xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 33a03aad)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_ioctl.h"
35 #include "xfs_trace.h"
36 
37 #include <linux/dcache.h>
38 #include <linux/falloc.h>
39 
40 static const struct vm_operations_struct xfs_file_vm_ops;
41 
42 /*
43  * Locking primitives for read and write IO paths to ensure we consistently use
44  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
45  */
46 static inline void
47 xfs_rw_ilock(
48 	struct xfs_inode	*ip,
49 	int			type)
50 {
51 	if (type & XFS_IOLOCK_EXCL)
52 		mutex_lock(&VFS_I(ip)->i_mutex);
53 	xfs_ilock(ip, type);
54 }
55 
56 static inline void
57 xfs_rw_iunlock(
58 	struct xfs_inode	*ip,
59 	int			type)
60 {
61 	xfs_iunlock(ip, type);
62 	if (type & XFS_IOLOCK_EXCL)
63 		mutex_unlock(&VFS_I(ip)->i_mutex);
64 }
65 
66 static inline void
67 xfs_rw_ilock_demote(
68 	struct xfs_inode	*ip,
69 	int			type)
70 {
71 	xfs_ilock_demote(ip, type);
72 	if (type & XFS_IOLOCK_EXCL)
73 		mutex_unlock(&VFS_I(ip)->i_mutex);
74 }
75 
76 /*
77  *	xfs_iozero
78  *
79  *	xfs_iozero clears the specified range of buffer supplied,
80  *	and marks all the affected blocks as valid and modified.  If
81  *	an affected block is not allocated, it will be allocated.  If
82  *	an affected block is not completely overwritten, and is not
83  *	valid before the operation, it will be read from disk before
84  *	being partially zeroed.
85  */
86 STATIC int
87 xfs_iozero(
88 	struct xfs_inode	*ip,	/* inode			*/
89 	loff_t			pos,	/* offset in file		*/
90 	size_t			count)	/* size of data to zero		*/
91 {
92 	struct page		*page;
93 	struct address_space	*mapping;
94 	int			status;
95 
96 	mapping = VFS_I(ip)->i_mapping;
97 	do {
98 		unsigned offset, bytes;
99 		void *fsdata;
100 
101 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
102 		bytes = PAGE_CACHE_SIZE - offset;
103 		if (bytes > count)
104 			bytes = count;
105 
106 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
107 					AOP_FLAG_UNINTERRUPTIBLE,
108 					&page, &fsdata);
109 		if (status)
110 			break;
111 
112 		zero_user(page, offset, bytes);
113 
114 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
115 					page, fsdata);
116 		WARN_ON(status <= 0); /* can't return less than zero! */
117 		pos += bytes;
118 		count -= bytes;
119 		status = 0;
120 	} while (count);
121 
122 	return (-status);
123 }
124 
125 /*
126  * Fsync operations on directories are much simpler than on regular files,
127  * as there is no file data to flush, and thus also no need for explicit
128  * cache flush operations, and there are no non-transaction metadata updates
129  * on directories either.
130  */
131 STATIC int
132 xfs_dir_fsync(
133 	struct file		*file,
134 	loff_t			start,
135 	loff_t			end,
136 	int			datasync)
137 {
138 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
139 	struct xfs_mount	*mp = ip->i_mount;
140 	xfs_lsn_t		lsn = 0;
141 
142 	trace_xfs_dir_fsync(ip);
143 
144 	xfs_ilock(ip, XFS_ILOCK_SHARED);
145 	if (xfs_ipincount(ip))
146 		lsn = ip->i_itemp->ili_last_lsn;
147 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
148 
149 	if (!lsn)
150 		return 0;
151 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
152 }
153 
154 STATIC int
155 xfs_file_fsync(
156 	struct file		*file,
157 	loff_t			start,
158 	loff_t			end,
159 	int			datasync)
160 {
161 	struct inode		*inode = file->f_mapping->host;
162 	struct xfs_inode	*ip = XFS_I(inode);
163 	struct xfs_mount	*mp = ip->i_mount;
164 	int			error = 0;
165 	int			log_flushed = 0;
166 	xfs_lsn_t		lsn = 0;
167 
168 	trace_xfs_file_fsync(ip);
169 
170 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
171 	if (error)
172 		return error;
173 
174 	if (XFS_FORCED_SHUTDOWN(mp))
175 		return -XFS_ERROR(EIO);
176 
177 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
178 
179 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
180 		/*
181 		 * If we have an RT and/or log subvolume we need to make sure
182 		 * to flush the write cache the device used for file data
183 		 * first.  This is to ensure newly written file data make
184 		 * it to disk before logging the new inode size in case of
185 		 * an extending write.
