter *from) 549 { 550 int iolock = XFS_IOLOCK_SHARED; 551 ssize_t ret; 552 553 ret = xfs_ilock_iocb(iocb, iolock); 554 if (ret) 555 return ret; 556 ret = xfs_file_write_checks(iocb, from, &iolock); 557 if (ret) 558 goto out_unlock; 559 560 /* 561 * We don't need to hold the IOLOCK exclusively across the IO, so demote 562 * the iolock back to shared if we had to take the exclusive lock in 563 * xfs_file_write_checks() for other reasons. 564 */ 565 if (iolock == XFS_IOLOCK_EXCL) { 566 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 567 iolock = XFS_IOLOCK_SHARED; 568 } 569 trace_xfs_file_direct_write(iocb, from); 570 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 571 &xfs_dio_write_ops, 0, 0); 572 out_unlock: 573 if (iolock) 574 xfs_iunlock(ip, iolock); 575 return ret; 576 } 577 578 /* 579 * Handle block unaligned direct I/O writes 580 * 581 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 582 * them to be done in parallel with reads and other direct I/O writes. However, 583 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 584 * to do sub-block zeroing and that requires serialisation against other direct 585 * I/O to the same block. In this case we need to serialise the submission of 586 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 587 * In the case where sub-block zeroing is not required, we can do concurrent 588 * sub-block dios to the same block successfully. 589 * 590 * Optimistically submit the I/O using the shared lock first, but use the 591 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 592 * if block allocation or partial block zeroing would be required. In that case 593 * we try again with the exclusive lock. 594 */ 595 static noinline ssize_t 596 xfs_file_dio_write_unaligned( 597 struct xfs_inode *ip, 598 struct kiocb *iocb, 599 struct iov_iter *from) 600 { 601 size_t isize = i_size_read(VFS_I(ip)); 602 size_t count = iov_iter_count(from); 603 int iolock = XFS_IOLOCK_SHARED; 604 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 605 ssize_t ret; 606 607 /* 608 * Extending writes need exclusivity because of the sub-block zeroing 609 * that the DIO code always does for partial tail blocks beyond EOF, so 610 * don't even bother trying the fast path in this case. 611 */ 612 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 613 retry_exclusive: 614 if (iocb->ki_flags & IOCB_NOWAIT) 615 return -EAGAIN; 616 iolock = XFS_IOLOCK_EXCL; 617 flags = IOMAP_DIO_FORCE_WAIT; 618 } 619 620 ret = xfs_ilock_iocb(iocb, iolock); 621 if (ret) 622 return ret; 623 624 /* 625 * We can't properly handle unaligned direct I/O to reflink files yet, 626 * as we can't unshare a partial block. 627 */ 628 if (xfs_is_cow_inode(ip)) { 629 trace_xfs_reflink_bounce_dio_write(iocb, from); 630 ret = -ENOTBLK; 631 goto out_unlock; 632 } 633 634 ret = xfs_file_write_checks(iocb, from, &iolock); 635 if (ret) 636 goto out_unlock; 637 638 /* 639 * If we are doing exclusive unaligned I/O, this must be the only I/O 640 * in-flight. Otherwise we risk data corruption due to unwritten extent 641 * conversions from the AIO end_io handler. Wait for all other I/O to 642 * drain first. 643 */ 644 if (flags & IOMAP_DIO_FORCE_WAIT) 645 inode_dio_wait(VFS_I(ip)); 646 647 trace_xfs_file_direct_write(iocb, from); 648 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 649 &xfs_dio_write_ops, flags, 0); 650 651 /* 652 * Retry unaligned I/O with exclusive blocking semantics if the DIO 653 * layer rejected it for mapping or locking reasons. If we are doing 654 * nonblocking user I/O, propagate the error. 