1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log.h" 21 #include "xfs_sb.h" 22 #include "xfs_ag.h" 23 #include "xfs_trans.h" 24 #include "xfs_mount.h" 25 #include "xfs_bmap_btree.h" 26 #include "xfs_alloc.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_error.h" 32 #include "xfs_vnodeops.h" 33 #include "xfs_da_btree.h" 34 #include "xfs_ioctl.h" 35 #include "xfs_trace.h" 36 37 #include <linux/dcache.h> 38 #include <linux/falloc.h> 39 40 static const struct vm_operations_struct xfs_file_vm_ops; 41 42 /* 43 * Locking primitives for read and write IO paths to ensure we consistently use 44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 45 */ 46 static inline void 47 xfs_rw_ilock( 48 struct xfs_inode *ip, 49 int type) 50 { 51 if (type & XFS_IOLOCK_EXCL) 52 mutex_lock(&VFS_I(ip)->i_mutex); 53 xfs_ilock(ip, type); 54 } 55 56 static inline void 57 xfs_rw_iunlock( 58 struct xfs_inode *ip, 59 int type) 60 { 61 xfs_iunlock(ip, type); 62 if (type & XFS_IOLOCK_EXCL) 63 mutex_unlock(&VFS_I(ip)->i_mutex); 64 } 65 66 static inline void 67 xfs_rw_ilock_demote( 68 struct xfs_inode *ip, 69 int type) 70 { 71 xfs_ilock_demote(ip, type); 72 if (type & XFS_IOLOCK_EXCL) 73 mutex_unlock(&VFS_I(ip)->i_mutex); 74 } 75 76 /* 77 * xfs_iozero 78 * 79 * xfs_iozero clears the specified range of buffer supplied, 80 * and marks all the affected blocks as valid and modified. If 81 * an affected block is not allocated, it will be allocated. If 82 * an affected block is not completely overwritten, and is not 83 * valid before the operation, it will be read from disk before 84 * being partially zeroed. 85 */ 86 STATIC int 87 xfs_iozero( 88 struct xfs_inode *ip, /* inode */ 89 loff_t pos, /* offset in file */ 90 size_t count) /* size of data to zero */ 91 { 92 struct page *page; 93 struct address_space *mapping; 94 int status; 95 96 mapping = VFS_I(ip)->i_mapping; 97 do { 98 unsigned offset, bytes; 99 void *fsdata; 100 101 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 102 bytes = PAGE_CACHE_SIZE - offset; 103 if (bytes > count) 104 bytes = count; 105 106 status = pagecache_write_begin(NULL, mapping, pos, bytes, 107 AOP_FLAG_UNINTERRUPTIBLE, 108 &page, &fsdata); 109 if (status) 110 break; 111 112 zero_user(page, offset, bytes); 113 114 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 115 page, fsdata); 116 WARN_ON(status <= 0); /* can't return less than zero! */ 117 pos += bytes; 118 count -= bytes; 119 status = 0; 120 } while (count); 121 122 return (-status); 123 } 124 125 /* 126 * Fsync operations on directories are much simpler than on regular files, 127 * as there is no file data to flush, and thus also no need for explicit 128 * cache flush operations, and there are no non-transaction metadata updates 129 * on directories either. 130 */ 131 STATIC int 132 xfs_dir_fsync( 133 struct file *file, 134 loff_t start, 135 loff_t end, 136 int datasync) 137 { 138 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 139 struct xfs_mount *mp = ip->i_mount; 140 xfs_lsn_t lsn = 0; 141 142 trace_xfs_dir_fsync(ip); 143 144 xfs_ilock(ip, XFS_ILOCK_SHARED); 145 if (xfs_ipincount(ip)) 146 lsn = ip->i_itemp->ili_last_lsn; 147 xfs_iunlock(ip, XFS_ILOCK_SHARED); 148 149 if (!lsn) 150 return 0; 151 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 152 } 153 154 STATIC int 155 xfs_file_fsync( 156 struct file *file, 157 loff_t start, 158 loff_t end, 159 int datasync) 160 { 161 struct inode *inode = file->f_mapping->host; 162 struct xfs_inode *ip = XFS_I(inode); 163 struct xfs_mount *mp = ip->i_mount; 164 int error = 0; 165 int log_flushed = 0; 166 xfs_lsn_t lsn = 0; 167 168 trace_xfs_file_fsync(ip); 169 170 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 171 if (error) 172 return error; 173 174 if (XFS_FORCED_SHUTDOWN(mp)) 175 return -XFS_ERROR(EIO); 176 177 xfs_iflags_clear(ip, XFS_ITRUNCATED); 178 179 if (mp->m_flags & XFS_MOUNT_BARRIER) { 180 /* 181 * If we have an RT and/or log subvolume we need to make sure 182 * to flush the write cache the device used for file data 183 * first. This is to ensure newly written file data make 184 * it to disk before logging the new inode size in case of 185 * an extending write. 