186 		 */
187 		if (XFS_IS_REALTIME_INODE(ip))
188 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
189 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
190 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
191 	}
192 
193 	/*
194 	 * All metadata updates are logged, which means that we just have
195 	 * to flush the log up to the latest LSN that touched the inode.
196 	 */
197 	xfs_ilock(ip, XFS_ILOCK_SHARED);
198 	if (xfs_ipincount(ip)) {
199 		if (!datasync ||
200 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
201 			lsn = ip->i_itemp->ili_last_lsn;
202 	}
203 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
204 
205 	if (lsn)
206 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
207 
208 	/*
209 	 * If we only have a single device, and the log force about was
210 	 * a no-op we might have to flush the data device cache here.
211 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
212 	 * an already allocated file and thus do not have any metadata to
213 	 * commit.
214 	 */
215 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
216 	    mp->m_logdev_targp == mp->m_ddev_targp &&
217 	    !XFS_IS_REALTIME_INODE(ip) &&
218 	    !log_flushed)
219 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
220 
221 	return -error;
222 }
223 
224 STATIC ssize_t
225 xfs_file_aio_read(
226 	struct kiocb		*iocb,
227 	const struct iovec	*iovp,
228 	unsigned long		nr_segs,
229 	loff_t			pos)
230 {
231 	struct file		*file = iocb->ki_filp;
232 	struct inode		*inode = file->f_mapping->host;
233 	struct xfs_inode	*ip = XFS_I(inode);
234 	struct xfs_mount	*mp = ip->i_mount;
235 	size_t			size = 0;
236 	ssize_t			ret = 0;
237 	int			ioflags = 0;
238 	xfs_fsize_t		n;
239 	unsigned long		seg;
240 
241 	XFS_STATS_INC(xs_read_calls);
242 
243 	BUG_ON(iocb->ki_pos != pos);
244 
245 	if (unlikely(file->f_flags & O_DIRECT))
246 		ioflags |= IO_ISDIRECT;
247 	if (file->f_mode & FMODE_NOCMTIME)
248 		ioflags |= IO_INVIS;
249 
250 	/* START copy & waste from filemap.c */
251 	for (seg = 0; seg < nr_segs; seg++) {
252 		const struct iovec *iv = &iovp[seg];
253 
254 		/*
255 		 * If any segment has a negative length, or the cumulative
256 		 * length ever wraps negative then return -EINVAL.
257 		 */
258 		size += iv->iov_len;
259 		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
260 			return XFS_ERROR(-EINVAL);
261 	}
262 	/* END copy & waste from filemap.c */
263 
264 	if (unlikely(ioflags & IO_ISDIRECT)) {
265 		xfs_buftarg_t	*target =
266 			XFS_IS_REALTIME_INODE(ip) ?
267 				mp->m_rtdev_targp : mp->m_ddev_targp;
268 		if ((iocb->ki_pos & target->bt_smask) ||
269 		    (size & target->bt_smask)) {
270 			if (iocb->ki_pos == i_size_read(inode))
271 				return 0;
272 			return -XFS_ERROR(EINVAL);
273 		}
274 	}
275 
276 	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
277 	if (n <= 0 || size == 0)
278 		return 0;
279 
280 	if (n < size)
281 		size = n;
282 
283 	if (XFS_FORCED_SHUTDOWN(mp))
284 		return -EIO;
285 
286 	/*
287 	 * Locking is a bit tricky here. If we take an exclusive lock
288 	 * for direct IO, we effectively serialise all new concurrent
289 	 * read IO to this file and block it behind IO that is currently in
290 	 * progress because IO in progress holds the IO lock shared. We only
291 	 * need to hold the lock exclusive to blow away the page cache, so
292 	 * only take lock exclusively if the page cache needs invalidation.
293 	 * This allows the normal direct IO case of no page cache pages to
294 	 * proceeed concurrently without serialisation.