655 */ 656 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 657 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 658 xfs_iunlock(ip, iolock); 659 goto retry_exclusive; 660 } 661 662 out_unlock: 663 if (iolock) 664 xfs_iunlock(ip, iolock); 665 return ret; 666 } 667 668 static ssize_t 669 xfs_file_dio_write( 670 struct kiocb *iocb, 671 struct iov_iter *from) 672 { 673 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 674 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 675 size_t count = iov_iter_count(from); 676 677 /* direct I/O must be aligned to device logical sector size */ 678 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 679 return -EINVAL; 680 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 681 return xfs_file_dio_write_unaligned(ip, iocb, from); 682 return xfs_file_dio_write_aligned(ip, iocb, from); 683 } 684 685 static noinline ssize_t 686 xfs_file_dax_write( 687 struct kiocb *iocb, 688 struct iov_iter *from) 689 { 690 struct inode *inode = iocb->ki_filp->f_mapping->host; 691 struct xfs_inode *ip = XFS_I(inode); 692 int iolock = XFS_IOLOCK_EXCL; 693 ssize_t ret, error = 0; 694 loff_t pos; 695 696 ret = xfs_ilock_iocb(iocb, iolock); 697 if (ret) 698 return ret; 699 ret = xfs_file_write_checks(iocb, from, &iolock); 700 if (ret) 701 goto out; 702 703 pos = iocb->ki_pos; 704 705 trace_xfs_file_dax_write(iocb, from); 706 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops); 707 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 708 i_size_write(inode, iocb->ki_pos); 709 error = xfs_setfilesize(ip, pos, ret); 710 } 711 out: 712 if (iolock) 713 xfs_iunlock(ip, iolock); 714 if (error) 715 return error; 716 717 if (ret > 0) { 718 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 719 720 /* Handle various SYNC-type writes */ 721 ret = generic_write_sync(iocb, ret); 722 } 723 return ret; 724 } 725 726 STATIC ssize_t 727 xfs_file_buffered_write( 728 struct kiocb *iocb, 729 struct iov_iter *from) 730 { 731 struct file *file = iocb->ki_filp; 732 struct address_space *mapping = file->f_mapping; 733 struct inode *inode = mapping->host; 734 struct xfs_inode *ip = XFS_I(inode); 735 ssize_t ret; 736 bool cleared_space = false; 737 int iolock; 738 739 if (iocb->ki_flags & IOCB_NOWAIT) 740 return -EOPNOTSUPP; 741 742 write_retry: 743 iolock = XFS_IOLOCK_EXCL; 744 xfs_ilock(ip, iolock); 745 746 ret = xfs_file_write_checks(iocb, from, &iolock); 747 if (ret) 748 goto out; 749 750 /* We can write back this queue in page reclaim */ 751 current->backing_dev_info = inode_to_bdi(inode); 752 753 trace_xfs_file_buffered_write(iocb, from); 754 ret = iomap_file_buffered_write(iocb, from, 755 &xfs_buffered_write_iomap_ops); 756 if (likely(ret >= 0)) 757 iocb->ki_pos += ret; 758 759 /* 760 * If we hit a space limit, try to free up some lingering preallocated 761 * space before returning an error. In the case of ENOSPC, first try to 762 * write back all dirty inodes to free up some of the excess reserved 763 * metadata space. This reduces the chances that the eofblocks scan 764 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 765 * also behaves as a filter to prevent too many eofblocks scans from 766 * running at the same time. Use a synchronous scan to increase the 767 * effectiveness of the scan. 768 */ 769 if (ret == -EDQUOT && !cleared_space) { 770 xfs_iunlock(ip, iolock); 771 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); 772 cleared_space = true; 773 goto write_retry; 774 } else if (ret == -ENOSPC && !cleared_space) { 775 struct xfs_icwalk icw = {0}; 776 777 cleared_space = true; 778 xfs_flush_inodes(ip->i_mount); 779 780 xfs_iunlock(ip, iolock); 781 icw.icw_flags = XFS_ICWALK_FLAG_SYNC; 782 xfs_blockgc_free_space(ip->i_mount, &icw); 783 goto write_retry; 784 } 785 786 current->backing_dev_info = NULL; 787 out: 788 if (iolock) 789 xfs_iunlock(ip, iolock); 790 791 if (ret > 0) { 792 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 793 /* Handle various SYNC-type writes */ 794 ret = generic_write_sync(iocb, ret); 795 } 796 return ret; 797 } 798 799 STATIC ssize_t 800 xfs_file_write_iter( 801 struct kiocb *iocb, 802 struct iov_iter *from) 803 { 804 struct file *file = iocb->ki_filp; 805 struct address_space *mapping = file->f_mapping; 806 struct inode *inode = mapping->host; 807 struct xfs_inode *ip = XFS_I(inode); 808 ssize_t ret; 809 size_t ocount = iov_iter_count(from); 810 811 XFS_STATS_INC(ip->i_mount, xs_write_calls); 812 813 if (ocount == 0) 814 return 0; 815 816 if (xfs_is_shutdown(ip->i_mount)) 817 return -EIO; 818 819 if (IS_DAX(inode)) 820 return xfs_file_dax_write(iocb, from); 821 822 if (iocb->ki_flags & IOCB_DIRECT) { 823 /* 824 * Allow a directio write to fall back to a buffered 825 * write *only* in the case that we're doing a reflink 826 * CoW. In all other directio scenarios we do not 827 * allow an operation to fall back to buffered mode. 828 */ 829 ret = xfs_file_dio_write(iocb, from); 830 if (ret != -ENOTBLK) 831 return ret; 832 } 833 834 return xfs_file_buffered_write(iocb, from); 835 } 836 837 static void 838 xfs_wait_dax_page( 839 struct inode *inode) 840 { 841 struct xfs_inode *ip = XFS_I(inode); 842 843 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 844 schedule(); 845 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 846 } 847 848 static int 849 xfs_break_dax_layouts( 850 struct inode *inode, 851 bool *retry) 852 { 853 struct page *page; 854 855 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 856 857 page = dax_layout_busy_page(inode->i_mapping); 858 if (!page) 859 return 0; 860 861 *retry = true; 862 return ___wait_var_event(&page->_refcount, 863 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 864 0, 0, xfs_wait_dax_page(inode)); 865 } 866 867 int 868 xfs_break_layouts( 869 struct inode *inode, 870 uint *iolock, 871 enum layout_break_reason reason) 872 { 873 bool retry; 874 int error; 875 876 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 877 878 do { 879 retry = false; 880 switch (reason) { 881 case BREAK_UNMAP: 882 error = xfs_break_dax_layouts(inode, &retry); 883 if (error || retry) 884 break; 885 fallthrough; 886 case BREAK_WRITE: 887 error = xfs_break_leased_layouts(inode, iolock, &retry); 888 break; 889 default: 890 WARN_ON_ONCE(1); 891 error = -EINVAL; 892 } 893 } while (error == 0 && retry); 894 895 return error; 896 } 897 898 #define XFS_FALLOC_FL_SUPPORTED \ 899 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 900 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 901 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 902 903 STATIC long 904 xfs_file_fallocate( 905 struct file *file, 906 int mode, 907 loff_t offset, 908 loff_t len) 909 { 910 struct inode *inode = file_inode(file); 911 struct xfs_inode *ip = XFS_I(inode); 912 long error; 913 enum xfs_prealloc_flags flags = 0; 914 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 915 loff_t new_size = 0; 916 bool do_file_insert = false; 917 918 if (!S_ISREG(inode->i_mode)) 919 return -EINVAL; 920 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 921 return -EOPNOTSUPP; 922 923 xfs_ilock(ip, iolock); 924 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 925 if (error) 926 goto out_unlock; 927 928 /* 929 * Must wait for all AIO to complete before we continue as AIO can 930 * change the file size on completion without holding any locks we 931 * currently hold. We must do this first because AIO can update both 932 * the on disk and in memory inode sizes, and the operations that follow 933 * require the in-memory size to be fully up-to-date. 934 */ 935 inode_dio_wait(inode); 936 937 /* 938 * Now AIO and DIO has drained we flush and (if necessary) invalidate 939 * the cached range over the first operation we are about to run. 940 * 941 * We care about zero and collapse here because they both run a hole 942 * punch over the range first. Because that can zero data, and the range 943 * of invalidation for the shift operations is much larger, we still do 944 * the required flush for collapse in xfs_prepare_shift(). 