186 */ 187 if (XFS_IS_REALTIME_INODE(ip)) 188 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 189 else if (mp->m_logdev_targp != mp->m_ddev_targp) 190 xfs_blkdev_issue_flush(mp->m_ddev_targp); 191 } 192 193 /* 194 * All metadata updates are logged, which means that we just have 195 * to flush the log up to the latest LSN that touched the inode. 196 */ 197 xfs_ilock(ip, XFS_ILOCK_SHARED); 198 if (xfs_ipincount(ip)) { 199 if (!datasync || 200 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 201 lsn = ip->i_itemp->ili_last_lsn; 202 } 203 xfs_iunlock(ip, XFS_ILOCK_SHARED); 204 205 if (lsn) 206 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 207 208 /* 209 * If we only have a single device, and the log force about was 210 * a no-op we might have to flush the data device cache here. 211 * This can only happen for fdatasync/O_DSYNC if we were overwriting 212 * an already allocated file and thus do not have any metadata to 213 * commit. 214 */ 215 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 216 mp->m_logdev_targp == mp->m_ddev_targp && 217 !XFS_IS_REALTIME_INODE(ip) && 218 !log_flushed) 219 xfs_blkdev_issue_flush(mp->m_ddev_targp); 220 221 return -error; 222 } 223 224 STATIC ssize_t 225 xfs_file_aio_read( 226 struct kiocb *iocb, 227 const struct iovec *iovp, 228 unsigned long nr_segs, 229 loff_t pos) 230 { 231 struct file *file = iocb->ki_filp; 232 struct inode *inode = file->f_mapping->host; 233 struct xfs_inode *ip = XFS_I(inode); 234 struct xfs_mount *mp = ip->i_mount; 235 size_t size = 0; 236 ssize_t ret = 0; 237 int ioflags = 0; 238 xfs_fsize_t n; 239 unsigned long seg; 240 241 XFS_STATS_INC(xs_read_calls); 242 243 BUG_ON(iocb->ki_pos != pos); 244 245 if (unlikely(file->f_flags & O_DIRECT)) 246 ioflags |= IO_ISDIRECT; 247 if (file->f_mode & FMODE_NOCMTIME) 248 ioflags |= IO_INVIS; 249 250 /* START copy & waste from filemap.c */ 251 for (seg = 0; seg < nr_segs; seg++) { 252 const struct iovec *iv = &iovp[seg]; 253 254 /* 255 * If any segment has a negative length, or the cumulative 256 * length ever wraps negative then return -EINVAL. 257 */ 258 size += iv->iov_len; 259 if (unlikely((ssize_t)(size|iv->iov_len) < 0)) 260 return XFS_ERROR(-EINVAL); 261 } 262 /* END copy & waste from filemap.c */ 263 264 if (unlikely(ioflags & IO_ISDIRECT)) { 265 xfs_buftarg_t *target = 266 XFS_IS_REALTIME_INODE(ip) ? 267 mp->m_rtdev_targp : mp->m_ddev_targp; 268 if ((iocb->ki_pos & target->bt_smask) || 269 (size & target->bt_smask)) { 270 if (iocb->ki_pos == i_size_read(inode)) 271 return 0; 272 return -XFS_ERROR(EINVAL); 273 } 274 } 275 276 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; 277 if (n <= 0 || size == 0) 278 return 0; 279 280 if (n < size) 281 size = n; 282 283 if (XFS_FORCED_SHUTDOWN(mp)) 284 return -EIO; 285 286 /* 287 * Locking is a bit tricky here. If we take an exclusive lock 288 * for direct IO, we effectively serialise all new concurrent 289 * read IO to this file and block it behind IO that is currently in 290 * progress because IO in progress holds the IO lock shared. We only 291 * need to hold the lock exclusive to blow away the page cache, so 292 * only take lock exclusively if the page cache needs invalidation. 293 * This allows the normal direct IO case of no page cache pages to 294 * proceeed concurrently without serialisation. 