295 	 */
296 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
297 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
298 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
299 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
300 
301 		if (inode->i_mapping->nrpages) {
302 			ret = -xfs_flushinval_pages(ip,
303 					(iocb->ki_pos & PAGE_CACHE_MASK),
304 					-1, FI_REMAPF_LOCKED);
305 			if (ret) {
306 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
307 				return ret;
308 			}
309 		}
310 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
311 	}
312 
313 	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
314 
315 	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
316 	if (ret > 0)
317 		XFS_STATS_ADD(xs_read_bytes, ret);
318 
319 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
320 	return ret;
321 }
322 
323 STATIC ssize_t
324 xfs_file_splice_read(
325 	struct file		*infilp,
326 	loff_t			*ppos,
327 	struct pipe_inode_info	*pipe,
328 	size_t			count,
329 	unsigned int		flags)
330 {
331 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
332 	int			ioflags = 0;
333 	ssize_t			ret;
334 
335 	XFS_STATS_INC(xs_read_calls);
336 
337 	if (infilp->f_mode & FMODE_NOCMTIME)
338 		ioflags |= IO_INVIS;
339 
340 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
341 		return -EIO;
342 
343 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
344 
345 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
346 
347 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
348 	if (ret > 0)
349 		XFS_STATS_ADD(xs_read_bytes, ret);
350 
351 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
352 	return ret;
353 }
354 
355 /*
356  * xfs_file_splice_write() does not use xfs_rw_ilock() because
357  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
358  * couuld cause lock inversions between the aio_write path and the splice path
359  * if someone is doing concurrent splice(2) based writes and write(2) based
360  * writes to the same inode. The only real way to fix this is to re-implement
361  * the generic code here with correct locking orders.
362  */
363 STATIC ssize_t
364 xfs_file_splice_write(
365 	struct pipe_inode_info	*pipe,
366 	struct file		*outfilp,
367 	loff_t			*ppos,
368 	size_t			count,
369 	unsigned int		flags)
370 {
371 	struct inode		*inode = outfilp->f_mapping->host;
372 	struct xfs_inode	*ip = XFS_I(inode);
373 	int			ioflags = 0;
374 	ssize_t			ret;
375 
376 	XFS_STATS_INC(xs_write_calls);
377 
378 	if (outfilp->f_mode & FMODE_NOCMTIME)
379 		ioflags |= IO_INVIS;
380 
381 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
382 		return -EIO;
383 
384 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
385 
386 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
387 
388 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
389 	if (ret > 0)
390 		XFS_STATS_ADD(xs_write_bytes, ret);
391 
392 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
393 	return ret;
394 }
395 
396 /*
397  * This routine is called to handle zeroing any space in the last block of the
398  * file that is beyond the EOF.  We do this since the size is being increased
399  * without writing anything to that block and we don't want to read the
400  * garbage on the disk.
401  */
402 STATIC int				/* error (positive) */
403 xfs_zero_last_block(
404 	struct xfs_inode	*ip,
405 	xfs_fsize_t		offset,
406 	xfs_fsize_t		isize)
407 {
408 	struct xfs_mount	*mp = ip->i_mount;
409 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
410 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
411 	int			zero_len;
412 	int			nimaps = 1;
413 	int			error = 0;
414 	struct xfs_bmbt_irec	imap;
415 
416 	xfs_ilock(ip, XFS_ILOCK_EXCL);
417 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
418 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
419 	if (error)
420 		return error;
421 
422 	ASSERT(nimaps > 0);
423 
424 	/*
425 	 * If the block underlying isize is just a hole, then there
426 	 * is nothing to zero.
427 	 */
428 	if (imap.br_startblock == HOLESTARTBLOCK)
429 		return 0;
430 
431 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
432 	if (isize + zero_len > offset)
433 		zero_len = offset - isize;
434 	return xfs_iozero(ip, isize, zero_len);
435 }
436 
437 /*
438  * Zero any on disk space between the current EOF and the new, larger EOF.
439  *
440  * This handles the normal case of zeroing the remainder of the last block in
441  * the file and the unusual case of zeroing blocks out beyond the size of the
442  * file.  This second case only happens with fixed size extents and when the
443  * system crashes before the inode size was updated but after blocks were
444  * allocated.
445  *
446  * Expects the iolock to be held exclusive, and will take the ilock internally.