945 * 946 * Insert has the same range requirements as collapse, and we extend the 947 * file first which can zero data. Hence insert has the same 948 * flush/invalidate requirements as collapse and so they are both 949 * handled at the right time by xfs_prepare_shift(). 950 */ 951 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 952 FALLOC_FL_COLLAPSE_RANGE)) { 953 error = xfs_flush_unmap_range(ip, offset, len); 954 if (error) 955 goto out_unlock; 956 } 957 958 if (mode & FALLOC_FL_PUNCH_HOLE) { 959 error = xfs_free_file_space(ip, offset, len); 960 if (error) 961 goto out_unlock; 962 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 963 if (!xfs_is_falloc_aligned(ip, offset, len)) { 964 error = -EINVAL; 965 goto out_unlock; 966 } 967 968 /* 969 * There is no need to overlap collapse range with EOF, 970 * in which case it is effectively a truncate operation 971 */ 972 if (offset + len >= i_size_read(inode)) { 973 error = -EINVAL; 974 goto out_unlock; 975 } 976 977 new_size = i_size_read(inode) - len; 978 979 error = xfs_collapse_file_space(ip, offset, len); 980 if (error) 981 goto out_unlock; 982 } else if (mode & FALLOC_FL_INSERT_RANGE) { 983 loff_t isize = i_size_read(inode); 984 985 if (!xfs_is_falloc_aligned(ip, offset, len)) { 986 error = -EINVAL; 987 goto out_unlock; 988 } 989 990 /* 991 * New inode size must not exceed ->s_maxbytes, accounting for 992 * possible signed overflow. 993 */ 994 if (inode->i_sb->s_maxbytes - isize < len) { 995 error = -EFBIG; 996 goto out_unlock; 997 } 998 new_size = isize + len; 999 1000 /* Offset should be less than i_size */ 1001 if (offset >= isize) { 1002 error = -EINVAL; 1003 goto out_unlock; 1004 } 1005 do_file_insert = true; 1006 } else { 1007 flags |= XFS_PREALLOC_SET; 1008 1009 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1010 offset + len > i_size_read(inode)) { 1011 new_size = offset + len; 1012 error = inode_newsize_ok(inode, new_size); 1013 if (error) 1014 goto out_unlock; 1015 } 1016 1017 if (mode & FALLOC_FL_ZERO_RANGE) { 1018 /* 1019 * Punch a hole and prealloc the range. We use a hole 1020 * punch rather than unwritten extent conversion for two 1021 * reasons: 1022 * 1023 * 1.) Hole punch handles partial block zeroing for us. 1024 * 2.) If prealloc returns ENOSPC, the file range is 1025 * still zero-valued by virtue of the hole punch. 1026 */ 1027 unsigned int blksize = i_blocksize(inode); 1028 1029 trace_xfs_zero_file_space(ip); 1030 1031 error = xfs_free_file_space(ip, offset, len); 1032 if (error) 1033 goto out_unlock; 1034 1035 len = round_up(offset + len, blksize) - 1036 round_down(offset, blksize); 1037 offset = round_down(offset, blksize); 1038 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 1039 error = xfs_reflink_unshare(ip, offset, len); 1040 if (error) 1041 goto out_unlock; 1042 } else { 1043 /* 1044 * If always_cow mode we can't use preallocations and 1045 * thus should not create them. 1046 */ 1047 if (xfs_is_always_cow_inode(ip)) { 1048 error = -EOPNOTSUPP; 1049 goto out_unlock; 1050 } 1051 } 1052 1053 if (!xfs_is_always_cow_inode(ip)) { 1054 error = xfs_alloc_file_space(ip, offset, len, 1055 XFS_BMAPI_PREALLOC); 1056 if (error) 1057 goto out_unlock; 1058 } 1059 } 1060 1061 if (file->f_flags & O_DSYNC) 1062 flags |= XFS_PREALLOC_SYNC; 1063 1064 error = xfs_update_prealloc_flags(ip, flags); 1065 if (error) 1066 goto out_unlock; 1067 1068 /* Change file size if needed */ 1069 if (new_size) { 1070 struct iattr iattr; 1071 1072 iattr.ia_valid = ATTR_SIZE; 1073 iattr.ia_size = new_size; 1074 error = xfs_vn_setattr_size(file_mnt_user_ns(file), 1075 file_dentry(file), &iattr); 1076 if (error) 1077 goto out_unlock; 1078 } 1079 1080 /* 1081 * Perform hole insertion now that the file size has been 1082 * updated so that if we crash during the operation we don't 1083 * leave shifted extents past EOF and hence losing access to 1084 * the data that is contained within them. 1085 */ 1086 if (do_file_insert) 1087 error = xfs_insert_file_space(ip, offset, len); 1088 1089 out_unlock: 1090 xfs_iunlock(ip, iolock); 1091 return error; 1092 } 1093 1094 STATIC int 1095 xfs_file_fadvise( 1096 struct file *file, 1097 loff_t start, 1098 loff_t end, 1099 int advice) 1100 { 1101 struct xfs_inode *ip = XFS_I(file_inode(file)); 1102 int ret; 1103 int lockflags = 0; 1104 1105 /* 1106 * Operations creating pages in page cache need protection from hole 1107 * punching and similar ops 1108 */ 1109 if (advice == POSIX_FADV_WILLNEED) { 1110 lockflags = XFS_IOLOCK_SHARED; 1111 xfs_ilock(ip, lockflags); 1112 } 1113 ret = generic_fadvise(file, start, end, advice); 1114 if (lockflags) 1115 xfs_iunlock(ip, lockflags); 1116 return ret; 1117 } 1118 1119 /* Does this file, inode, or mount want synchronous writes? */ 1120 static inline bool xfs_file_sync_writes(struct file *filp) 1121 { 1122 struct xfs_inode *ip = XFS_I(file_inode(filp)); 1123 1124 if (xfs_has_wsync(ip->i_mount)) 1125 return true; 1126 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 1127 return true; 1128 if (IS_SYNC(file_inode(filp))) 1129 return true; 1130 1131 return false; 1132 } 1133 1134 STATIC loff_t 1135 xfs_file_remap_range( 1136 struct file *file_in, 1137 loff_t pos_in, 1138 struct file *file_out, 1139 loff_t pos_out, 1140 loff_t len, 1141 unsigned int remap_flags) 1142 { 1143 struct inode *inode_in = file_inode(file_in); 1144 struct xfs_inode *src = XFS_I(inode_in); 1145 struct inode *inode_out = file_inode(file_out); 1146 struct xfs_inode *dest = XFS_I(inode_out); 1147 struct xfs_mount *mp = src->i_mount; 1148 loff_t remapped = 0; 1149 xfs_extlen_t cowextsize; 1150 int ret; 1151 1152 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1153 return -EINVAL; 1154 1155 if (!xfs_has_reflink(mp)) 1156 return -EOPNOTSUPP; 1157 1158 if (xfs_is_shutdown(mp)) 1159 return -EIO; 1160 1161 /* Prepare and then clone file data. */ 1162 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1163 &len, remap_flags); 1164 if (ret || len == 0) 1165 return ret; 1166 1167 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1168 1169 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1170 &remapped); 1171 if (ret) 1172 goto out_unlock; 1173 1174 /* 1175 * Carry the cowextsize hint from src to dest if we're sharing the 1176 * entire source file to the entire destination file, the source file 1177 * has a cowextsize hint, and the destination file does not. 1178 */ 1179 cowextsize = 0; 1180 if (pos_in == 0 && len == i_size_read(inode_in) && 1181 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 1182 pos_out == 0 && len >= i_size_read(inode_out) && 1183 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) 1184 cowextsize = src->i_cowextsize; 1185 1186 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1187 remap_flags); 1188 if (ret) 1189 goto out_unlock; 1190 1191 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1192 xfs_log_force_inode(dest); 1193 out_unlock: 1194 xfs_iunlock2_io_mmap(src, dest); 1195 if (ret) 1196 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1197 return remapped > 0 ? remapped : ret; 1198 } 1199 1200 STATIC int 1201 xfs_file_open( 1202 struct inode *inode, 1203 struct file *file) 1204 { 1205 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1206 return -EFBIG; 1207 if (xfs_is_shutdown(XFS_M(inode->i_sb))) 1208 return -EIO; 1209 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 1210 return 0; 1211 } 1212 1213 STATIC int 1214 xfs_dir_open( 1215 struct inode *inode, 1216 struct file *file) 1217 { 1218 struct xfs_inode *ip = XFS_I(inode); 1219 int mode; 1220 int error; 1221 1222 error = xfs_file_open(inode, file); 1223 if (error) 1224 return error; 1225 1226 /* 1227 * If there are any blocks, read-ahead block 0 as we're almost 1228 * certain to have the next operation be a read there. 