295 */ 296 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 297 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 298 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 299 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 300 301 if (inode->i_mapping->nrpages) { 302 ret = -xfs_flushinval_pages(ip, 303 (iocb->ki_pos & PAGE_CACHE_MASK), 304 -1, FI_REMAPF_LOCKED); 305 if (ret) { 306 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 307 return ret; 308 } 309 } 310 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 311 } 312 313 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); 314 315 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); 316 if (ret > 0) 317 XFS_STATS_ADD(xs_read_bytes, ret); 318 319 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 320 return ret; 321 } 322 323 STATIC ssize_t 324 xfs_file_splice_read( 325 struct file *infilp, 326 loff_t *ppos, 327 struct pipe_inode_info *pipe, 328 size_t count, 329 unsigned int flags) 330 { 331 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 332 int ioflags = 0; 333 ssize_t ret; 334 335 XFS_STATS_INC(xs_read_calls); 336 337 if (infilp->f_mode & FMODE_NOCMTIME) 338 ioflags |= IO_INVIS; 339 340 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 341 return -EIO; 342 343 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 344 345 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 346 347 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 348 if (ret > 0) 349 XFS_STATS_ADD(xs_read_bytes, ret); 350 351 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 352 return ret; 353 } 354 355 /* 356 * xfs_file_splice_write() does not use xfs_rw_ilock() because 357 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 358 * couuld cause lock inversions between the aio_write path and the splice path 359 * if someone is doing concurrent splice(2) based writes and write(2) based 360 * writes to the same inode. The only real way to fix this is to re-implement 361 * the generic code here with correct locking orders. 362 */ 363 STATIC ssize_t 364 xfs_file_splice_write( 365 struct pipe_inode_info *pipe, 366 struct file *outfilp, 367 loff_t *ppos, 368 size_t count, 369 unsigned int flags) 370 { 371 struct inode *inode = outfilp->f_mapping->host; 372 struct xfs_inode *ip = XFS_I(inode); 373 int ioflags = 0; 374 ssize_t ret; 375 376 XFS_STATS_INC(xs_write_calls); 377 378 if (outfilp->f_mode & FMODE_NOCMTIME) 379 ioflags |= IO_INVIS; 380 381 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 382 return -EIO; 383 384 xfs_ilock(ip, XFS_IOLOCK_EXCL); 385 386 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 387 388 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 389 if (ret > 0) 390 XFS_STATS_ADD(xs_write_bytes, ret); 391 392 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 393 return ret; 394 } 395 396 /* 397 * This routine is called to handle zeroing any space in the last block of the 398 * file that is beyond the EOF. We do this since the size is being increased 399 * without writing anything to that block and we don't want to read the 400 * garbage on the disk. 401 */ 402 STATIC int /* error (positive) */ 403 xfs_zero_last_block( 404 struct xfs_inode *ip, 405 xfs_fsize_t offset, 406 xfs_fsize_t isize) 407 { 408 struct xfs_mount *mp = ip->i_mount; 409 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 410 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 411 int zero_len; 412 int nimaps = 1; 413 int error = 0; 414 struct xfs_bmbt_irec imap; 415 416 xfs_ilock(ip, XFS_ILOCK_EXCL); 417 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 418 xfs_iunlock(ip, XFS_ILOCK_EXCL); 419 if (error) 420 return error; 421 422 ASSERT(nimaps > 0); 423 424 /* 425 * If the block underlying isize is just a hole, then there 426 * is nothing to zero. 427 */ 428 if (imap.br_startblock == HOLESTARTBLOCK) 429 return 0; 430 431 zero_len = mp->m_sb.sb_blocksize - zero_offset; 432 if (isize + zero_len > offset) 433 zero_len = offset - isize; 434 return xfs_iozero(ip, isize, zero_len); 435 } 436 437 /* 438 * Zero any on disk space between the current EOF and the new, larger EOF. 439 * 440 * This handles the normal case of zeroing the remainder of the last block in 441 * the file and the unusual case of zeroing blocks out beyond the size of the 442 * file. This second case only happens with fixed size extents and when the 443 * system crashes before the inode size was updated but after blocks were 444 * allocated. 