447  */
448 int					/* error (positive) */
449 xfs_zero_eof(
450 	struct xfs_inode	*ip,
451 	xfs_off_t		offset,		/* starting I/O offset */
452 	xfs_fsize_t		isize)		/* current inode size */
453 {
454 	struct xfs_mount	*mp = ip->i_mount;
455 	xfs_fileoff_t		start_zero_fsb;
456 	xfs_fileoff_t		end_zero_fsb;
457 	xfs_fileoff_t		zero_count_fsb;
458 	xfs_fileoff_t		last_fsb;
459 	xfs_fileoff_t		zero_off;
460 	xfs_fsize_t		zero_len;
461 	int			nimaps;
462 	int			error = 0;
463 	struct xfs_bmbt_irec	imap;
464 
465 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
466 	ASSERT(offset > isize);
467 
468 	/*
469 	 * First handle zeroing the block on which isize resides.
470 	 *
471 	 * We only zero a part of that block so it is handled specially.
472 	 */
473 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
474 		error = xfs_zero_last_block(ip, offset, isize);
475 		if (error)
476 			return error;
477 	}
478 
479 	/*
480 	 * Calculate the range between the new size and the old where blocks
481 	 * needing to be zeroed may exist.
482 	 *
483 	 * To get the block where the last byte in the file currently resides,
484 	 * we need to subtract one from the size and truncate back to a block
485 	 * boundary.  We subtract 1 in case the size is exactly on a block
486 	 * boundary.
487 	 */
488 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
489 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
490 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
491 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
492 	if (last_fsb == end_zero_fsb) {
493 		/*
494 		 * The size was only incremented on its last block.
495 		 * We took care of that above, so just return.
496 		 */
497 		return 0;
498 	}
499 
500 	ASSERT(start_zero_fsb <= end_zero_fsb);
501 	while (start_zero_fsb <= end_zero_fsb) {
502 		nimaps = 1;
503 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
504 
505 		xfs_ilock(ip, XFS_ILOCK_EXCL);
506 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
507 					  &imap, &nimaps, 0);
508 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
509 		if (error)
510 			return error;
511 
512 		ASSERT(nimaps > 0);
513 
514 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
515 		    imap.br_startblock == HOLESTARTBLOCK) {
516 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
517 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
518 			continue;
519 		}
520 
521 		/*
522 		 * There are blocks we need to zero.
523 		 */
524 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
525 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
526 
527 		if ((zero_off + zero_len) > offset)
528 			zero_len = offset - zero_off;
529 
530 		error = xfs_iozero(ip, zero_off, zero_len);
531 		if (error)
532 			return error;
533 
534 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
535 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
536 	}
537 
538 	return 0;
539 }
540 
541 /*
542  * Common pre-write limit and setup checks.
543  *
544  * Called with the iolocked held either shared and exclusive according to
545  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
546  * if called for a direct write beyond i_size.
547  */
548 STATIC ssize_t
549 xfs_file_aio_write_checks(
550 	struct file		*file,
551 	loff_t			*pos,
552 	size_t			*count,
553 	int			*iolock)
554 {
555 	struct inode		*inode = file->f_mapping->host;
556 	struct xfs_inode	*ip = XFS_I(inode);
557 	int			error = 0;
558 
559 restart:
560 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
561 	if (error)
562 		return error;
563 
564 	/*
565 	 * If the offset is beyond the size of the file, we need to zero any
566 	 * blocks that fall between the existing EOF and the start of this
567 	 * write.  If zeroing is needed and we are currently holding the
568 	 * iolock shared, we need to update it to exclusive which implies
569 	 * having to redo all checks before.
570 	 */
571 	if (*pos > i_size_read(inode)) {
572 		if (*iolock == XFS_IOLOCK_SHARED) {
573 			xfs_rw_iunlock(ip, *iolock);
574 			*iolock = XFS_IOLOCK_EXCL;
575 			xfs_rw_ilock(ip, *iolock);
576 			goto restart;
577 		}
578 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
579 		if (error)
580 			return error;
581 	}
582 
583 	/*
584 	 * Updating the timestamps will grab the ilock again from
585 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
586 	 * lock above.  Eventually we should look into a way to avoid
587 	 * the pointless lock roundtrip.
588 	 */
589 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
590 		error = file_update_time(file);
591 		if (error)
592 			return error;
593 	}
594 
595 	/*
596 	 * If we're writing the file then make sure to clear the setuid and
597 	 * setgid bits if the process is not being run by root.  This keeps
598 	 * people from modifying setuid and setgid binaries.
599 	 */
600 	return file_remove_suid(file);
601 }
602 
603 /*
604  * xfs_file_dio_aio_write - handle direct IO writes
605  *
606  * Lock the inode appropriately to prepare for and issue a direct IO write.