1229 */ 1230 mode = xfs_ilock_data_map_shared(ip); 1231 if (ip->i_df.if_nextents > 0) 1232 error = xfs_dir3_data_readahead(ip, 0, 0); 1233 xfs_iunlock(ip, mode); 1234 return error; 1235 } 1236 1237 STATIC int 1238 xfs_file_release( 1239 struct inode *inode, 1240 struct file *filp) 1241 { 1242 return xfs_release(XFS_I(inode)); 1243 } 1244 1245 STATIC int 1246 xfs_file_readdir( 1247 struct file *file, 1248 struct dir_context *ctx) 1249 { 1250 struct inode *inode = file_inode(file); 1251 xfs_inode_t *ip = XFS_I(inode); 1252 size_t bufsize; 1253 1254 /* 1255 * The Linux API doesn't pass down the total size of the buffer 1256 * we read into down to the filesystem. With the filldir concept 1257 * it's not needed for correct information, but the XFS dir2 leaf 1258 * code wants an estimate of the buffer size to calculate it's 1259 * readahead window and size the buffers used for mapping to 1260 * physical blocks. 1261 * 1262 * Try to give it an estimate that's good enough, maybe at some 1263 * point we can change the ->readdir prototype to include the 1264 * buffer size. For now we use the current glibc buffer size. 1265 */ 1266 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); 1267 1268 return xfs_readdir(NULL, ip, ctx, bufsize); 1269 } 1270 1271 STATIC loff_t 1272 xfs_file_llseek( 1273 struct file *file, 1274 loff_t offset, 1275 int whence) 1276 { 1277 struct inode *inode = file->f_mapping->host; 1278 1279 if (xfs_is_shutdown(XFS_I(inode)->i_mount)) 1280 return -EIO; 1281 1282 switch (whence) { 1283 default: 1284 return generic_file_llseek(file, offset, whence); 1285 case SEEK_HOLE: 1286 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1287 break; 1288 case SEEK_DATA: 1289 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1290 break; 1291 } 1292 1293 if (offset < 0) 1294 return offset; 1295 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1296 } 1297 1298 /* 1299 * Locking for serialisation of IO during page faults. This results in a lock 1300 * ordering of: 1301 * 1302 * mmap_lock (MM) 1303 * sb_start_pagefault(vfs, freeze) 1304 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) 1305 * page_lock (MM) 1306 * i_lock (XFS - extent map serialisation) 1307 */ 1308 static vm_fault_t 1309 __xfs_filemap_fault( 1310 struct vm_fault *vmf, 1311 enum page_entry_size pe_size, 1312 bool write_fault) 1313 { 1314 struct inode *inode = file_inode(vmf->vma->vm_file); 1315 struct xfs_inode *ip = XFS_I(inode); 1316 vm_fault_t ret; 1317 1318 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1319 1320 if (write_fault) { 1321 sb_start_pagefault(inode->i_sb); 1322 file_update_time(vmf->vma->vm_file); 1323 } 1324 1325 if (IS_DAX(inode)) { 1326 pfn_t pfn; 1327 1328 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1329 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, 1330 (write_fault && !vmf->cow_page) ? 1331 &xfs_direct_write_iomap_ops : 1332 &xfs_read_iomap_ops); 1333 if (ret & VM_FAULT_NEEDDSYNC) 1334 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1335 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1336 } else { 1337 if (write_fault) { 1338 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1339 ret = iomap_page_mkwrite(vmf, 1340 &xfs_buffered_write_iomap_ops); 1341 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1342 } else { 1343 ret = filemap_fault(vmf); 1344 } 1345 } 1346 1347 if (write_fault) 1348 sb_end_pagefault(inode->i_sb); 1349 return ret; 1350 } 1351 1352 static inline