445 * 446 * Expects the iolock to be held exclusive, and will take the ilock internally. 447 */ 448 int /* error (positive) */ 449 xfs_zero_eof( 450 struct xfs_inode *ip, 451 xfs_off_t offset, /* starting I/O offset */ 452 xfs_fsize_t isize) /* current inode size */ 453 { 454 struct xfs_mount *mp = ip->i_mount; 455 xfs_fileoff_t start_zero_fsb; 456 xfs_fileoff_t end_zero_fsb; 457 xfs_fileoff_t zero_count_fsb; 458 xfs_fileoff_t last_fsb; 459 xfs_fileoff_t zero_off; 460 xfs_fsize_t zero_len; 461 int nimaps; 462 int error = 0; 463 struct xfs_bmbt_irec imap; 464 465 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 466 ASSERT(offset > isize); 467 468 /* 469 * First handle zeroing the block on which isize resides. 470 * 471 * We only zero a part of that block so it is handled specially. 472 */ 473 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 474 error = xfs_zero_last_block(ip, offset, isize); 475 if (error) 476 return error; 477 } 478 479 /* 480 * Calculate the range between the new size and the old where blocks 481 * needing to be zeroed may exist. 482 * 483 * To get the block where the last byte in the file currently resides, 484 * we need to subtract one from the size and truncate back to a block 485 * boundary. We subtract 1 in case the size is exactly on a block 486 * boundary. 487 */ 488 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 489 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 490 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 491 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 492 if (last_fsb == end_zero_fsb) { 493 /* 494 * The size was only incremented on its last block. 495 * We took care of that above, so just return. 496 */ 497 return 0; 498 } 499 500 ASSERT(start_zero_fsb <= end_zero_fsb); 501 while (start_zero_fsb <= end_zero_fsb) { 502 nimaps = 1; 503 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 504 505 xfs_ilock(ip, XFS_ILOCK_EXCL); 506 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 507 &imap, &nimaps, 0); 508 xfs_iunlock(ip, XFS_ILOCK_EXCL); 509 if (error) 510 return error; 511 512 ASSERT(nimaps > 0); 513 514 if (imap.br_state == XFS_EXT_UNWRITTEN || 515 imap.br_startblock == HOLESTARTBLOCK) { 516 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 517 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 518 continue; 519 } 520 521 /* 522 * There are blocks we need to zero. 523 */ 524 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 525 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 526 527 if ((zero_off + zero_len) > offset) 528 zero_len = offset - zero_off; 529 530 error = xfs_iozero(ip, zero_off, zero_len); 531 if (error) 532 return error; 533 534 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 535 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 536 } 537 538 return 0; 539 } 540 541 /* 542 * Common pre-write limit and setup checks. 543 * 544 * Called with the iolocked held either shared and exclusive according to 545 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 546 * if called for a direct write beyond i_size. 547 */ 548 STATIC ssize_t 549 xfs_file_aio_write_checks( 550 struct file *file, 551 loff_t *pos, 552 size_t *count, 553 int *iolock) 554 { 555 struct inode *inode = file->f_mapping->host; 556 struct xfs_inode *ip = XFS_I(inode); 557 int error = 0; 558 559 restart: 560 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 561 if (error) 562 return error; 563 564 /* 565 * If the offset is beyond the size of the file, we need to zero any 566 * blocks that fall between the existing EOF and the start of this 567 * write. If zeroing is needed and we are currently holding the 568 * iolock shared, we need to update it to exclusive which implies 569 * having to redo all checks before. 