607  * By separating it from the buffered write path we remove all the tricky to
608  * follow locking changes and looping.
609  *
610  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
611  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
612  * pages are flushed out.
613  *
614  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
615  * allowing them to be done in parallel with reads and other direct IO writes.
616  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
617  * needs to do sub-block zeroing and that requires serialisation against other
618  * direct IOs to the same block. In this case we need to serialise the
619  * submission of the unaligned IOs so that we don't get racing block zeroing in
620  * the dio layer.  To avoid the problem with aio, we also need to wait for
621  * outstanding IOs to complete so that unwritten extent conversion is completed
622  * before we try to map the overlapping block. This is currently implemented by
623  * hitting it with a big hammer (i.e. inode_dio_wait()).
624  *
625  * Returns with locks held indicated by @iolock and errors indicated by
626  * negative return values.
627  */
628 STATIC ssize_t
629 xfs_file_dio_aio_write(
630 	struct kiocb		*iocb,
631 	const struct iovec	*iovp,
632 	unsigned long		nr_segs,
633 	loff_t			pos,
634 	size_t			ocount)
635 {
636 	struct file		*file = iocb->ki_filp;
637 	struct address_space	*mapping = file->f_mapping;
638 	struct inode		*inode = mapping->host;
639 	struct xfs_inode	*ip = XFS_I(inode);
640 	struct xfs_mount	*mp = ip->i_mount;
641 	ssize_t			ret = 0;
642 	size_t			count = ocount;
643 	int			unaligned_io = 0;
644 	int			iolock;
645 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
646 					mp->m_rtdev_targp : mp->m_ddev_targp;
647 
648 	if ((pos & target->bt_smask) || (count & target->bt_smask))
649 		return -XFS_ERROR(EINVAL);
650 
651 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
652 		unaligned_io = 1;
653 
654 	/*
655 	 * We don't need to take an exclusive lock unless there page cache needs
656 	 * to be invalidated or unaligned IO is being executed. We don't need to
657 	 * consider the EOF extension case here because
658 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
659 	 * EOF zeroing cases and fill out the new inode size as appropriate.
660 	 */
661 	if (unaligned_io || mapping->nrpages)
662 		iolock = XFS_IOLOCK_EXCL;
663 	else
664 		iolock = XFS_IOLOCK_SHARED;
665 	xfs_rw_ilock(ip, iolock);
666 
667 	/*
668 	 * Recheck if there are cached pages that need invalidate after we got
669 	 * the iolock to protect against other threads adding new pages while
670 	 * we were waiting for the iolock.
671 	 */
672 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
673 		xfs_rw_iunlock(ip, iolock);
674 		iolock = XFS_IOLOCK_EXCL;
675 		xfs_rw_ilock(ip, iolock);
676 	}
677 
678 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
679 	if (ret)
680 		goto out;
681 
682 	if (mapping->nrpages) {
683 		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
684 							FI_REMAPF_LOCKED);
685 		if (ret)
686 			goto out;
687 	}
688 
689 	/*
690 	 * If we are doing unaligned IO, wait for all other IO to drain,
691 	 * otherwise demote the lock if we had to flush cached pages
692 	 */
693 	if (unaligned_io)
694 		inode_dio_wait(inode);
695 	else if (iolock == XFS_IOLOCK_EXCL) {
696 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
697 		iolock = XFS_IOLOCK_SHARED;
698 	}
699 
700 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
701 	ret = generic_file_direct_write(iocb, iovp,
702 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
703 
704 out:
705 	xfs_rw_iunlock(ip, iolock);
706 
707 	/* No fallback to buffered IO on errors for XFS. */
708 	ASSERT(ret < 0 || ret == count);
709 	return ret;
710 }
711 
712 STATIC ssize_t
713 xfs_file_buffered_aio_write(
714 	struct kiocb		*iocb,
715 	const struct iovec	*iovp,
716 	unsigned long		nr_segs,
717 	loff_t			pos,
718 	size_t			ocount)
719 {
720 	struct file		*file = iocb->ki_filp;
721 	struct address_space	*mapping = file->f_mapping;
722 	struct inode		*inode = mapping->host;
723 	struct xfs_inode	*ip = XFS_I(inode);
724 	ssize_t			ret;
725 	int			enospc = 0;