bool 1353 xfs_is_write_fault( 1354 struct vm_fault *vmf) 1355 { 1356 return (vmf->flags & FAULT_FLAG_WRITE) && 1357 (vmf->vma->vm_flags & VM_SHARED); 1358 } 1359 1360 static vm_fault_t 1361 xfs_filemap_fault( 1362 struct vm_fault *vmf) 1363 { 1364 /* DAX can shortcut the normal fault path on write faults! */ 1365 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1366 IS_DAX(file_inode(vmf->vma->vm_file)) && 1367 xfs_is_write_fault(vmf)); 1368 } 1369 1370 static vm_fault_t 1371 xfs_filemap_huge_fault( 1372 struct vm_fault *vmf, 1373 enum page_entry_size pe_size) 1374 { 1375 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1376 return VM_FAULT_FALLBACK; 1377 1378 /* DAX can shortcut the normal fault path on write faults! */ 1379 return __xfs_filemap_fault(vmf, pe_size, 1380 xfs_is_write_fault(vmf)); 1381 } 1382 1383 static vm_fault_t 1384 xfs_filemap_page_mkwrite( 1385 struct vm_fault *vmf) 1386 { 1387 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1388 } 1389 1390 /* 1391 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1392 * on write faults. In reality, it needs to serialise against truncate and 1393 * prepare memory for writing so handle is as standard write fault. 1394 */ 1395 static vm_fault_t 1396 xfs_filemap_pfn_mkwrite( 1397 struct vm_fault *vmf) 1398 { 1399 1400 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1401 } 1402 1403 static vm_fault_t 1404 xfs_filemap_map_pages( 1405 struct vm_fault *vmf, 1406 pgoff_t start_pgoff, 1407 pgoff_t end_pgoff) 1408 { 1409 struct inode *inode = file_inode(vmf->vma->vm_file); 1410 vm_fault_t ret; 1411 1412 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1413 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff); 1414 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1415 return ret; 1416 } 1417 1418 static const struct vm_operations_struct xfs_file_vm_ops = { 1419 .fault = xfs_filemap_fault, 1420 .huge_fault = xfs_filemap_huge_fault, 1421 .map_pages = xfs_filemap_map_pages, 1422 .page_mkwrite = xfs_filemap_page_mkwrite, 1423 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1424 }; 1425 1426 STATIC int 1427 xfs_file_mmap( 1428 struct file *file, 1429 struct vm_area_struct *vma) 1430 { 1431 struct inode *inode = file_inode(file); 1432 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1433 1434 /* 1435 * We don't support synchronous mappings for non-DAX files and 1436 * for DAX files if underneath dax_device is not synchronous. 1437 */ 1438 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1439 return -EOPNOTSUPP; 1440 1441 file_accessed(file); 1442 vma->vm_ops = &xfs_file_vm_ops; 1443 if (IS_DAX(inode)) 1444 vma->vm_flags |= VM_HUGEPAGE; 1445 return 0; 1446 } 1447 1448 const struct file_operations xfs_file_operations = { 1449 .llseek = xfs_file_llseek, 1450 .read_iter = xfs_file_read_iter, 1451 .write_iter = xfs_file_write_iter, 1452 .splice_read = generic_file_splice_read, 1453 .splice_write = iter_file_splice_write, 1454 .iopoll = iocb_bio_iopoll, 1455 .unlocked_ioctl = xfs_file_ioctl, 1456 #ifdef CONFIG_COMPAT 1457 .compat_ioctl = xfs_file_compat_ioctl, 1458 #endif 1459 .mmap = xfs_file_mmap, 1460 .mmap_supported_flags = MAP_SYNC, 1461 .open = xfs_file_open, 1462 .release = xfs_file_release, 1463 .fsync = xfs_file_fsync, 1464 .get_unmapped_area = thp_get_unmapped_area, 1465 .fallocate = xfs_file_fallocate, 1466 .fadvise = xfs_file_fadvise, 1467 .remap_file_range = xfs_file_remap_range, 1468 }; 1469 1470 const struct file_operations xfs_dir_file_operations = { 1471 .open = xfs_dir_open, 1472 .read = generic_read_dir, 1473 .iterate_shared = xfs_file_readdir, 1474 .llseek = generic_file_llseek, 1475 .unlocked_ioctl = xfs_file_ioctl, 1476 #ifdef CONFIG_COMPAT 1477 .compat_ioctl = xfs_file_compat_ioctl, 1478 #endif 1479 .fsync = xfs_dir_fsync, 1480 }; 1481