570 */ 571 if (*pos > i_size_read(inode)) { 572 if (*iolock == XFS_IOLOCK_SHARED) { 573 xfs_rw_iunlock(ip, *iolock); 574 *iolock = XFS_IOLOCK_EXCL; 575 xfs_rw_ilock(ip, *iolock); 576 goto restart; 577 } 578 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 579 if (error) 580 return error; 581 } 582 583 /* 584 * Updating the timestamps will grab the ilock again from 585 * xfs_fs_dirty_inode, so we have to call it after dropping the 586 * lock above. Eventually we should look into a way to avoid 587 * the pointless lock roundtrip. 588 */ 589 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 590 error = file_update_time(file); 591 if (error) 592 return error; 593 } 594 595 /* 596 * If we're writing the file then make sure to clear the setuid and 597 * setgid bits if the process is not being run by root. This keeps 598 * people from modifying setuid and setgid binaries. 599 */ 600 return file_remove_suid(file); 601 } 602 603 /* 604 * xfs_file_dio_aio_write - handle direct IO writes 605 * 606 * Lock the inode appropriately to prepare for and issue a direct IO write. 607 * By separating it from the buffered write path we remove all the tricky to 608 * follow locking changes and looping. 609 * 610 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 611 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 612 * pages are flushed out. 613 * 614 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 615 * allowing them to be done in parallel with reads and other direct IO writes. 616 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 617 * needs to do sub-block zeroing and that requires serialisation against other 618 * direct IOs to the same block. In this case we need to serialise the 619 * submission of the unaligned IOs so that we don't get racing block zeroing in 620 * the dio layer. To avoid the problem with aio, we also need to wait for 621 * outstanding IOs to complete so that unwritten extent conversion is completed 622 * before we try to map the overlapping block. This is currently implemented by 623 * hitting it with a big hammer (i.e. inode_dio_wait()). 624 * 625 * Returns with locks held indicated by @iolock and errors indicated by 626 * negative return values. 627 */ 628 STATIC ssize_t 629 xfs_file_dio_aio_write( 630 struct kiocb *iocb, 631 const struct iovec *iovp, 632 unsigned long nr_segs, 633 loff_t pos, 634 size_t ocount) 635 { 636 struct file *file = iocb->ki_filp; 637 struct address_space *mapping = file->f_mapping; 638 struct inode *inode = mapping->host; 639 struct xfs_inode *ip = XFS_I(inode); 640 struct xfs_mount *mp = ip->i_mount; 641 ssize_t ret = 0; 642 size_t count = ocount; 643 int unaligned_io = 0; 644 int iolock; 645 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 646 mp->m_rtdev_targp : mp->m_ddev_targp; 647 648 if ((pos & target->bt_smask) || (count & target->bt_smask)) 649 return -XFS_ERROR(EINVAL); 650 651 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 652 unaligned_io = 1; 653 654 /* 655 * We don't need to take an exclusive lock unless there page cache needs 656 * to be invalidated or unaligned IO is being executed. We don't need to 657 * consider the EOF extension case here because 658 * xfs_file_aio_write_checks() will relock the inode as necessary for 659 * EOF zeroing cases and fill out the new inode size as appropriate. 660 */ 661 if (unaligned_io || mapping->nrpages) 662 iolock = XFS_IOLOCK_EXCL; 663 else 664 iolock = XFS_IOLOCK_SHARED; 665 xfs_rw_ilock(ip, iolock); 666 667 /* 668 * Recheck if there are cached pages that need invalidate after we got 669 * the iolock to protect against other threads adding new pages while 670 * we were waiting for the iolock. 