726 	int			iolock = XFS_IOLOCK_EXCL;
727 	size_t			count = ocount;
728 
729 	xfs_rw_ilock(ip, iolock);
730 
731 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
732 	if (ret)
733 		goto out;
734 
735 	/* We can write back this queue in page reclaim */
736 	current->backing_dev_info = mapping->backing_dev_info;
737 
738 write_retry:
739 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
740 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
741 			pos, &iocb->ki_pos, count, ret);
742 	/*
743 	 * if we just got an ENOSPC, flush the inode now we aren't holding any
744 	 * page locks and retry *once*
745 	 */
746 	if (ret == -ENOSPC && !enospc) {
747 		enospc = 1;
748 		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
749 		if (!ret)
750 			goto write_retry;
751 	}
752 
753 	current->backing_dev_info = NULL;
754 out:
755 	xfs_rw_iunlock(ip, iolock);
756 	return ret;
757 }
758 
759 STATIC ssize_t
760 xfs_file_aio_write(
761 	struct kiocb		*iocb,
762 	const struct iovec	*iovp,
763 	unsigned long		nr_segs,
764 	loff_t			pos)
765 {
766 	struct file		*file = iocb->ki_filp;
767 	struct address_space	*mapping = file->f_mapping;
768 	struct inode		*inode = mapping->host;
769 	struct xfs_inode	*ip = XFS_I(inode);
770 	ssize_t			ret;
771 	size_t			ocount = 0;
772 
773 	XFS_STATS_INC(xs_write_calls);
774 
775 	BUG_ON(iocb->ki_pos != pos);
776 
777 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
778 	if (ret)
779 		return ret;
780 
781 	if (ocount == 0)
782 		return 0;
783 
784 	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
785 
786 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
787 		return -EIO;
788 
789 	if (unlikely(file->f_flags & O_DIRECT))
790 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
791 	else
792 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
793 						  ocount);
794 
795 	if (ret > 0) {
796 		ssize_t err;
797 
798 		XFS_STATS_ADD(xs_write_bytes, ret);
799 
800 		/* Handle various SYNC-type writes */
801 		err = generic_write_sync(file, pos, ret);
802 		if (err < 0)
803 			ret = err;
804 	}
805 
806 	return ret;
807 }
808 
809 STATIC long
810 xfs_file_fallocate(
811 	struct file	*file,
812 	int		mode,
813 	loff_t		offset,
814 	loff_t		len)
815 {
816 	struct inode	*inode = file->f_path.dentry->d_inode;
817 	long		error;
818 	loff_t		new_size = 0;
819 	xfs_flock64_t	bf;
820 	xfs_inode_t	*ip = XFS_I(inode);
821 	int		cmd = XFS_IOC_RESVSP;
822 	int		attr_flags = XFS_ATTR_NOLOCK;
823 
824 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
825 		return -EOPNOTSUPP;
826 
827 	bf.l_whence = 0;
828 	bf.l_start = offset;
829 	bf.l_len = len;
830 
831 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
832 
833 	if (mode & FALLOC_FL_PUNCH_HOLE)
834 		cmd = XFS_IOC_UNRESVSP;
835 
836 	/* check the new inode size is valid before allocating */
837 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
838 	    offset + len > i_size_read(inode)) {
839 		new_size = offset + len;
840 		error = inode_newsize_ok(inode, new_size);
841 		if (error)
842 			goto out_unlock;
843 	}
844 
845 	if (file->f_flags & O_DSYNC)
846 		attr_flags |= XFS_ATTR_SYNC;
847 
848 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
849 	if (error)
850 		goto out_unlock;
851 
852 	/* Change file size if needed */
853 	if (new_size) {
854 		struct iattr iattr;
855 
856 		iattr.ia_valid = ATTR_SIZE;
857 		iattr.ia_size = new_size;
858 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
859 	}
860 
861 out_unlock:
862 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
863 	return error;
864 }
865 
866 
867 STATIC int
868 xfs_file_open(
869 	struct inode	*inode,
870 	struct file	*file)
871 {
872 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
873 		return -EFBIG;
874 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
875 		return -EIO;
876 	return 0;
877 }
878 
879 STATIC int
880 xfs_dir_open(
881 	struct inode	*inode,
882 	struct file	*file)
883 {
884 	struct xfs_inode *ip = XFS_I(inode);
885 	int		mode;
886 	int		error;
887 
888 	error = xfs_file_open(inode, file);
889 	if (error)
890 		return error;
891 
892 	/*
893 	 * If there are any blocks, read-ahead block 0 as we're almost
894 	 * certain to have the next operation be a read there.
895 	 */
896 	mode = xfs_ilock_map_shared(ip);
897 	if (ip->i_d.di_nextents > 0)
898 		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
899 	xfs_iunlock(ip, mode);
900 	return 0;
901 }
902 
903 STATIC int
904 xfs_file_release(
905 	struct inode	*inode,
906 	struct file	*filp)
907 {
908 	return -xfs_release(XFS_I(inode));
909 }
910 
911 STATIC int
912 xfs_file_readdir(
913 	struct file	*filp,
914 	void		*dirent,
915 	filldir_t	filldir)
916 {
917 	struct inode	*inode = filp->f_path.dentry->d_inode;
918 	xfs_inode_t	*ip = XFS_I(inode);
919 	int		error;
920 	size_t		bufsize;
921 
922 	/*
923 	 * The Linux API doesn't pass down the total size of the buffer
924 	 * we read into down to the filesystem.  With the filldir concept
925 	 * it's not needed for correct information, but the XFS dir2 leaf
926 	 * code wants an estimate of the buffer size to calculate it's
927 	 * readahead window and size the buffers used for mapping to
928 	 * physical blocks.
929 	 *
930 	 * Try to give it an estimate that's good enough, maybe at some
931 	 * point we can change the ->readdir prototype to include the
932 	 * buffer size.  For now we use the current glibc buffer size.
933 	 */
934 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
935 
936 	error = xfs_readdir(ip, dirent, bufsize,
937 				(xfs_off_t *)&filp->f_pos, filldir);
938 	if (error)
939 		return -error;
940 	return 0;
941 }
942 
943 STATIC int
944 xfs_file_mmap(
945 	struct file	*filp,
946 	struct vm_area_struct *vma)
947 {
948 	vma->vm_ops = &xfs_file_vm_ops;
949 	vma->vm_flags |= VM_CAN_NONLINEAR;
950 
951 	file_accessed(filp);
952 	return 0;
953 }
954 
955 /*
956  * mmap()d file has taken write protection fault and is being made
957  * writable. We can set the page state up correctly for a writable
958  * page, which means we can do correct delalloc accounting (ENOSPC
959  * checking!) and unwritten extent mapping.
960  */
961 STATIC int
962 xfs_vm_page_mkwrite(
963 	struct vm_area_struct	*vma,
964 	struct vm_fault		*vmf)
965 {
966 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
967 }
968 
969 STATIC loff_t
970 xfs_seek_data(
971 	struct file		*file,
972 	loff_t			start,
973 	u32			type)
974 {
975 	struct inode		*inode = file->f_mapping->host;
976 	struct xfs_inode	*ip = XFS_I(inode);
977 	struct xfs_mount	*mp = ip->i_mount;
978 	struct xfs_bmbt_irec	map[2];
979 	int			nmap = 2;
980 	loff_t			uninitialized_var(offset);
981 	xfs_fsize_t		isize;
982 	xfs_fileoff_t		fsbno;
983 	xfs_filblks_t		end;
984 	uint			lock;
985 	int			error;
986 
987 	lock = xfs_ilock_map_shared(ip);
988 
989 	isize = i_size_read(inode);
990 	if (start >= isize) {
991 		error = ENXIO;
992 		goto out_unlock;
993 	}
994 
995 	fsbno = XFS_B_TO_FSBT(mp, start);
996 
997 	/*
998 	 * Try to read extents from the first block indicated
999 	 * by fsbno to the end block of the file.
1000 	 */
1001 	end = XFS_B_TO_FSB(mp, isize);
1002 
1003 	error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1004 			       XFS_BMAPI_ENTIRE);
1005 	if (error)
1006 		goto out_unlock;
1007 
1008 	/*
1009 	 * Treat unwritten extent as data extent since it might
1010 	 * contains dirty data in page cache.