671 */ 672 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 673 xfs_rw_iunlock(ip, iolock); 674 iolock = XFS_IOLOCK_EXCL; 675 xfs_rw_ilock(ip, iolock); 676 } 677 678 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 679 if (ret) 680 goto out; 681 682 if (mapping->nrpages) { 683 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, 684 FI_REMAPF_LOCKED); 685 if (ret) 686 goto out; 687 } 688 689 /* 690 * If we are doing unaligned IO, wait for all other IO to drain, 691 * otherwise demote the lock if we had to flush cached pages 692 */ 693 if (unaligned_io) 694 inode_dio_wait(inode); 695 else if (iolock == XFS_IOLOCK_EXCL) { 696 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 697 iolock = XFS_IOLOCK_SHARED; 698 } 699 700 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 701 ret = generic_file_direct_write(iocb, iovp, 702 &nr_segs, pos, &iocb->ki_pos, count, ocount); 703 704 out: 705 xfs_rw_iunlock(ip, iolock); 706 707 /* No fallback to buffered IO on errors for XFS. */ 708 ASSERT(ret < 0 || ret == count); 709 return ret; 710 } 711 712 STATIC ssize_t 713 xfs_file_buffered_aio_write( 714 struct kiocb *iocb, 715 const struct iovec *iovp, 716 unsigned long nr_segs, 717 loff_t pos, 718 size_t ocount) 719 { 720 struct file *file = iocb->ki_filp; 721 struct address_space *mapping = file->f_mapping; 722 struct inode *inode = mapping->host; 723 struct xfs_inode *ip = XFS_I(inode); 724 ssize_t ret; 725 int enospc = 0; 726 int iolock = XFS_IOLOCK_EXCL; 727 size_t count = ocount; 728 729 xfs_rw_ilock(ip, iolock); 730 731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 732 if (ret) 733 goto out; 734 735 /* We can write back this queue in page reclaim */ 736 current->backing_dev_info = mapping->backing_dev_info; 737 738 write_retry: 739 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 740 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 741 pos, &iocb->ki_pos, count, ret); 742 /* 743 * if we just got an ENOSPC, flush the inode now we aren't holding any 744 * page locks and retry *once* 745 */ 746 if (ret == -ENOSPC && !enospc) { 747 enospc = 1; 748 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); 749 if (!ret) 750 goto write_retry; 751 } 752 753 current->backing_dev_info = NULL; 754 out: 755 xfs_rw_iunlock(ip, iolock); 756 return ret; 757 } 758 759 STATIC ssize_t 760 xfs_file_aio_write( 761 struct kiocb *iocb, 762 const struct iovec *iovp, 763 unsigned long nr_segs, 764 loff_t pos) 765 { 766 struct file *file = iocb->ki_filp; 767 struct address_space *mapping = file->f_mapping; 768 struct inode *inode = mapping->host; 769 struct xfs_inode *ip = XFS_I(inode); 770 ssize_t ret; 771 size_t ocount = 0; 772 773 XFS_STATS_INC(xs_write_calls); 774 775 BUG_ON(iocb->ki_pos != pos); 776 777 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 778 if (ret) 779 return ret; 780 781 if (ocount == 0) 782 return 0; 783 784 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE); 785 786 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 787 return -EIO; 788 789 if (unlikely(file->f_flags & O_DIRECT)) 790 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 791 else 792 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 793 ocount); 794 795 if (ret > 0) { 796 ssize_t err; 797 798 XFS_STATS_ADD(xs_write_bytes, ret); 799 800 /* Handle various SYNC-type writes */ 801 err = generic_write_sync(file, pos, ret); 802 if (err < 0) 803 ret = err; 804 } 805 806 return ret; 807 } 808 809 STATIC long 810 xfs_file_fallocate( 811 struct file *file, 812 int mode, 813 loff_t offset, 814 loff_t len) 815 { 816 struct inode *inode = file->f_path.dentry->d_inode; 817 long error; 818 loff_t new_size = 0; 819 xfs_flock64_t bf; 820 xfs_inode_t *ip = XFS_I(inode); 821 int cmd = XFS_IOC_RESVSP; 822 int attr_flags = XFS_ATTR_NOLOCK; 823 824 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 825 return -EOPNOTSUPP; 826 827 bf.l_whence = 0; 828 bf.l_start = offset; 829 bf.l_len = len; 830 831 xfs_ilock(ip, XFS_IOLOCK_EXCL); 832 833 if (mode & FALLOC_FL_PUNCH_HOLE) 834 cmd = XFS_IOC_UNRESVSP; 835 836 /* check the new inode size is valid before allocating */ 837 if (!(mode & FALLOC_FL_KEEP_SIZE) && 838 offset + len > i_size_read(inode)) { 839 new_size = offset + len; 840 error = inode_newsize_ok(inode, new_size); 841 if (error) 842 goto out_unlock; 843 } 844 845 if (file->f_flags & O_DSYNC) 846 attr_flags |= XFS_ATTR_SYNC; 847 848 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 849 if (error) 850 goto out_unlock; 851 852 /* Change file size if needed */ 853 if (new_size) { 854 struct iattr iattr; 855 856 iattr.ia_valid = ATTR_SIZE; 857 iattr.ia_size = new_size; 858 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 859 } 860 861 out_unlock: 862 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 863 return error; 864 } 865 866 867 STATIC int 868 xfs_file_open( 869 struct inode *inode, 870 struct file *file) 871 { 872 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 873 return -EFBIG; 874 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 875 return -EIO; 876 return 0; 877 } 878 879 STATIC int 880 xfs_dir_open( 881 struct inode *inode, 882 struct file *file) 883 { 884 struct xfs_inode *ip = XFS_I(inode); 885 int mode; 886 int error; 887 888 error = xfs_file_open(inode, file); 889 if (error) 890 return error; 891 892 /* 893 * If there are any blocks, read-ahead block 0 as we're almost 894 * certain to have the next operation be a read there. 895 */ 896 mode = xfs_ilock_map_shared(ip); 897 if (ip->i_d.di_nextents > 0) 898 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); 899 xfs_iunlock(ip, mode); 900 return 0; 901 } 902 903 STATIC int 904 xfs_file_release( 905 struct inode *inode, 906 struct file *filp) 907 { 908 return -xfs_release(XFS_I(inode)); 909 } 910 911 STATIC int 912 xfs_file_readdir( 913 struct file *filp, 914 void *dirent, 915 filldir_t filldir) 916 { 917 struct inode *inode = filp->f_path.dentry->d_inode; 918 xfs_inode_t *ip = XFS_I(inode); 919 int error; 920 size_t bufsize; 921 922 /* 923 * The Linux API doesn't pass down the total size of the buffer 924 * we read into down to the filesystem. With the filldir concept 925 * it's not needed for correct information, but the XFS dir2 leaf 926 * code wants an estimate of the buffer size to calculate it's 927 * readahead window and size the buffers used for mapping to 928 * physical blocks. 929 * 930 * Try to give it an estimate that's good enough, maybe at some 931 * point we can change the ->readdir prototype to include the 932 * buffer size. For now we use the current glibc buffer size. 933 */ 934 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 935 936 error = xfs_readdir(ip, dirent, bufsize, 937 (xfs_off_t *)&filp->f_pos, filldir); 938 if (error) 939 return -error; 940 return 0; 941 } 942 943 STATIC int 944 xfs_file_mmap( 945 struct file *filp, 946 struct vm_area_struct *vma) 947 { 948 vma->vm_ops = &xfs_file_vm_ops; 949 vma->vm_flags |= VM_CAN_NONLINEAR; 950 951 file_accessed(filp); 952 return 0; 953 } 954 955 /* 956 * mmap()d file has taken write protection fault and is being made 957 * writable. We can set the page state up correctly for a writable 958 * page, which means we can do correct delalloc accounting (ENOSPC 959 * checking!) and unwritten extent mapping. 960 */ 961 STATIC int 962 xfs_vm_page_mkwrite( 963 struct vm_area_struct *vma, 964 struct vm_fault *vmf) 965 { 966 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 967 } 968 969 STATIC loff_t 970 xfs_seek_data( 971 struct file *file, 972 loff_t start, 973 u32 type) 974 { 975 struct inode *inode = file->f_mapping->host; 976 struct xfs_inode *ip = XFS_I(inode); 977 struct xfs_mount *mp = ip->i_mount; 978 struct xfs_bmbt_irec map[2]; 979 int nmap = 2; 980 loff_t uninitialized_var(offset); 981 xfs_fsize_t isize; 982 xfs_fileoff_t fsbno; 983 xfs_filblks_t end; 984 uint lock; 985 int