1011 	 */
1012 	if (map[0].br_startblock != HOLESTARTBLOCK) {
1013 		offset = max_t(loff_t, start,
1014 			       XFS_FSB_TO_B(mp, map[0].br_startoff));
1015 	} else {
1016 		if (nmap == 1) {
1017 			error = ENXIO;
1018 			goto out_unlock;
1019 		}
1020 
1021 		offset = max_t(loff_t, start,
1022 			       XFS_FSB_TO_B(mp, map[1].br_startoff));
1023 	}
1024 
1025 	if (offset != file->f_pos)
1026 		file->f_pos = offset;
1027 
1028 out_unlock:
1029 	xfs_iunlock_map_shared(ip, lock);
1030 
1031 	if (error)
1032 		return -error;
1033 	return offset;
1034 }
1035 
1036 STATIC loff_t
1037 xfs_seek_hole(
1038 	struct file		*file,
1039 	loff_t			start,
1040 	u32			type)
1041 {
1042 	struct inode		*inode = file->f_mapping->host;
1043 	struct xfs_inode	*ip = XFS_I(inode);
1044 	struct xfs_mount	*mp = ip->i_mount;
1045 	loff_t			uninitialized_var(offset);
1046 	loff_t			holeoff;
1047 	xfs_fsize_t		isize;
1048 	xfs_fileoff_t		fsbno;
1049 	uint			lock;
1050 	int			error;
1051 
1052 	if (XFS_FORCED_SHUTDOWN(mp))
1053 		return -XFS_ERROR(EIO);
1054 
1055 	lock = xfs_ilock_map_shared(ip);
1056 
1057 	isize = i_size_read(inode);
1058 	if (start >= isize) {
1059 		error = ENXIO;
1060 		goto out_unlock;
1061 	}
1062 
1063 	fsbno = XFS_B_TO_FSBT(mp, start);
1064 	error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1065 	if (error)
1066 		goto out_unlock;
1067 
1068 	holeoff = XFS_FSB_TO_B(mp, fsbno);
1069 	if (holeoff <= start)
1070 		offset = start;
1071 	else {
1072 		/*
1073 		 * xfs_bmap_first_unused() could return a value bigger than
1074 		 * isize if there are no more holes past the supplied offset.
1075 		 */
1076 		offset = min_t(loff_t, holeoff, isize);
1077 	}
1078 
1079 	if (offset != file->f_pos)
1080 		file->f_pos = offset;
1081 
1082 out_unlock:
1083 	xfs_iunlock_map_shared(ip, lock);
1084 
1085 	if (error)
1086 		return -error;
1087 	return offset;
1088 }
1089 
1090 STATIC loff_t
1091 xfs_file_llseek(
1092 	struct file	*file,
1093 	loff_t		offset,
1094 	int		origin)
1095 {
1096 	switch (origin) {
1097 	case SEEK_END:
1098 	case SEEK_CUR:
1099 	case SEEK_SET:
1100 		return generic_file_llseek(file, offset, origin);
1101 	case SEEK_DATA:
1102 		return xfs_seek_data(file, offset, origin);
1103 	case SEEK_HOLE:
1104 		return xfs_seek_hole(file, offset, origin);
1105 	default:
1106 		return -EINVAL;
1107 	}
1108 }
1109 
1110 const struct file_operations xfs_file_operations = {
1111 	.llseek		= xfs_file_llseek,
1112 	.read		= do_sync_read,
1113 	.write		= do_sync_write,
1114 	.aio_read	= xfs_file_aio_read,
1115 	.aio_write	= xfs_file_aio_write,
1116 	.splice_read	= xfs_file_splice_read,
1117 	.splice_write	= xfs_file_splice_write,
1118 	.unlocked_ioctl	= xfs_file_ioctl,
1119 #ifdef CONFIG_COMPAT
1120 	.compat_ioctl	= xfs_file_compat_ioctl,
1121 #endif
1122 	.mmap		= xfs_file_mmap,
1123 	.open		= xfs_file_open,
1124 	.release	= xfs_file_release,
1125 	.fsync		= xfs_file_fsync,
1126 	.fallocate	= xfs_file_fallocate,
1127 };
1128 
1129 const struct file_operations xfs_dir_file_operations = {
1130 	.open		= xfs_dir_open,
1131 	.read		= generic_read_dir,
1132 	.readdir	= xfs_file_readdir,
1133 	.llseek		= generic_file_llseek,
1134 	.unlocked_ioctl	= xfs_file_ioctl,
1135 #ifdef CONFIG_COMPAT
1136 	.compat_ioctl	= xfs_file_compat_ioctl,
1137 #endif
1138 	.fsync		= xfs_dir_fsync,
1139 };
1140 
1141 static const struct vm_operations_struct xfs_file_vm_ops = {
1142 	.fault		= filemap_fault,
1143 	.page_mkwrite	= xfs_vm_page_mkwrite,
1144 };
1145