error; 986 987 lock = xfs_ilock_map_shared(ip); 988 989 isize = i_size_read(inode); 990 if (start >= isize) { 991 error = ENXIO; 992 goto out_unlock; 993 } 994 995 fsbno = XFS_B_TO_FSBT(mp, start); 996 997 /* 998 * Try to read extents from the first block indicated 999 * by fsbno to the end block of the file. 1000 */ 1001 end = XFS_B_TO_FSB(mp, isize); 1002 1003 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1004 XFS_BMAPI_ENTIRE); 1005 if (error) 1006 goto out_unlock; 1007 1008 /* 1009 * Treat unwritten extent as data extent since it might 1010 * contains dirty data in page cache. 1011 */ 1012 if (map[0].br_startblock != HOLESTARTBLOCK) { 1013 offset = max_t(loff_t, start, 1014 XFS_FSB_TO_B(mp, map[0].br_startoff)); 1015 } else { 1016 if (nmap == 1) { 1017 error = ENXIO; 1018 goto out_unlock; 1019 } 1020 1021 offset = max_t(loff_t, start, 1022 XFS_FSB_TO_B(mp, map[1].br_startoff)); 1023 } 1024 1025 if (offset != file->f_pos) 1026 file->f_pos = offset; 1027 1028 out_unlock: 1029 xfs_iunlock_map_shared(ip, lock); 1030 1031 if (error) 1032 return -error; 1033 return offset; 1034 } 1035 1036 STATIC loff_t 1037 xfs_seek_hole( 1038 struct file *file, 1039 loff_t start, 1040 u32 type) 1041 { 1042 struct inode *inode = file->f_mapping->host; 1043 struct xfs_inode *ip = XFS_I(inode); 1044 struct xfs_mount *mp = ip->i_mount; 1045 loff_t uninitialized_var(offset); 1046 loff_t holeoff; 1047 xfs_fsize_t isize; 1048 xfs_fileoff_t fsbno; 1049 uint lock; 1050 int error; 1051 1052 if (XFS_FORCED_SHUTDOWN(mp)) 1053 return -XFS_ERROR(EIO); 1054 1055 lock = xfs_ilock_map_shared(ip); 1056 1057 isize = i_size_read(inode); 1058 if (start >= isize) { 1059 error = ENXIO; 1060 goto out_unlock; 1061 } 1062 1063 fsbno = XFS_B_TO_FSBT(mp, start); 1064 error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK); 1065 if (error) 1066 goto out_unlock; 1067 1068 holeoff = XFS_FSB_TO_B(mp, fsbno); 1069 if (holeoff <= start) 1070 offset = start; 1071 else { 1072 /* 1073 * xfs_bmap_first_unused() could return a value bigger than 1074 * isize if there are no more holes past the supplied offset. 1075 */ 1076 offset = min_t(loff_t, holeoff, isize); 1077 } 1078 1079 if (offset != file->f_pos) 1080 file->f_pos = offset; 1081 1082 out_unlock: 1083 xfs_iunlock_map_shared(ip, lock); 1084 1085 if (error) 1086 return -error; 1087 return offset; 1088 } 1089 1090 STATIC loff_t 1091 xfs_file_llseek( 1092 struct file *file, 1093 loff_t offset, 1094 int origin) 1095 { 1096 switch (origin) { 1097 case SEEK_END: 1098 case SEEK_CUR: 1099 case SEEK_SET: 1100 return generic_file_llseek(file, offset, origin); 1101 case SEEK_DATA: 1102 return xfs_seek_data(file, offset, origin); 1103 case SEEK_HOLE: 1104 return xfs_seek_hole(file, offset, origin); 1105 default: 1106 return -EINVAL; 1107 } 1108 } 1109 1110 const struct file_operations xfs_file_operations = { 1111 .llseek = xfs_file_llseek, 1112 .read = do_sync_read, 1113 .write = do_sync_write, 1114 .aio_read = xfs_file_aio_read, 1115 .aio_write = xfs_file_aio_write, 1116 .splice_read = xfs_file_splice_read, 1117 .splice_write = xfs_file_splice_write, 1118 .unlocked_ioctl = xfs_file_ioctl, 1119 #ifdef CONFIG_COMPAT 1120 .compat_ioctl = xfs_file_compat_ioctl, 1121 #endif 1122 .mmap = xfs_file_mmap, 1123 .open = xfs_file_open, 1124 .release = xfs_file_release, 1125 .fsync = xfs_file_fsync, 1126 .fallocate = xfs_file_fallocate, 1127 }; 1128 1129 const struct file_operations xfs_dir_file_operations = { 1130 .open = xfs_dir_open, 1131 .read = generic_read_dir, 1132 .readdir = xfs_file_readdir, 1133 .llseek = generic_file_llseek, 1134 .unlocked_ioctl = xfs_file_ioctl, 1135 #ifdef CONFIG_COMPAT 1136 .compat_ioctl = xfs_file_compat_ioctl, 1137 #endif 1138 .fsync = xfs_dir_fsync, 1139 }; 1140 1141 static const struct vm_operations_struct xfs_file_vm_ops = { 1142 .fault = filemap_fault, 1143 .page_mkwrite = xfs_vm_page_mkwrite, 1144 }; 1145